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Abstract

We revisit the double digest problem, which occurs in sequencing of large DNA
strings and consists of reconstructing the relative positions of cut sites from two dif-
ferent enzymes: we first show that double digest is strongly NP-complete, improving
previous results that only showed weak NP-completeness. Even the (experimentally
more meaningful) variation in which we disallow coincident cut sites turns out to
be strongly NP-complete. In a second part, we model errors in data as they occur
in real-life experiments: we propose several optimization variations of double digest
that model partial cleavage errors, which occur for various reasons. We then show
APX-completeness for most of these variations. In a third part, we investigate these
variations with the additional restriction that conincident cut sites are disallowed and
we show that it is NP-hard to even find feasible solutions in this case, thus making it
impossible to guarantee any approximation ratio at all.
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1 Introduction

Double digest experiments are a standard approach to construct physical maps of DNA.
Given a large DNA molecule, which is an unknown string over the alphabet {4, C, G,
T} for our purposes, the objective is to find the locations of markers, i.e., occurrences of
short substrings such as GAATTC, on the DNA. Physical maps are required e.g. in DNA
sequencing in order to determine the sequence of nucleotides (4, C', G, and T) of large DNA
molecules, since current sequencing methods allow only to sequence DNA fragments with
tens of thousands of nucleotides, while a DNA molecule can have up to 10® nucleotides.

In double digest experiments, two enzymes are used to cleave the DNA molecule.
An enzyme is a protein that cuts a DNA molecule at specific patterns, the restriction
sites. For instance, the enzyme EcoRI cuts at occurrences of the pattern GAATTC.
Under appropriate experimental conditions, an enzyme cleaves at all restriction sites in
the DNA. This process is called (full) digestion. Double digest experiments work in three
stages: First, clones (copies) of the unknown DNA string are digested by an enzyme A;
then a second set of clones is digested by another enzyme B; and finally a third set of
clones is digested by a mix of both enzymes A and B, which we will refer to as C. This
results in three multisets of DNA fragments. The lengths of these fragments (i.e., their
number of nucleotides) are then measured for each multiset by using gel electrophoresis, a
standard technique in molecular biology. This leaves us with three multisets of distances
(the number of nucleotides) between all adjacent restriction sites, and the objective is
to reconstruct the original ordering of the fragments in the DNA molecule, which is the
DoOUBLE DIGEST problem.

More formally, the DOUBLE DIGEST problem can be defined as follows, where sum(S)
denotes the sum of the elements in a set S, and dist(P) is the set of all distances between
two neighboring points in a set P of points on a line:

Definition (DoUBLE DIGEST). Given three multisets A, B and C' of positive integers with
sum(A) = sum(B) = sum(C), are there three sets P4, PB and PY of points on a line,
each starting in 0, such that dist(P4) = A, dist(PP) = B and dist(P®) = C, and such
that P4 U PP = pC?

For example, given multisets A = {5,15,30}, B = {2,12,12,24}and C = {2,5,6,6,7,24}
as an instance of DOUBLE DIGEST, then P4 = {0,5,20,50}, PP = {12,14, 26,50} and
PY = {5,12, 14,20, 26,50} is a feasible solution (there may exist more solutions).
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Figure 1: Example for the DOUBLE DIGEST problem.



Due to its importance in molecular biology, the DOUBLE DIGEST problem has been the
subject of intense research since the first successful restriction site mappings in the early
1970’s [16, 5]. The DOUBLE DIGEST problem is NP-complete [7], and several approaches
including exponential algorithms, heuristics, additional experiments or computer-assisted
interactive strategies have been proposed (and implemented) in order to tackle the problem
[3, 1, 18, 8, 9]. The number of feasible maps for a DOUBLE DIGEST instance can be
exponential in the number of fragments [7]. However, some maps can be transformed into
each other using cassette transformations [14]. The set of different maps for an instance
- modulo cassette transformations - can be characterized by using alternating Eulerian
paths in appropriate graph classes [10, 11]. For a survey, see [17] and [12].

The double digest experiment is usually carried out with two enzymes that cut at
different restriction sites. For example, enzyme Ball cuts each occurrence of string TG-
GCCA into two substrings TGG and CCA, while enzyme Sall cuts each occurrence of
string GTCGAC into two substrings G and TCGAC. In this case, the two enzymes never
cut at the same site. A majority of all possible enzyme pairings of the more than 3000
known enzymes are pairs with such disjoint cutting behavior. On the other hand, some
results in the literature rely on enzymes that cut at the same site in some cases (coinci-
dences) [10]. In particular, NP-hardness of the DoUBLE DIGEST problem has so far only
been shown using enzymes that allow for coincidences [7, 17, 15]. Indeed, such enzyme
pairs exist, for example enzyme Haelll cuts each GGCC string into GG and CC, and
thus cuts at a superset of the sites at which the Ball enzyme cuts. However, having two
enzymes that are guaranteed to always cut at disjoint sites seems more natural and might
lead — at least intuitively — to easier reconstruction problems. For example, such instances
always fulfill |C| = |A| + |B| — 1 (where |S| denotes the cardinality of set S). To reflect
these different types of experiments, we define the DisJOINT DOUBLE DIGEST problem,
which is equivalent to the DOUBLE DIGEST problem with the additional requirement that
the two enzymes may never cut at the same site, or, equivalently, that P4 and PP are
disjoint except for the first point (which is 0) and the last point (which is sum(A)).

The NP-hardness results for DOUBLE DIGEST in the literature [7, 17, 15] rely on
reductions from weakly NP-complete problems (namely PARTITION). As a first set of
results in this paper, we prove in Section 2 that both DoUBLE DIGEST and DISJIOINT
DoUBLE DIGEST are actually NP-complete in the strong sense by proposing reductions
from 3-PARTITION.! Thus, no algorithms exist that can solve any of the two problems in
pseudopolynomial running time (i.e., in time polynomial in the number of fragments and
in the size of the fragments), unless P = NP.

In a second part of the paper, we try to model reality more closely by taking into
account that double digest data usually contains errors. As a matter of fact, all data
in double digest experiments is prone to error. Typically, four types of errors can occur

[1, 8, 18, 15]:

Partial cleavage An enzyme can fail to cut at some restriction site. Then one large
fragment occurs in the data instead of the two (or even more) smaller fragments.

Fragment length Determining the exact length of a fragment from gel electrophoresis
is almost impossible. Typical error ranges are between 2% and 7% of the fragment
length.

'For an introduction to NP-completeness, see [6].



Missing small fragments Small fragments may remain undetected because they travel
to far in the gel electropheresis process.

Doublets Two different fragments with almost the same length may generate two spots
in the gel electrophoresis that overlap. Thus, only one of the fragments is recognized.

In this paper, we consider the first type of errors, i.e., those due to partial cleavage.
They can occur for many reasons, e.g. improper reaction conditions or inaccurate DNA
concentration (see e.g. [13] for a list of 13 possible causes). A partial cleavage error
occurs e.g. when an enzyme fails to cut at a site where it is supposed to cut in the first
(or second) stage of the double digest experiment, but then does cut at this site in the
third phase (where it is mixed with the other enzyme). Such an error usually will make
it impossible to find a solution for the corresponding DOUBLE DIGEST instance. In fact,
only P4 U PP C PC can be guaranteed for any solution. Vice-versa, if an enzyme cuts
only in the first (or second) phase, but fails to cut in the third phase, then we can only
guarantee P¢ C P4 U PB,

In the presence of errors, usually the data is such that no exact solutions can be ex-
pected. Therefore, optimization criteria are necessary in order to compare and gauge
solutions. We will define optimization variations of the DOUBLE DIGEST problem taking
into account different optimization criteria; our objective will be to find good approxi-
mation algorithms. Obviously, an optimal solution for a problem instance with no errors
will be a solution for the DOUBLE DIGEST problem itself?. Thus, the optimization prob-
lem cannot be computationally easier than the original DoUBLE DIGEST problem, and
(strong) NP-hardness results for DOUBLE DIGEST carry over to the optimization problem.

An obvious optimization criterion for DOUBLE DIGEST is to minimize the absolute
number of partial digestion errors in a solution, i.e., to minimize e(P4, P2, PY) := |(PAU
PBY — PO 4+ |PY — (P4 U PPB)| (recall that |S| is the cardinality of set S). Here, points
in (P4 U PP) — PY correspond to errors where enzyme A or B failed to cut in the third
phase of the experiment, and points in P¢ — (PA U PB) correspond to errors where
either enzyme A or B failed to cut in the first resp. second phase. Unfortunately, the
corresponding optimization problem MINIMUM ABSOLUTE ERROR DOUBLE DIGEST in
which we try to find point sets P4, PP and P such that e(P#, PP, P®) is minimum
cannot be approximated within any finite approximation ratio (unless P = NP): By

contradiction, assume the existence of a polynomial-time approximation algorithm with

e(solution of algorithm for 1)
e(optimal solution for 1)

I. This is also true for instances that actually have no partial cleavage error, and are

thus instances of DOUBLE DIGEST. For such instances, an optimal solution has error
0, and therefore the approximation algorithm needs to find a solution with no error as
well. Hence, such an algorithm could be used to decide the NP-complete DOUBLE DIGEST
problem. A similar argument shows that if we use the number of matching points (i.e,
|PY N (P4 U PB)| - 2) as a maximization criterion (rather than minimizing the number
of errors), the resulting problem cannot be approximated either.

We obtain a more sensible optimization criterion as follows: If we add |A| + |B| + |C]|
as an offset to the number of errors, we obtain an optimization criterion which turns the

a finite approximation ratio. Then < oo for any instance

20f course, this only holds if the optimization problem is well-designed.



absolute number of errors into a measure relative to the input size. The corresponding
optimization problem is defined as follows:

Definition (MINIMUM RELATIVE ERROR DOUBLE DIGEST). Given three multisets A, B
and C of positive integers with sum(A) = sum(B) = sum(C), find three sets PA PP
and PY of points on a line, each starting in 0, such that dist(P4) = A, dist(PP) = B
and dist(PY) = C, and such that (P4, PP PC) := |A| + |B| + |C| + e(PA, PB, PY) is

manimal.

Instead of counting the number of errors, measuring the total size of a solution is in
general a very sensible optimization criterion that does not model cleavage errors exactly
but seems very natural to do. In this case, we want to minimize the total number of points
in a solution, i.e., to minimize |P4U PP UPY|. This yields the MiNIMUM PoINT DOUBLE
DIGEST problem, which is defined as follows:

Definition (MINIMUM POINT DOUBLE DIGEST). Given three multisets A, B and C of
positive integers with sum(A) = sum(B) = sum(C), find three sets PA, PP and PC of
points on a line, each starting in 0, such that dist(P*) = A, dist(PP) = B and dist(PY) =
C, and such that |PA U PP U PY| is minimal.

We show in Section 3 that MINIMUM RELATIVE ERROR DOUBLE DIGEST and MIN-
IMUM PoOINT DOUBLE DIGEST are APX-hard by proposing gap-preserving reductions®
from MAXIMUM TRIPARTITE MATCHING to MAXIMUM 4-PARTITION, and from this prob-
lem to MINIMUM RELATIVE ERROR DOUBLE DiGgEsTand MINIMUM PoINT DOUBLE Di-
GEST. The APX-hardness of these problems excludes the possibility of the existence of
a polynomial-time approximation scheme (PTAS), as there exists a constant € > 0 such
that no polynomial-time algorithm can guarantee to find approximate solutions that are
at most a factor 1+¢ off the optimum solution (unless P = NP). We then analyze a rather
straight-forward approximation algorithm that works for both problems and show that it
achieves an approximation ratio of 2 for MINIMUM RELATIVE ERROR DOUBLE DIGEST
and an approximation ratio of 3 for MINIMUM POINT DOUBLE DIGEST.

For each optimization problem, a variation can be defined where the enzymes may
only cut at disjoint restriction sites (analogous to DisjoINT DoOUBLE DIGEsT). The
corresponding optimization problems are called MINIMUM DISJOINT RELATIVE ERROR
DouBLE DiGEST and MINIMUM DisjoINT PoOINT DOUBLE DIGEST. In Section 4, we
investigate these variations and show that — rather surprisingly — they are even harder than
the unrestricted problems: it is NP-hard to even find a feasible solution for a MINIMUM
DissoINT RELATIVE ERROR DOUBLE DIGEST or a MINIMUM Di1sjoINT POINT DOUBLE
DiGEST instance. We establish this result by showing that the problem of disjointly
arranging two given sets of numbers is already NP-hard. Any polynomial-time algorithm
that claims to achieve a finite approximation ratio for these DOUBLE DIGEST variations
will have to be able to find feasible solutions for all instances, which would be equivalent
to solving an NP-hard problem. Thus, no finite approximation ratio can be achieved for
all DOUBLE DIGEST variations in which we disallow conincident cut sites (unless P = NP).
This result would also hold for DOUBLE DIGEST variations with optimization criteria other
than the ones we defined, since the proof does not depend on the optimization measure,

8For an introduction to gap-preserving reductions, see [2].



but only on the disjointness requirement. We conclude with directions for future research
in Section 5.

2 Strong NP-Completeness of (D1sJOINT) DOUBLE DIGEST

In this section we show strong NP-completeness for the decision problems DOUBLE DIGEST
and DisJOINT DoUBLE DIGEST. We present reductions from 3-PARTITION, which is
defined as follows: Given 3n integers ¢, ..., ¢3, and integer h with 2?21 ¢; = nh and
% < g < % for all 1 <2 < 3n, are there n disjoint triples of ¢;’s such that each triple sums
up to h? The 3-PARTITION problem is NP-complete in the strong sense [6]. Observe that
% < ¢ < % implies that each subset of ¢;’s that sums up to h has exactly three elements.
First, we extend the NP-completeness result from [7] for the DOUBLE DIGEST problem.

Lemma 1. DoOUBLE DIGEST is strongly NP-complete.

Proof. DoUBLE DIGEST is NP-complete [7]. To show strong NP-hardness we reduce 3-
PARTITION to DOUBLE DIGEST as follows: Given an instance g¢i,...,¢3, and h of 3-
PARTITION, let a; = ¢; = ¢; for 1 <1 < 3n, and let b; = h for 1 < j < n. Then the
three sets* of a;’s, b;’s and ¢;’s are an instance of DOUBLE DIGEST. If there is a solution
for the 3-PARTITION instance, then there exist n disjoint triples of ¢;’s (and a;’s as well)
such that each triple sums up to h. Starting from 0, we arrange the distances a; on a line
such that each three a;’s that belong to the same triple are adjacent. The same ordering
is used for the ¢;’s. This yields a solution for the DoUBLE DIGEST instance.

On the other hand, if there is a solution for the DoOUBLE DIGEST instance, say P*, PP
and PY, then there exist n subsets of ¢;’s such that each subset sums up to A, since each
point in PP must occur in P¢ as well, and all adjacent points in PP have distance h.
Then each of these subsets has exactly three elements, since % < g < % Thus, the subsets
yield a solution for the 3-PARTITION instance. U

In the following we show that DoOUBLE DIGEST is strongly NP-complete even if we
restrict it to enzymes that cut at disjoint restriction sites.

Lemma 2. Di1sJOINT DOUBLE DIGEST is strongly NP-complete.

Proof. Obviously, DisjoINT DoUBLE DIGEST is in NP. Again, we show strong NP-
hardness by reducing 3-PARTITION to it. Given an instance ¢q,...,¢3, and h of 3-
PARTITION, let s = 32" ¢; and t = (n + 1) - 5. Recall that s = nh. We construct

*Technically, these are multisets; however, for sake of simple notation we will not distinguish between
sets and multisets, unless crucial.



an instance of DISJIOINT DoOUBLE DIGEST as follows:

a; = ¢; for 1 << 3n
a; =2t for1<j<n-1
b =h+2t for1<j<n-2
by =h+t for1<k<2
G = q; for 1 << 3n
c;j=t for 1 <j<2n-—2.

Let A consist of the a;’s and a;’s, B consist of the b;’s and ék’s, and C consist of the ¢;’s and
¢;’s. Then sum(A) = s+ (n—1)-2t = s+ (2n—2)-t,sum(B) = (n—2)-(h+2t)+2-(h+t) =
s+ (2n — 2) - t, and sum(C) = s+ (2n — 2) - t. Thus, sets A, B and C are an instances of
DisjoINT DOUBLE DIGEST.

If there is a solution for the 3-PARTITION instance, then there exist n disjoint triples
of ¢;’s such that each triple sums up to k. Assume w.l.o.g. that the ¢;’s (and thus the a;’s
and ¢;’s) are ordered such that the three elements or each triple are adjacent.

ajadqds al a4050g as arz ag dg as ajgall a1
—— 1 —f+— — H — —
by by ) b2

1 1 1 1 | B
C1C2C3 C1 C2 C4C5 Cq C3 Cq C7 Cg Cg Cs Ce €10 €11 C12
—— 1 1 F—f+— 1 — H 1 — —
S

h

Figure 2: Solution for Di1sjoINT DOUBLE DIGEST, for n = 4.

Starting in 0, we arrange the distances from A on a line such that each three a;’s that
belong to the same triple are adjacent, and such that each three a;’s are separated by
one @; (cf. Figure 2). Let P4 be the corresponding point set. The distances from B are
ordered i)l, b1,...,bph_2, 132, and PP is the corresponding point set. For the distances ¢;
we use the same ordering as for the distances a;, and each three ¢;’s are separated by two
¢;’s. Again, PY is the corresponding point set. Then P4, PP and PY yield a solution for
the D1sJoINT DOUBLE DIGEST instance: By construction, the distances in each point set
yield exactly the corresponding set of distances. In P# each point is the sum of an integer
less than ¢t and an even multiple of £. On the other hand, in PP each point except the first
and the last is the sum of a multiple of A and an odd multiple of . Thus, sets P4 and
P8 are disjoint except for the first and the last point. Moreover, P¢ = P4 U P®, hence
the three point sets are a solution for the DisJoINT DoOUBLE DIGEST instance.

For the opposite direction, let P4, PP and P® be a solution for the DI1sJOINT DOUBLE
DIGEST instance. We consider only P® and PY. Each of the n + 1 points in PP consists
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of a multiple of & and a multiple of ¢, and each two points in PP differ in the multiplicity
of h. Since PB C PY, there must exist n+ 1 points in C that are of the same form. Each
point in P corresponds to the sum of some distances from C. The distances ¢; contribute
only to the multiplicity of ¢. Thus, the points in P® must be such that the distances ¢;
generate the n + 1 points with different multiples of h. Starting from zero, this yields n
subsets of ¢;’s that sum up to h. Since % < ¢ < % for all 1 <7 < 3n, each of the n subsets
has exactly three elements. Thus, the corresponding triples of ¢;’s are a solution for the
3-PARTITION instance. O

3 Approximability of MINIMUM RELATIVE ERROR DOUBLE Di-
GEST and MINIMUM POINT DOUBLE DIGEST

In this section, we show that MINIMUM RELATIVE ERROR DOUBLE DIGEST and MINIMUM
PoINT DOUBLE DIGEST are both APX-hard®. We introduce a maximization variation of
the well-known 4-PARTITION problem [6] which is defined as follows:

Definition (MAXIMUM 4-PARTITION). Given a multiset Q = {q1,...,qan} of 4n integers
and an integer h with ngl ¢; = nh and % < q < %, find a mazimum number of disjoint

subsets S1,...,Sm C Q such that the elements in each set S; sum up to h.

While MAXIMUM 4-PARTITION may be an interesting problem per se, we are mainly
interested in it as an intermediary problem on our way to proving APX-hardness for our
optimization variations of DOUBLE DIGEST. To do so, we propose two gap-preserving
reduction, one from MAXIMUM TRIPARTITE MATCHING to MAXIMUM 4-PARTITION, and
one from MAXIMUM 4-PARTITION to MINIMUM RELATIVE ERROR DOUBLE DIGEST resp.
MINIMUM POINT DOUBLE DIGEST. Here, MAXIMUM TRIPARTITE MATCHINGIs the prob-
lem where we are given three disjoint sets of integers W, X and Y of equal cardinality and
aset T CW x X XY, and we have to find a matching M C T of maximum cardinality
such that no two elements in M agree in any coordinate [6]. Since MAXIMUM TRIPAR-
TITE MATCHING is APX-hard [4] and since our reductions are gap-preserving, this shows
APX-hardness for MINIMUM RELATIVE ERROR DOUBLE DIGEST and MINIMUM POINT
DouBLE DiGEsT. We also propose and analyze a straight-forward approximation algo-
rithm that achieves an approximation ratio of 3 for MINIMUM RELATIVE ERROR DOUBLE
DIGEST and an approximation ratio of 2 for MINIMUM POINT DOUBLE DIGEST.

Lemma 3. MAXIMUM 4-PARTITION s APX-hard.

Proof. We reduce MAXIMUM TRIPARTITE MATCHING, which is APX-hard, to MaxFour-
Partition along the lines of the proof given in [6, pages 97-99]. In fact, the reduction is
the same as in [6], we present it here in order to make the paper self-contained; however,
the analysis of this reduction as a gap-preserving reduction is new and crucial for our
APX-hardness proof.

Let T be a given instance of MAXIMUM TRIPARTITE MATCHING with T C W Xx X XY,
where W = {wq,...,wq}, X = {z1,...,24},Y = {t1,...,ya}. We assume that each

5A problem is said to be APX-hard, if there exists a constant ¢ > 0 such that no polynomial-time
approximation algorithm can guarantee an approximation ratio of 1+ . See [4] for more details on the
complexity class APX.



element from W U X UY occurs in at most three triples, since this resticted variation is
still APX-hard [4]. W.lLo.g., let |T| > d. Let n = |T'|. From T, we construct an instance
@ of MAXIMUM 4-PARTITION that contains 4n elements, one for each occurrence of an
element of W U X UY in a triple in T, and one for each triple in 7. The elements in Q)
corresponding to a particular element z € W U X UY are denoted by z[1],...,z[N(z)],
where N(z) is the number of triples in T' in which z occurs (thus, N(z) < 3). Intuitively,
z[1] is the “true” element corresponding to z, while z[2] through z[N(z)] are “dummy”
elements. All such elements in () are assigned integer values as follows, where r = 32d:

w,'[l]zl()r‘l—l—ir—l—l for1<i<d
wi[l] = 11r* +ir + 1 for 1 <i<d,2<1< N(w,;)
z;[1] = 10r* 4+ jr? + 2 for1<j<d
xj[l]:11r4—|—jr2—|—2 for 1<j<d,2<1< N(x))
ye[1] = 107* + kr® 4+ 4 for1<k<d
yell] = 8r* + kr® + 4 for 1 <k <d,2<1<N(y)

The single integer element u; corresponding to a triple (w;,z;,yx) € T is set to u; =
10r* — ir — jr2 — kr3 + 8, depending on the indices. The key property of the reduction
is the following: If we add to u; the sizes of the three integer elements that correspond
to w;, zj, Yk, then the total will be 40r* + 15, whenever all three are “true” elements or
all three are “dummy” elements. We let bound A = 40r* 4 15. This gives us a correct
MAXIMUM 4-PARTITION instance . Let OPT denote the size of an optimum solution
of the MAXIMUM TRIPARTITE MATCHING instance, and let OPT’ denote the size of an
optimum solution of the corresponding MAXIMUM 4-PARTITION instance. In order to
analyze this reduction as a gap-preserving reduction, we show:

1. If OPT > d, then OPT' > n.

2. fOPT < (1- %5)(1 for a small constant € > 0, then OPT’' < n — &d.

We will then use these two implications to look at the reduction as a transformation from
one promise problem to another.

We first show: If OPT > d, then OPT’ > n. To see this, we take an optimum solution
of the MAXIiMUM TRIPARTITE MATCHING instance. Such a solution matches exactly all
elements in W, X,Y. The corresponding 4-partition (a partition of @ into sets of four
elements) is made up of n = |T'| 4-sets (sets of four elements), each containing an element
u; and its corresponding w;[-], 2], yx[-]. If the triple corresponding to u; is in the solution
for OPT, we group wu; with w;[1], z,[1], yx[1]; otherwise, we group w; with some dummy
elements such that it adds up to h. This will use up all dummy elements and we thus have
a valid 4-partition of all elements, i.e., a solution of the MAXIMUM 4-PARTITION instance
with OPT > n.

As a second step, we show: If OPT' > n — ed for a small constant ¢ > 0, then
OPT > (1 — 3¢)d. To see this, we take a solution SOL’ of the MAXIMUM 4-PARTITION
instance with more than n — ed different 4-sets that add up to h. Since the total number
of elements in @ is 4n, and since SOL’ already contains more than 4(n — £d) elements,



at most 4ed elements remain. Assume that all these 4ed elements are “true” elements,
then — since there are 3d true elements in total - at least 3d — 4ed elements are true
elements that are contained in the 4-sets of SOL’. Since each 4-set can contain at most
three true elements, at least 3_3id. different 4-sets must contain true elements; in fact,
each 4-set contains either three or no true elements. As argued in [6], any 4-set that adds
up to h must contain exactly one element u; and either the three corresponding “true”
elements w;[1], z;[1], yx[1] or three corresponding dummy elements. We then construct a
solution SOL for the MAXIMUM TRIPARTITE MATCHING instance as follows: If a 4-set
from OPT’ contains three true elements, we let the corresponding triple be in the solution
SOL, yielding a feasible solution SOL with at least (1 — ge)d triples.

Consider the promise problem variation of MAXIMUM TRIPARTITE MATCHING, where
we are given an instance and promised that either OPT > d (i.e., all elements can be
matched) or OPT < (1 — 3¢)d (i.e., at most a fraction of 1 — 3¢ of the elements can be
matched); our task is to find out which one of these two cases is true. Since MAXIMUM
TRIPARTITE MATCHING is APX-hard, this promise problem is NP-hard for small enough,
but constant values of € (see [2] for details). The reduction described above transforms the
promise problem variation of MAXIMUM TRIPARTITE MATCHING into a promise problem
of MAXIMUM 4-PARTITION, where we are promised that either OPT’' > n or OPT’ <
n — ed. It is NP-hard to decide which of the two cases is true, because we could use
a polynomial-time algorithm for this to also decide the corresponding promise problem
for MAXIMUM TRIPARTITE MATCHING. Since in our restricted variation of MAXIMUM
TRIPARTITE MATCHING each element from WU X UY occurs in at most three triples, and
since [IWUX UY | = 3d, there are at most 3-3d occurrences of elements in all triples. Thus,
we have |T'| < 3d, since each triple has three elements. In terms of inapproximability, we
have that no polynomial-time algorithm can achieve an approximation ratio of:

|T| ed ed

19
_ =14+ —>14+ —>1+ -
Tl—ed T =ed='T3d—ea='"3

O

We are now ready to prove that MINIMUM RELATIVE ERROR DOUBLE DIGEST and
MINIMUM PoOINT DOUBLE DIGEST are APX-hard.

Lemma 4. MINIMUM POINT DOUBLE DIGEST is APX-hard.

Proof. We propose a gap-preserving reduction from MAXIMUM 4-PARTITION to MINIMUM
PoiNnT DOUBLE DIGEST. For a given MAXIMUM 4-PARTITION instance I, which consists of
aset Q@ = {q,...,qan} of integers and an integer h, we construct an instance I’ consisting
of three sets A, B, and C of MINIMUM RELATIVE ERROR DOUBLE DIGEST as follows: Set
A is exactly the same as set ); set B contains n times the element h; set C' is the same
as set A.

Let OPT denote the size of an optimum solution of I, and let OPT’ denote the size
of an optimum solution of I’. We prove two implications that show how this reduction
transforms a promise problem into another promise problem:

1. If OPT > n, then OPT' < 4n + 1.
2. If OPT < (1 —¢)n for any € > 0, then OPT' > (4 + frace2)n+ 1

10



The first implication is straight-forward: If OPT > n, then all elements from ) can
be grouped into correct 4-sets. We then obtain a solution for I’ by arranging the elements
in A and C such that their order corresponds to the order of the elements in the 4-sets;
the elements of B are distributed evenly (there actually is no other choice). This yields a
solution for I’ with |Q| + 1 points, thus OPT’ < |Q|+ 1 =4n + 1.

We prove the second implication by proving its contraposition: if OPT' < (4 +
frace2)n + 1, then OPT > (1 — ¢)n for any € > 0. Let SOL’ be a solution for I’ with
at most (4 4+ frace2)n + 1 points. We may assume that P4 = P% in SOL' [If PA £ P°
in SOL', we transform the solution by setting P® equal to P#; this will not increase the
number of points in the solution. To see this, let set S contain all points from P¢ that
do not have a matching point in P4; a point s € S might have a matching point in PP,
but “moving” the matching point from set PP to P4 will not increase the total number
of points or — alternatively speaking — decrease the number of errors.]. Since 4n+ 1 points
are trivially necessary in any solution (as set A contains 4n elements), at most $n points
are caused by points from PP that have no matching points in PA. Since there are n
elements in B, at least n — §n = n(1 — §) points from PP are matched with points in P4.
Since each non-matching point can destroy at most two potential 4-sets, the non-matching
points from PP can destroy at most a total of 25n = en 4-sets in a corresponding solution
for I. Thus, we obtain a solution for I with at least (1 — ¢)n feasible 4-sets.

Our two implications match an NP-hard promise problem variation of MAXIMUM 4-
PARTITION to an NP-hard promise problem variation of MINIMUM PoINT DoOUBLE Di-
GEST. In terms of inapproximability for MINIMUM POINT DOUBLE DIGEST, we have that
no polynomial-time algorithm can achieve an approximation ratio of:

Q|+ 1+ £|Q
Q]+ 1

Thus, MINIMUM POINT DOUBLE DIGEST is APX-hard. O

€
> 14+ —
2 +16

Lemma 5. MINIMUM RELATIVE ERROR DOUBLE DIGEST is APX-hard.

Proof. The proof uses the same reduction as in Lemma 4. The two implications are as
follows:

1. If OPT > n, then OPT' < |A| + |B| + |C].
2. f OPT < (1 —¢)n for any € > 0, then OPT’ > |A| + |B| + |C| 4 5n

Both implications can be shown using essentially the same arguments as in the proof
of Lemma 4. Since |A| 4+ |B|+ |C| = 2|Q| = 9n, we have the following in terms of
inapproximability:

A+ IBI+ICl+5n | =
|Al+[B| +|C| 18
Thus, MINIMUM RELATIVE ERROR DOUBLE DIGEST is APX-hard. O

A straight-forward approximation algorithm for both problems simply arranges all
distances from A, B and C' on a line in a random fashion, starting in 0. If we analyze this
algorithm as an approximation algorithm for MINIMUM PoOINT DOUBLE DIGEST, we see
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that this will result in a solution with at most |A| 4 |B| 4+ |C| + 1 points; on the other
hand, an optimum solution will always use at least max(|A|,|B|,|C|) + 1 points. Thus,
this trivial approximation algorithm achieves an approximation ratio of 3 for MINIMUM
PoiNnT DOUBLE DIGEST.

If we consider the same algorithm to be an approximation algorithm for MINIMUM
RELATIVE ERROR DOUBLE DIGEST, we see that it will find a solution with an optimization
measure of at most r(P4, PP, P¢) = |A|4+|B| +|C| + |A| +|B| +|C| — 3, since not a single
point might be matched except for the first and the last point. In an optimum solution
the optimization measure would be at least |A| + |B| 4+ |C|, thus giving an approximation
ratio of 2 for this approximation algorithm. This result is in line with our intention of
modelling a relative error measure in MINIMUM RELATIVE ERROR DOUBLE DIGEST: the
worst feasible solution is 100 per cent off the optimum solution, which corresponds to an
approximation ratio of 2.

4 NP-hardness of Finding Feasible Solutions for Optimiza-
tion Variations of DISJOINT DOUBLE DIGEST

In this section, we show that all DOUBLE DIGEST optimization variations in which we
disallow coincidences cannot be approximated by any polynomial-time approximation al-
gorithm with a finite approximation ratio, unless P = N P. We achieve this by showing
that even finding feasible solutions for these problems is NP-hard. To this end, we intro-
duce the decision problem DisJOINT ORDERING which is defined as follows:

Definition (D1sJOINT ORDERING). Given two multisets A and B of integers with sum(A) =
sum(B), find two sets P4 and PP of points on a line, starting in 0, such that dist(P4) =
A, dist(PB ) = B, and such that P4 and PP are disjoint except for the first and the last
point.

First, we will reduce 3-PARTITION to DisSJOINT ORDERING, and then we will show
how to reduce DisJOINT ORDERING to any optimization variation of DisjOINT DOUBLE
DiGEST.

Lemma 6. DisJOINT ORDERING is NP-complete.

Proof. Obviously, DisjoINT ORDERING is in NP. To show NP-hardness, we reduce 3-
PARTITION to it. Given an instance qi,...,¢3, and h of 3-PARTITION, we construct an
instance of DISJOINT ORDERING as follows: Let

a; = ¢; for 1 <i<3n

a; =h for1<j<n+1
b;=h+2 for1<i<mn

IA)jzl for1<j<(n+1)-h—2n.

Let A consist of the a;’s and a;’s, and let B consist of the b;’s and I;j’s. Then sum(A) =

n-h+(n+1)-h=2n+1)-h,and sum(B) =n-(h+2)+(n+1)-h—2n = (2n+1)-h. The
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number of distances in A is polynomial in 7, while the cardinality of B is only polynomial
in n and h. However, since 3-PARTITION is NP-complete in the strong sense, it is still
NP-complete if A is polynomially bounded in n. In this case, A and B are an instance of
DissoINT ORDERING that can be constructed in time polynomial in n.

ax a1 az as a3 a4 a5 g as a7 ag ag G4 a1pdy1 @12 as
} —— w —t— — w — — I A
H [ [ [ HH+++ B
S T L S P —
7.0 _ 7.0 _ 7. _ FE) _ 7.
(h—1)b;’s (h —2)bj’s (h —2)b;’s (h —2)bj’s (h—1)bj’s

Figure 3: Disjoint ordering of distances in A and B, for n = 4. Dotted lines have have
distance h.

If there is a solution for the 3-PARTITION instance, then there exist n disjoint triples
of g¢;’s such that each triple sums up to h. W.l.o.g., we assume that the ¢;’s are ordered
such that each three ¢;’s from a triple are adjacent. We put the distances from A on a line,
starting in 0, such that each three a;’s that belong to the same triple are adjacent, and
such that each three a;’s are separated by one @; (cf. Figure 3). The distances from B are
arranged on a line as follows: first we have h — 1 distances l;j, followed by n combinations
of one distance b; and h — 2 distances I;j, and at the end there are again h — 1 distances
i)j. Let P4 and PP be the corresponding point sets. Then P4 and PP are disjoint except
for the first and the last point, and they yield a solution for the DisiOINT ORDERING
instance.

For the opposite direction, assume that P4 and PP are a solution for the DISJOINT
ORDERING instance. First we show that the ordering of the distances from B constructed
in the previous paragraph is the only possible arrangement. In P?| there are n distances
b;. They separate at most n+1 blocks of consecutive distances bAj, including the two margin
blocks. Some of the blocks might be empty. Since A is the largest number in A, the length
of a margin block is at most h — 1, and the length of an inner block is at most & — 2. Thus,
the total length of the blocks is at most 2- (h— 1)+ (n—1)-(h —2) = (n+ 1)h — 2n.
This is exactly the number of distances I;j (and therefore their total length), thus each of
the previous upper bounds has to be tight. This yields the ordering of the distances from
B presented above. For the ordering in P4, the n + 1 distances a; must be used to cover
the n 4+ 1 blocks of consequtive (AJJ‘. This leaves exactly n gaps, each of length A, which are
covered by the distances @;. This yields a solution for the 3-PARTITION instance, since
% < ¢ < % for 1 < ¢ < 3n implies that each gap is covered by exactly three distances. [

We will now show how to reduce DiSJOINT ORDERING to MINIMUM DISJIOINT RELA-
TIVE ERROR DOUBLE DIGEST: Let A and B be an instance of DiSJOINT ORDERING. We
”construct” an instance of MINIMUM DisJOINT RELATIVE ERROR DOUBLE DIGEST by
simply letting sets A and B be the same sets, and set C' be the empty set. If an approx-
imation algorithm for MINIMUM DisJOINT RELATIVE ERROR DOUBLE DIGEST finds a
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feasible solution for this instance, this yields immediately a solution for the DisiOINT OR-
DERING instance, since any solution feasible solution for MINIMUM DISJOINT RELATIVE
ERROR DOUBLE DIGEST must arrange the elements from A and B in a disjoint fashion.

The same argument applies for MINIMUM DisJOINT POINT DOUBLE DIGEST, and for
any other (reasonable) optimization variation of D1sJoINT DOUBLE DIGEST since the
reduction is totally independent of the optimization criterion. Thus, we have:

Lemma 7. No polynomial-time approzimation algorithm can achieve a finite approci-
mation ratio for MINIMUM DIisJOINT RELATIVE ERROR DOUBLE DIGEST, MINIMUM
DisjoINT POINT DOUBLE DIGEST and any other reasonable optimization variation of
Di1sjoINT DOUBLE DIGEST (unless P = NP ).

5 Conclusion

In this paper, we showed that DoOUBLE DIGEST and DisJOINT DOUBLE DIGEST are
strongly NP-complete; in a second part, we defined several optimization variations of
DouBLE DIGEST that model partial cleavage errors, proved APX-hardness for MINIMUM
RELATIVE ERROR DOUBLE DIGEST and MINIMUM POINT DOUBLE DIGEST, and ana-
lyzed straight-forward approximation algorithms for these problems that achieve constant
approximation ratios. In a last set of results, we showed for several DOUBLE DIGEST
optimization variations, where conincidences are not allowed, that even finding feasible
solutions is NP-hard.

While our approximability results are tight for all DisjoINT DOUBLE DIGEST varia-
tions, our results leave considerable gaps regarding the exact approximability threshold for
MINIMUM RELATIVE ERROR DOUBLE DIGEST and MINIMUM POINT DOUBLE DIGEST,
which present challenges for future research. In a different direction of future research,
optimization variations of DOUBLE DIGEST that model the three other error types (i.e.,
fragment length, missing small fragments, and doublets) or even combinations of different
error types should be defined and studied. On a meta-level of arguing, it seems unlikely
that an optimization variation that models partial cleavage errors and some of the other
error types could be any easier than the problems that model only partial cleavage errors,
but there is a possibility that some error types might offset each other in a cleverly defined
optimization problem.
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