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Abstract

We start an investigation into the complexity of variations of the EQUAL SumM SUBSETS
problem, a basic problem in which we are given a set of numbers and are asked to find two
disjoint subsets of the numbers that add up to the same sum. While EQUAL Sum SUBSETS
is known to be N P-complete, only very few studies have investigated the complexity of its
variations. In this paper, we show N P-completeness for two very natural variations, namely
FacTOoR-r SuUM SUBSETS, where we need to find two subsets such that the ratio of their
sums is exactly r, and &k EQUAL Sum SUBSETS, where we need to find k subsets of equal
sum. In an effort to gain an intuitive understanding of what makes a variation of EQUAL
Sum SuBSETS N P-hard, we study several variations of EQUAL SUM SUBSETS in which we
introduce additional requirements that a solution must fulfill (e.g., the cardinalities of the
two sets must differ by exactly one), and prove N P-hardness for these variations. Finally, we
investigate and show /N P-hardness for the EQUAL SUM SUBSETS FROM Two0 SETS problem
and its variations, where we are given two sets and we need to find two subsets of equal sum.
Our results leave us with a family of NV P-complete problems that gives insight on the sphere
of N P-completeness around EQUAL SUM SUBSETS.

1 Introduction

The problem PARTITION, which asks whether there exists a subset A’ of a given set A of numbers
such that the elements of A’ add up to exactly one half of the total sum of all numbers of A, is
one of the basic combinatorial problems and has long been known to be N P-complete [4]. We
are interested in a variation of PARTITION which we call EQUAL SuM SUBSETS. EQUAL Sum
SuBSETS simply asks for two disjoint subsets of a given set of numbers that add up to the same
total. In order to give a formal definition of EQUAL SuM SUBSETS, we denote the sum of the
elements of a set X of integers by sum(X), i.e. sum(X) := > s .

Definition (EQuAL SuMm SUBSETS). Given a set' of n numbers A = {ay,...,a,}, are there
two disjoint nonempty subsets XY C A such that sum(X) = sum(Y)?

EQUAL SuM SUBSETS is a very natural problem that is known to be N P-complete [9]. There
also exists an FPTAS for an optimization version of EQUAL SuM SUBSETS, in which the ratio
of the sums of the two disjoint subsets is to be minimized [1]. Moreover, the problem has been
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studied in a restricted version, in which the sum of the n elements is at most 2" — 1, in the
context of function problems [6].

While PARTITION, EQUAL SUM SUBSETS and variations have numerous applications in pro-
duction planning and scheduling (see [5] for a survey), our interest for EQuAL SuM SUBSETS
comes from computational biology. We briefly illustrate this connection (more details can be
found in [2]). In the PARTIALDIGEST problem we are given a multiset D of distances and are
asked to find coordinates of points on a line such that D is exactly the multiset of all pair-wise
distances of these points. PARTIALDIGEST is a basic problem from DNA sequencing. Neither
a polynomial-time algorithm nor a proof of N P-completeness is known for this problem. We
have defined an optimization variation of PARTIALDIGEST and proved its N P-hardness using a
reduction from EQUAL SuM SUBSETS.

In this paper, we study the computational complexity of a number of variations of EQUAL
SuM SUBSETS. After fixing some notation for large numbers that we will use in some of our
proofs (Section 2), we study a first set of EQUAL SUM SUBSETS variations that we call FACTOR-
r SuM SUBSETs (for any rational r > 0): Given a set of numbers A = {ay,...,a,}, are there
disjoint subsets X, Y C A such that sum(X) = r - sum(Y)? FACTOR-r SUM SUBSETS is a
very natural variation of EQUAL SuM SUBSETS. In Section 3, we show that FAcTOR-r Sum
SuUBSETS is N P-complete for any factor r > 0 by giving two reductions from ONE-IN-THREE
3-SATISFIABILITY, one that works for all » > 0 except r = 1 and r = 2, and one that works for
the case r = 2 and uses an argument about the connectivity of Boolean formulas. The case for
r = 1 is equivalent to EQUAL SUM SUBSETS.

In Section 4, we study a second generalization of EQUAL SuM SUBSETS, namely & EQUAL
Sum SUBSETS, in which we need to find & (disjoint) subsets of equal sum from a given set of
numbers. & EQUAL SUM SUBSETS is a variation of EQUAL SuM SUBSETS with an importance
of its own. We show that & EQuAL Sum SUBSETS is N P-complete for any integer k > 3
by proposing a reduction from ALTERNATING PARTITION, which is an N P-complete variation
of PARTITION [3]. The N P-completeness for the case k = 2 follows directly from the N P-
completeness of EQUAL SUM SUBSETS.

In our effort to gain an intuitive understanding of what makes a variation N P-hard, we study
variations of EQUAL SuM SUBSETS where we add additional requirements that the solution must
fulfill. In Section 5, we show N P-completeness for the following three variations by proposing
reductions from ALTERNATING PARTITION: EQUAL SUM SUBSETS WITH ENFORCED ELEMENT
(where a specific element, say a,,, must belong to one of the two subsets), EQUAL SUM SUBSETS
OF DIFFERENT CARDINALITY (where the two subsets must be of different cardinality), and
EqQuaL SuM SUBSETS OF DIFFERENT BY ONE CARDINALITY (where the cardinalities of the
two subsets must differ by exactly one). We also show that ALTERNATING PARTIAL PARTITION
is N P-complete by reduction from EQUAL SuM SUBSETS. As a last result of this section,
we show that EQuAL SuM SUBSETS oF EQuUAL CARDINALITY (i.e., the problem in which the
two equal sum subsets must also be of equal cardinality) is N P-complete by reduction from
ALTERNATING PARTIAL PARTITION.

In order to determine the realm of N P-completeness around ALTERNATING PARTIAL PAR-
TITION, we study closely related problems, namely the EQUAL Sum SUBSETS FROM TwoO SETS
problem and some of its variations; in this problem, we are given two sets of positive numbers
A and B and the question is if there are subsets X C A and Y C B of equal sum. In Section 6,
we show that EQUAL SuMm SUBSETS FROM Two SETS is IV P-complete, even if we require the



two sets to be of equal cardinality, or to have disjoint indices sets, or disjoint covering indices
sets, or identical indices sets.
We conclude in Section 7 with a brief discussion and some ideas for further research.

2 Number Representation

In many of our proofs, we use numbers which are expressed in the number system of some base
B. We denote by (ai,...,a,)p the number >, .., a;B""%; we say that a; is the i-th digit
of this number. Usually, we choose base B large enough such that adding up numbers will
not lead to carry-digits from one digit to the next. Therefore, we can add numbers digit by
digit. The same holds for scalar products. For example, having base B = 27 and numbers
a=(3,51),0=1(2,1,0), then o+ 8= (5,6,1) and 3- o= (9,15, 3).

We will generally make liberal use of the notation such as allowing different bases for each
digit or dropping the base B from our notation if this is clear from the context. We define
the concatenation of two numbers by (a1, ...,a,) < (b1,...,bm) = (a1,...,apn,b1,...,bn), i€
a< = aB™43, where m is the number of digits in 5. We will use A, (7) :=(0,...,0,1,0,...,0)
for the number that has n digits, all 0’s except for the i-th position where the digit is 1. Fur-
thermore, 1, := (1,...,1) is the number that has n digits, all 1’s, and 0,, := (0,...0) has n
zeros. Notice that 1,, = B™ — 1.

3 NP-completeness of FACTOR-r SUM SUBSETS

In this section, we study a natural generalization of EQUAL SuM SUBSETS that is important
per se, namely the FACTOR-r SUM SUBSETS problem, where we want to find two subsets whose
sums have a specific ratio r. This is closely related to the minimization version of EQUAL Sum
SUBSETS studied in [1].

Definition (FACTOR-r SUuM SUBSETS). Given a set of n numbers A = {a1,...,a,}, are there
two disjoint nonempty subsets X, Y C A such that sum(X)=r-sum(Y)?

For r = 1 the problem is EQuAL Sum SuBsETs and therefore N P-complete [9]. We show
that FACTOR-r SUM SUBSETS is actually N P-complete for all » € QF. The proof consists of
two different reductions from ONE-IN-THREE 3-SATISFIABILITY, where the second reduction is
just for the case r = 2 and involves an argument about the connectivity graph of a Boolean
formula. ONE-IN-THREE 3-SATISFIABILITY is N P-complete [3] and defined as follows: Given a
CNF Boolean formula consisting of clauses with three positive literals each, is there a (satisfying)
assignment that satisfies exactly one literal per clause?

Lemma 1. ONE-IN-THREE 3-SATISFIABILITY <, FACTOR-r SUM SUBSETS for anyr € Q%, r ¢
{1,2,3}.

Proof. Let r = p/q, where p, q are positive integers with no common divisor except 1 (coprimes)
and p < ¢ (the case p > ¢ is equivalent by interchanging sets X and Y in problem definition). We
distinguish several cases, depending on the values of p and ¢. We only give a detailed proof for



the first case; for the other cases the proof is quite similar, so we just mention the construction
of the necessary numbers.

Case 1: p > 3. Consider an instance of ONE-IN-THREE 3-SATISFIABILITY with a set of n
variables V' = {wvy,...,v,} and a set of m clauses C = {cy,..., ¢ }. An instance of FACTOR-r
SuM SUBSETS is constructed as follows. For each variable v;, a number a; = EUiGCj Ap(j) is
created (i.e. a; has m digits and its non-zero digits correspond to clauses where z; appears). Two
additional numbers a,,4+1 and @, 43 are constructed which are multiples of 1,,,: a1 = (p—1)-1,,
and an42 = ¢ - 1,,. For all numbers we assume base B = ¢(p + ¢ + 2) + 1 (this way we avoid
carry-digits when adding a;’s). Let A = {ay,...,any2}. We show below that there is an 1-in-3
satisfying assignment for the variables in V satisfying exactly one literal in each clause in C' if
and only if there are two disjoint nonempty subsets X,Y C A such that sum(X) = r -sum(Y).

“only if”: The existence of an 1-in-3 satisfying assignment implies that there exists a subset
R C{ay,...,a,} such that sum(R) = 1,,,: for each clause ¢;, there is exactly one of the three
variables in ¢; set to TRUE, say zj, and the corresponding aj has a one in the j-th digit. By
setting X = RU{an41} and Y = {a,42} we have

sum(X)=p-1,,=r-¢-1,, =r-sum(Y)
“if”: Assume that X and Y exist such that sum(X) = r - sum(Y'); equivalently,
q-sum(X)=p- -sum(Y)

Since the base of our numbers is sufficiently large (B = ¢(p+ ¢+ 2) + 1), we have that the sum
of all numbers in A consists of m digits that are all equal to p+¢+2 (sum(A4) = (p+q¢+2)-1,,)
and therefore sum(X) 4 sum(Y’) also consists of m digits of value at most p + ¢ + 2. Notice
that for each 7 < m the i-th digit of sum(X)+ sum(Y) can be the sum of at most five numbers:
1,1,1,p— 1, and ¢. We will argue that the only way to have sum(X)/sum(Y) = p/q is if each
digit of sum(X) is equal to p and each digit of sum(Y’) is equal to g.

Let Zxy = ¢-sum(X) and Zy = p-sum(Y). We will make use of the equality Zxy = Zy.
Notice that, again due to the sufficiently large base B, even if we add all numbers in A ¢ times
no carry-digits will occur; hence the same happens if we add numbers in X ¢ times or numbers
in Y p times. This means that the :-th bit of Zx is equal to gz;, where z; is the i-th bit of
sum(X), and the i-th bit of Zy is equal to py;, where y; is the i-th bit of sum(Y’). Therefore,
for all 1 < ¢ < m we have qz; = py; which implies that either z; = y; = 0 or ¢ divides y; and p
divides z;; since z; + y; < p+ ¢+ 2 and ¢ > p > 3, we get z; = p and y; = ¢ for some 7 (there
must be non-zero digits since we assumed non-empty X and V).

It is not difficult to see that this can only be achieved if Y = {a,42} and X = {an41} UR,
where R C A and sum(R) = 1,,,. The variables corresponding to numbers in R form an 1-in-3
satisfying assignment for the given clauses.

CAsE 2: p=3,¢>4. a1,...,a, asin Case 1, apy1 =3 - 1y, apyo = (¢ — 1) - 1,,,.

Case 3: p=3,g=4. a1,...,a, asin Case 1, ap41 =3 -1, apyo2 =2 - 1,,.

Case 4: p=2,¢> 3. ay,...,a, asin Case 1, and only one additional number a,,11 = (¢—1)-1,,
is constructed.

Cask 5: p = 2,¢q = 3. For each variable v;, a; = Zvi&j 3-An(j), ie. a; has a digit 3 in
each position that corresponds to a clause that contains v;. We also set a,,4+1 = 1,,. Note that
sum(A) =10-1,,.



Again, “only if” is easy: the satisfying assignment corresponds to numbers that add up to
3-1,, which together with a,,+1 consitute X. For the “if” direction we observe that the only way
to have the required ratio is by having two sets X, Y such that sum(X) =4-1,,,sum(Y) = 6-1,,;
this implies a,4+1 € X and hence the variables corresponding to X — {a,41} constitute an 1-in-3
satisfying assignment.

Case 6: p=1,¢ > 2. In this case aq,...,a, are constructed as in Case 1. There is only one
additional number a,41 = ¢ - 1,,. O

Lemma 2. ONE-IN-THREE 3-SATISFIABILITY <,, FACTOR-2 SUM SUBSETS.

Proof. We use a restricted, but still N P-hard version of ONE-IN-THREE 3-SATISFIABILITY for
our reduction to FACTOR-2 SUM SUBSETS. Given a ONE-IN-THREE 3-SATISFIABILITY instance
with variables z1,...,z, and clauses ¢y,..., ¢, with only positive literals, let G = (V, E) be
the graph with vertices V' = {z1,...,2,} (i.e., each variable corresponds to a vertex) and, for
i,7=1,...,n, edges (z;,z;) € E if and only if z; and z; both occur in a clause ¢, for some
ke {1,...,n}. The ONE-IN-THREE 3-SATISFIABILITY variation in which the corresponding
graph G is connected is still N P-hard, because we could use a polynomial algorithm for this
variation to solve the unrestricted ONE-IN-THREE 3-SATISFIABILITY problem by applying the
algorithm for each component of the corresponding graph.

We reduce ONE-IN-THREE 3-SATISFIABILITY with a connected graph to FACTOR-2 SuMm
SUBSETS as follows: Assume the satisfiability instance has n variables zy, ..., z, and m clauses
Cly...,Cm. We construct an instance of FACTOR-2 SUM SUBSETS by creating exactly one number
a; for each variable z; with a; = Eméq A, (j), where we set the j—th digit to 1, if z; appears
as a literal in clause c¢;. We let the base B of these numbers be 7.

Assume that we have an 1-in-3 satisfying assignment for the variables of the ONE-IN-THREE
3-SATISFIABILITY instance. We then construct a solution X,Y of the FACTOR-2 SUM SUBSETS
instance, where Y contains all numbers a; for which the corresponding variable z; has been set
to TRUE, and X contains all remaining numbers. Thus, sum(Y) =(1,1,...,1) and sum(X) =
(2,2,...,2), and therefore sum(X) =2 - sum(Y).

Now assume that we are given a solution X, Y of the FACTOR-2 SUM SUBSETS instance with
sum(X) = 2 - sum(Y). Since each digit is set to one in exactly three of the numbers a;, and
since no carry-digits can occur when summing up the a;’s because base B is sufficiently large,
sum(Y) must contain only ones (and zeros) in its digits and sum(X) contains only twos (and
zeros). Since the sets cannot be empty, at least one digit must be set to one. We assign the
value TRUE to a variable z; with corresponding number «; if ¢; € Y, and we assign the value
FALSE, if a; € X. Thus, if a clause ¢; = (¢, 24, z) exists, then either one of the three numbers
af,ag, or ap is in Y and the other to numbers are in X, or neither X nor Y contain ay, a4, or
ap. In the latter case, we know that sum(X) and sum(Y") contain a zero at position j.

However, the numbers sum/(X) and sum(Y) cannot contain any zero digits because of the
connectedness of graph G. In order to see this, assume for the sake of contradiction that sum(Y")
contains zero digits. Then, sum(X) must contain zero digits at the same positions. Let digit
J be such a zero and let ¢; = (z¢, 24, z5) be the corresponding clause. Consider the set S of
all variables that occur in clauses which represent zero digits. Then the subgraph of G with
only the vertices corresponding to variables from set S must be a component in the graph G
without any edges to other vertices, because, if such an edge would exist, it would imply that the



corresponding digit is not set to zero in either sum(X) or sum(Y'). To see this, consider an edge
e = (24, ,) arising from clause ¢; = (zy, 24, 2p) with 2y € S and 2, ¢ S. Then ¢, € X UY,
but a; (and ap) must be in X UY as well, in order to achieve the factor 2 in the j-th digit. O

Since FACTOR-r SUM SUBSETS is obviously in VP and since ONE-IN-THREE 3-SATISFIABILITY
is N P-hard, Lemmas 1 and 2 and the N P-completeness of EQUAL SUM SUBSETS imply:

Theorem 3. FACTOR-r SUM SUBSETS is N P-complete for all r € Q7.

4 N P-completeness of £ EQUAL SUM SUBSETS

The second variation of EQUAL SuM SUBSETS that we study is called ¥ EQUAL SUM SUBSETS.
For an integer k£ > 2 it is defined as follows:

Definition (k EQUAL SuMm SUBSETS). Given a multi-set* of n numbers {ay,...,a,}, are there
k > 2 non-identical subsets X1, ..., Xy C {a1,...,a,} with sum(X;) = ... = sum(Xy)?

k EQuaL SuMm SUBSETS is a very natural generalization of EQUAL SuMm SUBSETS (which
is the case £ = 2) and it is an interesting problem for its own sake. We present a reduction
from ALTERNATING PARTITION which is the following N P-complete [3] variation of PARTITION:
Given n pairs of numbers (uq,v1),..., (4n,v,), are there two disjoint sets of indices I and
J with TUJ = {1,...,n} such that >, ;u; + > .c;0; = d;crvi + 20;c;7u; (equivalently,
Dlierti+ s Vi = Digrti + 2 jgr 05 )7

Theorem 4. k EQUAL SuM SUBSETS is N P-complete.

Proof. The problem is obviously in N P. To show N P-hardness, we reduce ALTERNATING PAR-
TITION to it. We transform a given ALTERNATING PARTITION instance with pairs (u1, v1), ..., (tn, Un)
into a k¥ EQuAL SuM SUBSETS instance as follows: For each pair (u;, v;), we create two numbers
uh = (u;)<4 A (i) and v) = (v;) <4 Ay (7). In addition, we create k—2 (equal) numbers ¢y, ..., cx—2
with ¢; = (3 3;(ui + v;)) < 1(n). While we let the base of the first digit be & - >, (u; + v;), all
other digits have base n + 1 in order to ensure that no carry-digits can occur in any additions.

To see how this reduction works, assume first that we are given a solution of the ALTER-
NATING PARTITION instance, i.e., two indices sets G and H. We create k equal sum subsets
Siy..., Sk fork=1,...,k—2we have S; = {¢;}; for the remaining two subsets, we let u} € Sk_1,
if i € G, and v} € Sg_1,if 7 € H, and we let u} € Si, if i € H, and v} € S, if v; € G.

Now assume we are given a solution of the ¥ EQUAL SuM SUBSETS instance, i.e., k equal
sum subsets Si,..., Sk. Since each of the n right-most digits (i.e., the base n + 1 digits) is set
to one in exactly k¥ numbers, we can assume w.l.o.g. that S; = {¢;} for i =1,...,k — 2. The
remaining two subsets naturally form an alternating partition as u, and v} can never be in the
same subset for any i = 1,...,n. All numbers u} and v must occur in one of the remaining two
subsets in order to match the ones in the base n 4+ 1 digits of the other subsets. Matching the
first digit gives us the equal sum subsets. O

Note that this proof works as well, if we require the subsets of ¥ EQUAL SuM SUBSETS to
be disjoint and non-empty (rather than non-identical).

2We allow multi-sets for this problem. The N P-completeness proof for this problem without allowing multi-sets
is very similar to the one given in Theorem 4. However, it is more technical and therefore omitted.



5 NP-completeness of EQUAL SuM SUBSETS Variations with Ad-
ditional Requirements

As a further class of N P-complete variations of EQUAL SUM SUBSETS, we study problems where
we add specific requirements that a solution must fulfill. This approach allows us to explore
the sphere of NV P-completeness that forms around EQUAL SuM SuBsETs. We focused on quite
natural additional requirements. The problems are defined as follows:

Definition (EQuaL Sum SUBSETS WITH ENFORCED ELEMENT). Given a set of n numbers
A =A{ay,...,a,}, are there two disjoint subsets XY C A with a, € X such that sum(X) =
sum(Y')?

Definition (EQuaL Sum SUBSETS OF DIFFERENT CARDINALITY). Given a set of n numbers
A =Aay,...,a,}, are there two disjoint nonempty subsets X, Y C A with |X| # |Y| such that
sum(X) = sum(Y')?

Definition (EQuaL Sum SUBSETS OF DIFFERENT BY ONE CARDINALITY). Given a set of n
numbers A = {ay,...,a,}, are there two disjoint subsets X, Y C A with | X|=|Y |+ 1 such that
sum(X) = sum(Y)?

Definition (EQuaL Sum SuBsSETs OF EQuaL CARDINALITY). Given a set of n numbers
A = A{ay,...,a,}, are there two disjoint nonempty subsets X, Y C A with |X| = |Y| such
that sum(X) = sum(Y")?

Definition (ALTERNATING PARTIAL PARTITION). Given n pairs of numbers (uy,v1), ..., (tn, vn
are there two disjoint nonempty sets of indices I and J such that ), ;u; —I—Zjej Vi =D e Vit

Ejejuj?

The N P-completeness of the first three problems is shown by giving reductions from AL-
TERNATING PARTITION. After that we reduce EQUAL SUM SUBSETSto ALTERNATING PARTIAL
PARTITION, and then the latter to EQUAL SuM SUBSETS OF EQUAL CARDINALITY to establish
the N P-hardness of these two problems.

Lemma 5. ALTERNATING PARTITION <, EQUAL SUM SUBSETS WITH ENFORCED ELEMENT.

Proof. Let (uy,v1),...,(un,v,) be the input pairs for ALTERNATING PARTITION. Let S =
SP(ui+vi), @i = (u;) < Ap(d) and b; := (v;) 9 Ay(d) forall 1 <i < n,and ¢ = (3) < 1,.
As usual, we use a base large enough such that no carry digits occur.

Let {a; | 1 < i < n}uU{b |1 < i< n}U{c} be the input for EQUAL SuM SUBSETS
WITH ENFORCED ELEMENT. Then c is the enforced element. There exists a solution for the
ALTERNATING PARTITION instance if and only if there exists a solution for the EQUAL Sum
SUBSETS WITH ENFORCED ELEMENT instance.

“only if”: Let I and J be a solution for ALTERNATING PARTITION. Then >, ju;+) e vj =

5. We define X := {c} and Y := {a; | i € I} U{b; | j € J}. Then

sum(Y) = Zai+2bj

€l jeJ

~1



= ) () <9 An(i) + D ((vj) < An(h))
iel JjeJ

= <Z'u,'—}—ZU]‘><] (ZAn(l)+ZAn(]))
el j€T i€l i€

= (D4 Y a0

=1

“if”: Let X,Y be a solution for the EQUAT SUM SUBSETS WITH ENFORCED ELEMENT instance.
Assume w.l.o.g. ¢ € X. All numbers in the input have n + 1 digits. For each index 7 €
{2,...,n 4+ 1}, only three numbers, namely ¢, a; and b;, have a one in the i’th digit, all other
numbers in the input have a zero in the ¢’th digit. For each digit the sum over all elements in X
and in Y yields the same result. Therefore, since ¢ € X, exactly one of a; or b; will be in Y for
each 1 < i < n, and X = {c}, since any other element would add a second one in some digit 7,
which then could not be equalized by elements in Y. Summing up the first digit of all elements
in Y yields exactly the first digit of ¢, which is g Thus, I ={i € {1,...,n} | a; € Y} and
J=A{jeA{l,...,n}|b; € Y} yields a solution for the ALTERNATING PARTITION instance. [

Lemma 6. ALTERNATING PARTITION <, EQUAL SUM SUBSETS OF DIFFERENT CARDINALITY.

Proof (sketch) The proof follows along the lines of the previous reduction. Each number a; in
one set enforces b; to be in the other set, and vice versa. Thus, they yield sets X and Y of equal
cardinalities. Therefore, element ¢ has to be in either X or Y.

Lemma 7. ALTERNATING PARTITION <, EQUAL SUM SUBSETS OF DIFFERENT BY ONE CAR-
DINALITY.

Proof. This proof is similar to the previous proofs, except that we add n dummy elements to
blow up the cardinality of subset which contains c.

Let (u1,v1), ..., (Un, vn) be the input pairs for ALTERNATING PARTITION. Let S := 3"  (u;+
v;) and M = n - 2"*2, Define a; == (w;) < A, (i) < (M) and b; == (v;) < A, (i) < () for all
1 <i< n. Define c:=(3)< 1, 94 (M — (2" — 1)). For 1 < k < n, we define dummy elements
dr, = {0) <1 0, < (2F1).

As before, any partial partition with only a@;’s and b;’s will have equal cardinality. Thus, ¢
will be in one of the sets, say X, and n of the a;’s and b;’s will be in the other set Y to achieve
equal sums in the first n 4+ 1 digits of the elements in X and Y. To achieve an equal sum in the
last digit as well, dp must bebe in set X for all 1 <k < n. O

Lemma 8. EQUAL SUM SUBSETS <, ALTERNATING PARTIAL PARTITION.

Proof. Given an instance of EQUAL SUM SUBSETS, i.e. a set of numbers A = {ay,...,a,}, we
reduce it to an instance of ALTERNATING PARTIAL PARTITION by mapping each number a; to
a pair (u;,v;) with u; = a; and v; = 0. Clearly, if there are disjoint sets X,Y C A such that
sum(X) = sum(Y’) then there are disjoint sets of indices I = {i | a; € X} and J ={j|a; € Y}



such that Y . ru; + 3250705 = 3 ,crvi + 22 ¢ 5 uy. Conversely, if there is an alternating partial
partition of the resulting pairs, i.e. appropriate sets of indices I, .J, then the sets X = {a; | 1 € I}
and X = {a; | j € J} form a partial partition of the original set A. O

Lemma 9. ALTERNATING PARTIAL PARTITION <, EQUAL SUM SUBSETS OF EQUAL CARDI-
NALITY.

Proof. Given an instance of ALTERNATING PARTIAL PARTITION we map each pair (u;,v;) to
two numbers a; = (u;) 4 A, (i), ai = (v;) < A,(7); i.e., we make new numbers with u; (resp.
v;) as the most significant digits, followed by n digits, the i-th of which is a 1 and all the
rest are 0’s. We then set A to consist of all ¢;’s and all a!’s. For the numbers we use base
B =37 ,(u; + v;) + 1, which is sufficiently large such that adding any subset of numbers in
A never gives carry digits. Thus, we can have an equal cardinality partial partition in A if and
only if for each a; on one side there is a! on the other side, and vice versa, since only «; and a’
have a one in the ¢ + 1’th digit. This is equivalent to having an alternating partial partition in
the original instance. O

From the previous lemmas and the fact that the problems are obviously in NP, we get the
following:

Theorem 10. The problems
ALTERNATING PARTIAL PARTITION,
EqQuaL SuM SUBSETS OoF EQUAL CARDINALITY,
EQuAL SuM SUBSETS OF DIFFERENT CARDINALITY,
EQuaL SuMm SUBSETS OF DIFFERENT BY ONE CARDINALITY, and
EQuaL SuMm SUBSETS WITH ENFORCED ELEMENT
are N P-complete.

6 NP-completeness of Finding Equal Sum Subsets from Two
Sets (and its Variations)

As a last set of N P-complete problems, we investigate EQUAT, SUM SUBSETS FROM Two SETS
and its variations.

Definition (EQUAL SuM SUBSETS FROM Two SETS). Given two sets of numbers A = {aq,...,a,}
and B ={by,...,bn}, are there two nonempty subsets U C A and V' C B such that sum(U) =
sum(V')?

We study this problem in order to explore the limits of the sphere of N P-completeness around
ALTERNATING PARTIAL PARTITION to which the EQUAL SuM SUBSETS FROM Two SETS is
closely related. ALTERNATING PARTIAL PARTITION is the “partial” equivalent of ALTERNATING
PARTITION, which is an important, well-known variation of PARTITION (see [3]). We show N P-
completeness of EQUAL SUM SUBSETS FROM TwO SETS by proposing a reduction from SUBSET
SuM, which is defined as follows: Given a set of n numbers P = {py,...,p,} and a number S,
is there a subset X C P such that sum(X) = S7

Lemma 11. SUBSET SuM <, EQUAL SUM SUBSETS FROM TwWO SETS.



Proof. Let {p1,...,pn} and S be an instance of SUBSET Sum. Let A := {py,...,p,} and
B :={S} be an instance of EQUAL SuM SUBSETs FROM Two SETs. If X is a solution for the
SUBSET SuM instance, then X C A and sum(X) = S. Any solution U C 4 and V' C B for
the EQuaL SuMm SUBSETS FROM Two SETs instance will have V. = B = {S}, and therefore
sum(U) = S. Thus, a solution for the SUBSET SuM instance transforms easily in a solution for
the EQUAL SuM SUBSETS FROM TwoO SETS instance, and vice versa. O

In an approach similar to the one followed in Section 5, we define restricted variations of
EqQuAL SuM SUBSETS FROM Two SETS. We present N P-completeness results that give insight
as to how far IV P-completeness goes.

Definition (EQUAL Sum SuBsETS OF EQUAL CARDINALITY FROM Two SETS). Given two

sets of numbers A = {ay,...,a,} and B = {by,...,b,}, are there two nonempty subsets U C A
and V C B with |U| = |V| such that sum(U) = sum(V')?

Lemma 12. SUBSET SUM <, EQUAL SuM SUBSETS OF EQUAL CARDINALITY FROM Two
SETS.

Proof. Given an instance {py,...,p,} and S of SUBSET SUM we construct an instance of EQUAL
SuM SUBSETS OF EQUAL CARDINALITY FROM TwoO SETS, i.e. sets A and B as follows:

set A set B
ay :==(p1,1,0) by :=(0,1,0)
a; := (pi, 1, 0) b; :== (0,1, 0)
an := (Pn, n, 0) b, := (0, n,0)
ant1 :=(0,0,1) bny1 :=(S,0,1)

We will show that there is a set X C {p1,...,pn} such that sum(X) = S if and only if there
are nonempty sets U C A and V' C B such that |U| = |V]| and sum(U) = sum(V).
“only if”: If there is a set X C {p1,...,pn} such that sum(X) = S then, by defining U = {a; |
;i € X}U{any1} and V ={b; | z; € X} U {bny1} we have that sum(U) =sum(V) = (S, k, 1),
where k =3 cx 1.
“if”: Assume that nonempty sets U C A and V' C B exist such that |U| = |V| and sum(U) =
sum(V). Then b,41 € V is necessary to have equal sums in the first digit. This implies that
there are @;’s in U such that sum({p; | a; € U}) = S, i.e., the corresponding p;’s form a solution
for the original SUBSET SUM instance. O

The following variation asks for two equal sum subsets that have disjoint indices:

Definition (EQUAL Sum SUBSETS WITH DisJOINT INDICES FROM Two SETS). Given two sets
of n numbers A = {ay,...,a,} and B = {by,...,b,}, are there two nonempty sets of indices
I, JCA{L,...,n} with INJ =0 such that 37, ra; =37 ;c;b; 7

Lemma 13. EQUAL SUM SUBSETS FROM Two SETS <, EQUAL SUM SUBSETS WITH DISJIOINT
INDICES FROM TWO SETS.
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Proof. (Sketch) Given an instance A = {a4,...,a,} and B = {by,...,b,} of EQUAL SuMm SuUB-
SETS FROM TwoO SETS, we can construct an instance of EQUAL SUM SUBSETS WITH DISJOINT
INpICES FROM Two SETS (A’, B') as follows:

set A’ set B’
Vi<i<m: al :={(a;)< 0,0, bl =0y < A,(i) < 0,
Vi<i<n: aj:=(0)< 0,< Ay(i) by =(bi) < 0, < 0,

It is easy to see that there are two equal sum subsets of A and B if and only if there equal
sum subsets of A’ and B’ with disjoint indices, since only subsets of the first n numbers in A’
and the last n numbers in B’ can yield equal sums. O

An even more restricted variation asks for subsets with disjoint indices that cover the whole
set of indices.

Definition (EQuaL SuMm SuBSETs WITH DisjoINT COVERING INDICES FROM Two SETS).

Given two sets of n numbers A = {ay,...,a,} and B = {by,...,b,}, are there two sets of
indices I, J C{1,...,n} withINJ =0 and IUJ ={1,...,n} such that 3, ;a; =3, ;b;?

Lemma 14. PARTITION <,, EQUAL SUM SUBSETS WITH DIisjOINT COVERING INDICES FROM
Two SETS.

Proof. Given an instance of PARTITION {aq,...,a,} we construct an instance of EQUAL Sum
SUBSETS WITH DisJOINT COVERING INDICES FROM Two SETS by setting A’ = B’ = A. Now,
if A can be partitioned into X and Y, then choosing the corresponding elements in A’ and
B’ respectively gives us a solution for the EQUAL SuMm SUBSETS WITH DISJOINT COVERING
INDICES FROM TWoO SETS instance, and vice versa. ]

We finally examine the variation where we want the sets of indices to be identical.

Definition (EQuaL Sum SUBSETS WITH IDENTICAL INDICES FROM Two SETS). Given two
sets of n numbers A = {ay,...,a,} and B = {by,...,b,}, is there a nonempty set of indices

I'C{l,...,n} such that ) ,cra; =) ;crb;?

Lemma 15. SUBSET SUM <, EQUAL SUM SUBSETS WITH IDENTICAL INDICES FROM Two
SETS.

Proof. We use the same reduction as in Lemma 12. It suffices to observe that any two equal
sum subsets U C A and V C B either have identical indices or there is always V' C B such that
sum (V) = sum(V’) = sum(U) and V' has identical indices with U. O

From the previous lemmas and the fact that the problems are obviously in N P, we get the
following:

Theorem 16. The problems
EqQuaL SuMm SUBSETS FROM Two SETS,
EqQuaL SuMm SUBSETS OF EQUAL CARDINALITY FROM TwoO SETS,
EqQuaL SuMm SUBSETS WITH DIsJOINT INDICES FROM TwWO SETS,
EqQuaL SuMm SuBseETs WITH DisjoINT COVERING INDICES FROM Two SETS, and
EqQuaL SuMm SUBSETS WITH IDENTICAL INDICES FROM TwoO SETS
are N P-complete.
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7 Conclusions

We have presented N P-completeness results for many natural and interesting variations of
EquaL SuM SUBSETS.

The results in this paper are only a first step in investigating variations of EQUAL Sum
SUBSETS. A line of future research is to further explore the brink of N P-completeness in terms
of EQUAL SuM SUBSETS variations. Potential examples of such variations are: a variation with
additive factor (instead of multiplicative) or a variation in which the required cardinalities of the
two subsets are given as part of the input. Moreover, cases where the input contains negative
numbers deserve consideration. It would also be interesting to study some of our variations in
their full partition counterparts.
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