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Abstract. The problem to find the coordinates of n points on a line
such that the pairwise distances of the points form a given multi-set of
(g) distances is known as PARTIAL DIGEST problem, which occurs for
instance in DNA physical mapping and de novo sequencing of proteins.
Although PARTIAL DIGEST was — as a combinatorial problem — already
proposed in the 1930’s, its computational complexity is still unknown.
In an effort to model real-life data, we introduce two optimization varia-
tions of PARTIAL DIGEST that model two different error types that occur
in real-life data. First, we study the computational complexity of a mini-
mization version of PARTIAL DIGEST in which only a subset of all pairwise
distances is given and the rest are lacking due to experimental errors. We
show that this variation is NP-hard to solve exactly. This result answers
an open question posed by Pevzner (2000). We then study a maximiza-
tion version of PARTIAL DIGEST where a superset of all pairwise distances
is given, with some additional distances due to inaccurate measurements.
We show that this maximization version is NP-hard to approximate to
within a factor of |D|%_E for any ¢ > 0, where |D| is the number of input
distances. This inapproximability result is tight up to low-order terms
as we give a trivial approximation algorithm that achieves a matching
approximation ratio.

1 Introduction

The PARTIAL DIGEST problem is one of the most intriguing problems in
computational biology: on the one hand, it is a basic problem with rele-
vant applications in DNA mapping and in protein sequencing; on the other
hand, its computational complexity is a long—standing open problem. In
the PARTIAL DIGEST problem we are given a multiset D of distances and
are asked to find coordinates of points on a line such that D is exactly
the multiset of all pairwise distances of these points. More formally, the
PARTIAL DIGEST problem can be defined as follows.
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Definition 1 (PARTIAL DIGEST). Given an integer m and a multiset!
of k = (Tg) positive integers D = {dy, ..., dy}, is there a set of m integers
P ={pi,...,pm} such that {|p; —p;| |1 <i<j<m}=D?

For example, if D = {2, 5, 7, 7, 9, 9, 14, 14, 16, 23}, then P =
{0,7,9,14,23} is one feasible solution (cf. Figure 1).

Fig. 1. Example for PARTIAL DIGEST

Recently, the PARTIAL DIGEST problem has received increasing at-
tention due to its applications in computational biology, namely physical
mapping of DNA and de novo sequencing of proteins (see below). How-
ever, in its pure combinatorial formulation the PARTIAL DIGEST problem
has been studied for a long time: It appears already in the 1930’s in the
sphere of X-ray crystallography (acc. to [23]); the problem is very closely
related to the theory of homometric sets? [20]; and finally, it is also known
as “turnpike problem”, where we are given the pairwise distances of cities
along a highway, and we want to find their ordering along the road [8].

We refer to the problem as PARTIAL DIGEST due to it applications in
the study of the structure of DNA molecules. Indeed, given a large DNA
molecule, restriction enzymes can be used to generate a physical map
of the molecule. A restriction enzyme cuts a DNA molecule at specific

! We will denote multisets like sets, since the fact of being a multiset is not crucial
for our purposes.

2 Two (noncongruent) sets of points are homometric if they generate the same multiset
of pairwise distances.



patterns, the restriction sites. For instance, the enzyme Eco RI cuts at
occurrences of the pattern GAATTC. Under appropriate experimental
conditions, e.g. by exposing the enzyme for different time periods or by
using very small amounts of the enzyme, all fragments between each two
restriction sites are created. This process is called partial digestion (in
contrast to full digestion, where the enzyme is applied long enough to
cleave at all restriction sites). The lengths of the fragments, i.e., their
number of nucleotides, are then measured by using gel electrophoresis.
This leaves us with the multiset of distances between all restriction sites,
and the objective is to reconstruct the original ordering of the fragments
in the DNA molecule, which is the PARTIAL DIGEST problem.

The PARTIAL DIGEST problem occurs as well in de novo sequencing
of proteins using tandem mass spectrometry: Given a probe with many
copies of a single protein, we first use an enzyme like trypsin to digest the
proteins. This leaves us with a set of protein fragments, called peptides.
We separate the peptides by their mass, using tandem mass spectrome-
try. Then we break up these peptides into even smaller fragments using
collision induced dissociation (CID). The mass/charge ratio of these frag-
ments are measured using mass spectrometry again, resulting in a tandem
mass spectrum of the peptide, which can be used to determine the amino
acid sequence of the peptide (de novo sequencing). In the dissociation
step, each single peptide can break up between any two amino acids in
the peptide. If each single peptide breaks up exactly once (e.g., peptide
AEKGCWTR can break up into fragments AEKG and CW RT, or into
fragments AE and KGCWTR), then only fragments occur that are pre-
fixes and suffixes of the peptide sequence. In this case there exist efficient
algorithms for de novo sequencing [6,17]. However, in real life experi-
ments a single peptide does not only break up once, but it can break up
several times, yielding internal fragments as well [3,4,14]. In the exam-
ple, peptide AEKGCWTR might break up into fragments AEK, GC
and WTR. For this reason, we do not only obtain prefixes and suffixes in
the spectrum, but all possible substrings of the peptide sequencs. Hence,
the problem to find the appropriate sequence of amino acid for such a
spectrum is equivalent to the PARTIAL DIGEST problem.

For the sake of simplicity, we will refer in this paper only to the setup
of partial digestion experiments for DNA molecules. It is obvious that
similar types of noise occur in tandem mass spectrometry data as well.

In reality, the partial digest experiment cannot be conducted under
ideal conditions as outlined above, and thus errors occur in the data. In
fact, there are four types of errors [9,11,13,24, 26]:



Additional fragments An enzyme may erroneously cut in some cases
at a site that is similar, but not exactly equivalent to a restriction
site; thus, some distances will be added to the data even though they
do not belong to it. Furthermore, fragments can be added through
contamination with biological material, such as DNA from unrelated
sources.

Missing fragments It can happen that a particular restriction site does
not get cut in combination with all other restriction sites; then only
one large fragment occurs in the data instead of the two (or even
more) smaller fragments. Furthermore, fragments cannot be detected
by gel electrophoresis if their amount is insufficient to be detected
by common staining techniques. Finally, small fragments may remain
undetected at all since they run off at the end of the gel.

Fragment length Using gel electrophoresis, it is almost impossible to
determine the exact length of a fragment. Typical error ranges are
between 2% and 7% of the fragment length.

Multiplicity detection Determining the proper multiplicity of a dis-
tance from the brightness of its spot in the gel is a non—trivial prob-
lem.

In this paper, we define two optimization variations of PARTIAL DI-
GEST, where one variation models addition errors and the other models
omission errors or missing fragments. Each variation allows only for one
type of error to occur, and we will prove hardness results for both varia-
tions, implying that no polynomial-time algorithm can guarantee to find
optimum or even nearly optimum solutions. For the third type of errors, it
is known that the PARTIAL DIGEST problem becomes NP-hard if length
measurements are erroneous [7], while we are not aware of any results
on multiplicity errors. Intuitively, the problem of modeling “real-life” in-
stances — in which all error types can occur — is even harder than having
only one error type.

The MIN PARTIAL DIGEST SUPERSET problem models the situation
of omissions, where we are given data in which some distances are missing,
and we search for a set of points such that the number of omitted distances
is minimum. It is formally defined as follows.

Definition 2 (MIN PARTIAL DIGEST SUPERSET). Given a multiset of k
positive integers D = {dy, ...,dy}, find the minimum m such that there is
a set of m integers P = {py,...,pm} with D C {|pi—p;| | 1 <i < j < m}.

For example, if D = {2, 5, 7, 7, 9, 14, 23}, then the solution shown
in Figure 1 would be a minimum solution for the MIN PARTIAL DIGEST



SUPERSET instance D. On the other hand, if D' = {2, 7,9, 9, 16}, then
the points shown in the figure would cover all distances from D', but there

exist solutions with less points that cover D', e.g. points P’ = {0,2, 9,18}
(vielding distance multiset {2,7,9,9,16,18}).

The MAX PARTIAL DIGEST SUBSET problem models the situation of
additions, where we are given data in which some wrong distances were
added, and we search for a set of points such that the number of added
distances is minimum. A formal definition is as follows.

Definition 3 (MaX PARTIAL DIGEST SUBSET). Given a multiset of k
positive integers D = {dy, ..., dy}, find the mazimum m such that there is
a set of m integers P = {py,...,pm} with {|pi—p;| | 1 < i< j<m} CD.

Our two variations of the PARTIAL DIGEST problem allow the mul-
tiset of pairwise distances in a solution to be either a superset (i.e., to
cover all given distances in D plus additional ones) or a subset (i.e., to
contain only some of the distances in D) of the input multiset D. If a
polynomial-time algorithm existed for either MIN PARTIAL DIGEST SU-
PERSET or MAX PARTIAL DIGEST SUBSET, we could use this algorithm to
solve the original PARTIAL DIGEST problem as well: any YES instance of
PARTIAL DIGEST is an instance of both problems above whose optimum
is (T;), any NO instance of PARTIAL DIGEST is an instance of MaX PAR-
TIAL DIGEST SUBSET (resp., MIN PARTIAL DIGEST SUPERSET) whose
optimum is at most (Tg) — 1 (resp., at least (T;) + 1). However, we show
that such algorithms cannot exist, unless P = NP: We first show that
computing the optimal solution for the MIN PARTIAL DIGEST SUPER-
SET problem is NP-hard, by proposing a reduction from the NP-complete
problem EQUAL Sum SUBSETS. In a sense, our result provides an an-
swer to the open problem 12.116 in the book by Pevzner [18], which asks
for an algorithm to reconstruct a set of points, given a subset of their
pairwise distances. We strengthen our hardness result by considering the
t-PARTIAL DIGEST SUPERSET problem, where we restrict the cardinal-
ity of a solution to at most ¢, for some fixed parameter ¢; in this case,
the problem remains NP-hard for any fixed ¢t = |D|%"'a and any € > 0.
This result is tight in a sense, since any solution (even from the original
PARTIAL DIGEST) must have at least cardinality ¢t = Q(|D|%) As for
the MAX PARTIAL DIGEST SUBSET problem, we show that there is no
polynomial-time algorithm for this problem that guarantees an approx-



imation ratio® of |D|%_€ for any € > 0, unless P = NP, by proposing a
gap-preserving reduction from MaXiMUM CLIQUE. The problem Maxi-
MUM CLIQUE is very hard to approximate, and our reduction transfers
the inapproximability of MAXiMUM CLIQUE to MAX PARTIAL DIGEST
SUBSET. We also point to a trivial approximation algorithm that achieves
a matching asymptotic approximation ratio. Thus, our result is tight up
to low-order terms. Our inapproximability result means not only that can
we not expect a polynomial-time algorithm that finds the optimum so-
lution, but we cannot even expect a polynomial-time algorithm for MAX
PARTIAL DIGEST SUBSET that finds solutions that are a factor |D|%_€
off the optimum.

Our hardness results show that a polynomial-time algorithm for the
original PARTIAL DIGEST (if any) cannot be obtained by looking at the
natural optimization problems we considered here. If any such algorithm
exists, then it must exploit some combinatorial properties of PARTIAL
DIGEST instances that do not hold for these optimization problems.

The exact computational complexity of PARTIAL DIGEST is a long—
standing open problem: It can be solved in pseudopolynomial time?* [15,
20]; there exists a backtracking algorithm (for exact or erroneous data)
that has expected running time polynomial in the number of distances [23,
24], but exponential worst case running time [27]; it can be formalized by
cut grammars, which have one additional symbol §, the cut, that is neither
a non—terminal nor a terminal symbol [21]; and finally, if the points are
not on a line but in d-dimensional space, then the problem is NP-hard
for some d > 2 [23]. However, for the original PARTIAL DIGEST problem,
neither a polynomial-time algorithm nor a proof of NP-completeness is
known [5,8,17-19,22].

In the biological setting of partial digestion, many experimental vari-
ations have been studied: Double digestion, where two different enzymes
are used [22]; probed partial digestion, where probes (markers) are hy-
bridized to partially digested DNA [1,16]; simplified partial digest, where
clones are cleaved in either one or in all restriction sites [5]; labeled partial
digestion, where both ends of the DNA molecule are labeled before diges-
tion [17]; and multiple complete digestion, where many different enzymes

3 The approximation ratio of an algorithm 4 for any instance I is %)ﬂ, where A(T)
is the number of points in the solution of algorithm 4, and OPT(I) is the number
of points in an optimal solution.

* Le., polynomial in the largest number of the input, but not necessarily polynomial

in the bit length of the largest number.



are used [10]. For a good survey on the PARTIAL DIGEST problem, see
[23]; and for more recent discussions on the problem, see [18] and [22].

The paper is organized as follows: In Section 2 we present the hardness
results of MIN PARTIAL DIGEST SUPERSET. In Section 3 we provide the
(in-) approximability results on MAX PARTIAL DIGEST SUBSET. Finally,
we conclude and present some open problems in Section 4.

2 NP-hardness of MIN PARTIAL DIGEST SUPERSET

In this section we show that MIN PARTIAL DIGEST SUPERSET is NP-hard
by proposing a reduction from EQUAL SuM SUBSETS. We start with some
notation.

A multiset with elements 1,1, 3,5, 5, and 8 is denoted by {1, 1, 3,5,5,8}.
Subtracting an element from a multiset will remove it only once (if it is
there), thus {1,1,3,5,5,8} —{1,4,5,5} = {1, 3, 8}. Given a set of integers
X =A{z1,...,2,}, the distance multiset A(X) is defined as the multiset
of all distances of X, i.e., A(X) := {|lz; — 25| | 1 < i < j < n}. We
denote the sum of the elements of a set X of integers by sum(X), i.e.,
sum(X) := Yy z. Finally, we say that a set of points P covers distance
multiset D if D C A(P).

We first show that the minimum cardinality of a point set that cov-
ers all distances in a given multiset D cannot be to large: Let D =
{dy,...,dr}. If m is the minimal number such that a set P of cardinality
m with D C A(P) exists, then m < k+ 1: We set pg = 0,p; = pi—1 + d;
for 1 < i < k, and Py = {po,..., Pk}, i.e., we simply put all distances
from D in a chain “one after the other” (cf. Figure 2). In Py, each dis-
tance d; induces a new point, and we use one additional starting point 0.
Obviously, set Py, covers D and has cardinality & + 1.

d ds m

Fig. 2. Trivial solution for a distance multiset D.

Observe that PARTIAL DIGEST can be easily reduced to MIN PARTIAL
DiGEsT SUPERSET: Given an instance D of PARTIAL DIGEST of size
|D| = k, there is a solution for D if and only if the minimal solution for the



MIN PARTIAL DIGEST SUPERSET instance D has size m = 1 4+ /1 + 2k

(in this case, k = (77)).

Theorem 4. MIN PARTIAL DIGEST SUPERSET %s NP-hard.

Proof. We reduce EQUAL SuM SUBSETS to MIN PARTIAL DIGEST SU-
PERSET, where EQUAL SuM SUBSETS is the NP-complete problem [25]
that is defined as follows: Given a set of n numbers A = {ay,...,a,},
are there two disjoint nonempty subsets X,Y C A such that sum(X) =
sum(Y)?

Given an instance A = {ay,...,a,} of EQUAL SUM SUBSETS, we set
D = A (and k = n), and claim the following: There is a solution for the
EqQuaL SuM SUBSETS instance A if and only if a minimal solution for the
MIN PARTIAL DIGEST SUPERSET instance D has at most n points.
“only if” part: Let X and Y be a solution for the EQUAL SUM SUBSETS
instance. Assume w.l.o.g. that X = {ay,...,¢,} and Y = {a,41,...,0a5}
for some 1 < r < s < n. We construct a set P that covers D and that
has at most cardinality n. Similarly to the construction of Pj.;,, we line
up the distances from D. In this case, two chains start at point 0: those
distances from X and those from Y (cf. Figure 3); the remaining distances
from D — (X UY) are at the end of the two chains.

a as ar

As41 Ag42 ... [£37)
DPr+1 DPr—1

Ar41 ar42 Qg

Fig. 3. Solution if there are two sets of equal sum.

Set P = {po,...,Ps—1,0s+1,-- -, qn} is the corresponding set of points.
Notice that there is no point ”p,” in set P, since the two chains corre-
sponding to X and Y share two points, namely pp = 0 and their common
endpoint p,.

Obviously, P is a set of cardinality n. Moreover, by construction
(cf. Figure 3), it holds that D = {ay,...,a,} C A(P).

“if” part: Let P = {py,...,pm} be an optimal solution for the MIN
PARTIAL DIGEST SUPERSET instance with m < n4 1. Since P covers D,
for each @ € D there is a pair (p, ¢) of points p, ¢ € P such that a = |[p—g¢|.
For each @ € D, we choose one such pair and say that it is associated with



value a. We define a graph G = (V, E) with V' = P and
E={(p,q) | (p,q) is associated with some a € D},

i.e., G contains only those edges corresponding to some distance in D.
Thus, |V| = m and |E| = |D| = n. Since m < n + 1, this graph contains
a cycle. We show that such a cycle induces a solution of the EQuAL Sum
SUBSETS instance.

ay a3 ag

aq
1 2 cy  \C3 C5 mckﬂ
MCS W \/

.y A Ak

Fig. 4. A solution containing a cycle yields two subsets of equal sum: the overall lenght
of right jumps equals to the overall length of left jumps.

Let C =c1,...,c5 beacyclein G (see Fig. 4). Then |¢;41—¢;| € D, for
all 1 <7 < s (with some abuse of notation we consider ¢,11 = ¢1). Assume
w.l.o.g. that |¢;41 — ¢;| is associated with a;, for 1 < i < s. We define
ItT={ie{l,...;s} | ciz1 >c}tand I~ ={j € {1,...,s} | ¢j31 < ¢},
i.e., we partition the edges in the cycle into two sets, those that are
oriented to the left (I7) and those that are oriented to the right (I1).
This yields

s

O=ci—cp=cep1 —C1 = Z(Ci-u —¢) = Z (i1 — )+ Z (cj41 —¢5)

=1 ielt Jel~

=D leini—cl= Y lejp—cjl =Y ai= Y aj
el+ JjeI— elt jeI—
Sets X :={a; | i€ I} and Y := {a; | j € ["} yield equal sums, and
thus a solution of the EQUAL SuM SUBSETS instance. O

In the previous proof, we distinguished whether a minimal solution
uses at most n points, or n + 1 points. It is even possible to “decrease”
this boundary to some value t that is still sufficiently large. In fact, we



can show that t-PARTIAL DIGEST SUPERSET is1 NP-hard for every 0 <
e < % if we set t to be at least f(|D|) = |D|z*". Observe that for a
distance multiset D, a minimal set of points covering D has cardinality

at least £ +4/1 + 2|D| ~ |D|% Moreover, the PARTIAL DIGEST problem

is equivalent to t-PARTIAL DIGEST SUPERSET witht = L +/% 4 2|D| =

0] (|D|%) The proof will be given in the full version of this paper. It is a

reduction from EQUAL SuM SUBSETS where we “blow up” the instance
of MIN PARTIAL DIGEST SUPERSET used in the proof above by adding
an appropriate number of additional distances that do not interfere.

3 (In-) Approximability of MAX PARTIAL DIGEST SUBSET

In this section, we show that MAX PARTIAL DIGEST SUBSET is almost
as hard to approximate as MAXIMUM CLIQUE, and we give a trivial ap-
proximation algorithm that achieves a matching approximation ratio.

We need to introduce some notation for large numbers first. The num-
bers are expressed in the number system of some base Z. We denote by
{ay,...,a,) the number >, .., @, Z""; we say that a; is the i-th digit
of this number. We will choose base Z large enough such that adding
up numbers in our proof will not lead to carry-digits from one digit
to the next. Therefore, we can add numbers digit by digit. The same
holds for scalar products. For example, having base Z = 27 and numbers
a = (3,5,1),5 = (2,1,0), then « + 5 = (5,6,1) and 3-a = (9,15, 3).
We will allow different bases for each digit. We define the concatenation
of two numbers by (ai,...,a,) 0 (b1,...,bm) == (a1, ..., an,b1,...,bm),
ie, oo = aZ™ 4+ [, where m is the number of digits in 3. Let
A7) :==(0,...,0,1,0,...,0) be the number that has n digits, all 0’s ex-
cept for the i-th position where the digit is 1. Moreover, 1,, := (1,...,1)
has n digits, all 1’s, and 0, := (0,...0) has n zeros.

We construct a gap-preserving reduction (as introduced in [2]) from
Max CLIQUE to MAX PARTIAL DIGEST SUBSET. MAX CLIQUE is the
problem of finding a maximum complete subgraph from a given graph.
It cannot be approximated by any polynomial-time algorithm with an
approximation ratio of n'~° for any ¢ > 0, where n is the number of
vertices of the input graph, unless P = NP [12]. Our reduction is gap-
preserving, which means that the inapproximability of Max CLIQUE is
transfered to MAX PARTIAL DIGEST SUBSET.

Suppose we are given a graph G = (V,E) with vertex set V =
{v1,...,v,} and edge set E C V x V. We construct an instance D of MaX



PARTIAL DIGEST SUBSET by creating a number d; ; = 0; 01;_; 0 0,,_;
with base Z = n? + 1 for each (v;,v;) € E,j > 1.

Let OPT be the size of the maximum clique in G (i.e., the number of
vertices in the maximum clique), let OPT’ be the maximum number of
points that can be placed on a line such that all pairwise distances appear
in D, let £ > 0 be an integer, and let ¢ > 0. The following two lemmas
show how the reduction works.

Lemma 5. OPT > kn'=* = OPT' > kn'~®

Proof. Assume we are given a clique in graph G of size kn'~%. We con-
struct a solution for the corresponding MAXIMUM PARTIAL DIGEST in-
stance D by positioning a point at position v! = 1, 00,_; for each vertex
v; in the clique. This yields a feasible solution for D, since — for j > 7 —
each distance v;« —vi=0;01,_;00,_; = d; ; between two points v;« and
v} corresponds to an edge in G and is therefore encoded as distance d; ;
in D. O

Lemma 6. OPT <k = OPT' <k

Proof. We prove the contraposition, i.e., OPT' > k — OPT > k.
Suppose we are given a solution of the MAX PARTIAL DIGEST SUBSET
instance consisting of k points p; < ... < pg on the line, where we assume
w.l.o.g. that p; = 0,,. By definition distance py — p; must be contained
in the distance set D and thus two indices #min and jmax must exist with
iminsjmax = Pk — P1. Each of the points py, ..., pr—; from the solution has

the following properties:

1. It only has zeros and ones in its digits, as the distance to point py
would not be in D otherwise.

2. It only has zeros in the first ¢, digits, as the distance to point pg
would not be in D otherwise.

3. It contains at most a single continuous block of ones in its digits, as
the distance to point p; would not be in D otherwise.

The points ps, ..., pr_1 also have the property that they are either all
of the form 0, ., o1;00; . _;; . o0,_;. . orall of theform 0, , o0;0
1 00,0, Where ipyin <1 < jmax. If both forms existed in a
solution, i.e., at least one point of each form existed, then the distance

Jmax —I—2min

between points of different form would not be in D, since at least one
digit would not be 0 or 1.

We construct a vertex set V' that will turn out to be a clique by
letting v;_;, and vj_ . be in this set V'. Additionally, for each py for



k' =2,...k—1, where py is of the form 0, , ol1po0;  _p_; . 00, ;.
or 0, 00101 t/—ini
be in the vertex set V.
In order to see that the vertex set V' is a clique, consider the difference
pr' — prr of any two points with &' > k”, where pys has led to the inclusion
of vertex vy into the set and pg» has led to the inclusion of vertex v into
the clique. This difference is exactly dp ;v for both possible forms, and
thus the edge (vp,vp) isin E. O

‘ ,
00, —jax, Where imin < 1" < Jmax, welet vy o

The promise problem of MAX CLIQUE, in which we are promised that
the size of the maximum clique in a given graph G is either at least
kn'~¢, or less than k, and we are to decide which is true, is NP-hard
to decide [12]. Lemmas 5 and 6 transform this promise problem of Max
CLIQUE into a promise problem of MaX PARTIAL DIGEST SUBSET, in
which we are promised that in an optimum solution of D either at least
kn'~¢ or less than k points can be placed on a line. This promise problem
of Max PARTIAL DiGEST SUBSET is NP-hard to decide as well, since
a polynomial-time algorithm for it could be used to decide the promise
problem of MaX CLIQUE.? Thus, unless P = NP, MAX PARTIAL DIGEST
SUBSET cannot be approximated with an approximation ratio of:

knl—e
k

where |D| is the number of distances in instance D, since we could decide

=n'"* > D[,

the corresponding promise problem in polynomial time otherwise. We
have shown the following;:

Theorem 7. MAX PARTIAL DIGEST SUBSET cannot be appmacimlated by
any polynomial-time algorithm with an approximation ratio of |D|27% for
any € > 0, where |D| is the number of input distances, unless P = NP.

A trivial approximation algorithm for a MAX PARTIAL DIGEST SUB-
SET instance D = {dy,...,d|p|} that simply places two points at distance

dy from each other achieves a matching approximation ratio of O(|D|%)

4 Conclusion and Open Problems

We have shown that the optimization problems MIN PARTIAL DIGEST
SUPERSET and MAX PARTIAL DIGEST SUBSET are NP-hard. Moreover,
5 The concept of gap-preserving reductions is an alternative way to view a reduction.

It provides a formal framework for preserving inapproximability ratios between two
optimization problems. For details, see [2].



the maximization problem is not approximable within reasonable bounds,
unless P = NP. This answers the problem 12.116 left open in [18], and
gives rise to new open questions:

1. Since our optimization variations model different error types that (al-
ways) occur in real-life data, our hardness results suggest that real-life
PARTIAL DIGEST problems are in fact instances of NP-hard prob-
lems. However, the backtracking algorithm from [23] seems to run
in polynomial-time for real-life instances. How can this be explained?
What relevant properties do real-life instances have that prevent them
from becoming intractable?

2. What is the best approximation ratio for MIN PARTIAL DIGEST SuU-
PERSET?

3. Using gel electrophoresis or mass spectrometry, it is very hard to de-
termine the correct multiplicity of a distance. This yields the following
variation of PARTIAL DIGEST: we are given a set of distances, and for
each distance a multiplicity, and we ask for points on a line such that
the multiplicities of the corresponding distance set do not differ "to
much” from the given multiplicities. What is the computational com-
plexity of this problem?

4. Is there a polynomial-time algorithm for the PARTIAL DIGEST prob-
lem if we restrict the input to be a set of distances (instead of a mul-
tiset), i.e., if we know in advance that each two distances are pairwise
distinct?

Finally and obviously, the main open problem is still the computa-
tional complexity of PARTIAL DIGEST.
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