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Abstract. A set of n points in the plane is in equiangular configuration
if there exist a center and an ordering of the points such that the angle
of each two adjacent points w.r.t. the center is 360

◦

n
, i.e., if all angles

between adjacent points are equal. We show that there is at most one
center of equiangularity, and we give a linear time algorithm that decides
whether a given point set is in equiangular configuration, and if so, the
algorithm outputs the center. A generalization of equiangularity is σ-
angularity, where we are given a string σ of n angles and we ask for a
center such that the sequence of angles between adjacent points is σ. We
show that σ-angular configurations can be detected in time O(n4 log n).

Keywords: Weber point, equiangularity, σ-angularity, design of algorithms, com-
putational geometry.

1 Introduction

We study how to identify geometric configurations that are in a sense gener-
alizations of stars: a set of n distinct points P in the plane is in equiangular

configuration if there exists a point c 6∈ P — the center of equiangularity — and
an ordering of the points such that each two adjacent points form an angle of
360

◦

n
w.r.t. c (see Figure 1(a)).

Obviously, if all points have the same distance from the center, then they form
a regular star. Note that we exclude the special case that any of the given points
is at center c. Furthermore, observe that the number of points in equiangular
configurations can be odd or even, and that any set of two points is always in
equiangular configuration. In the remainder of this paper, we will consider only
point sets with at least three points.

There is a strong connection between equiangular configurations and Weber

points, which are defined as follows: a point w is a Weber point of point set P if
it minimizes

∑
p∈P |p − x| over all points x in the plane, where |p − x| denotes

the Euclidean distance between p and x [8]. Hence, a Weber point minimizes
the sum of all distances between itself and all points in P . The Weber point for
an arbitrary point set is unique except for the case of an even number of points
which are all on a line [3]. We will show that the center of equiangularity, if it
exists, is a Weber point; thus, there is at most one center of equiangularity for
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Fig. 1: Example of (a) equiangular configuration with n = 8; (b) σ-angular configuration
with n = 9, where σ = (31◦, 45◦, 14◦, 31◦, 49.5◦, 68.5◦, 76◦, 31◦, 14◦); and (c) biangular
configuration with n = 8.

n ≥ 3 points that are not on a line. Obviously, we could check easily whether a
given set of points is in equiangular configuration if we could find their Weber
point. Unfortunately, no efficient algorithms are known to find the Weber point
in general; even worse, it can be shown that the Weber point cannot even be
computed using radicals [2]. Hence, other algorithms are necessary, which we
will develop throughout this paper. The algorithm we will present for identifying
equiangularity has an interesting implication on Weber points: If n points are
in equiangular configuration, then we can use our algorithm to compute their
Weber point. This is rather surprising, since such results are known for only
few other patterns (e.g. all points are on a line), whereas this does not hold in
general for many easy–looking geometric pattern, such as circles [5].

A generalization of equiangularity is σ-angularity, where we are given a string
σ = (σ1, . . . , σn) of n angles and we ask whether there exists a center c and
an ordering of the points such that the sequence of angles between each two
adjacent points w.r.t. the center is σ (see Figure 1(c)). Observe that the center
of σ-angularity is not necessary unique. Obviously, equiangularity is equivalent to
σ-angularity with σ = (360

◦

n
, 360

◦

n
, . . . , 360

◦

n
). The case of two alternating angles

α and β, i.e., σ = (α, β, α, . . . , β), is referred to as biangular (see Figure 1(b)).

σ-angular configurations have been applied successfully in robotics, namely
in solving the Gathering Problem, which – informally – can be defined as
follows: given is a set of autonomous mobile robots that cannot communicate
at all and that can only observe the positions of all other robots in the plane.
The task is to gather the robots at an arbitrary point in the plane that is
not fixed in advance. One of the main difficulties of this problem is to deal
with configurations that are totally symmetric, for instance where the robots’
positions form a regular3 n-gon. Recently, an algorithm solving the Gathering

Problem has been proposed which uses – among other techniques – the center

3 Note that a regular n-gon is a special case of equiangular configuration.
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of equiangularity or biangularity to gather the robots there [4]. Hence, efficient
algorithms are needed to find the centers of such configurations.

In this paper, we present algorithms that decide whether a point set is in
σ-angular configuration, for a given string σ, and if so, the algorithms output a
corresponding center. To our knowledge, there is no treatment of equiangularity
in the vast amount of literature on computational geometry. Only very distantly
related, if at all, are for instance star-shaped polygons and star–graphs [7].

For the general case of σ-angularity, we will present in Section 2 an algorithm
with running time O(n4 log n). For the special cases of biangular and equiangular
configurations, this algorithm runs in cubic time, if the two angles are given. In
Section 3, we will give another algorithm that allows to detect equiangular con-
figurations even in linear time. All algorithms are straightforward to implement.

2 σ-Angular Configurations

In this section, we present an algorithm that detects σ-angularity in running
time O(n4 log n), and we show how to simplify this algorithm for biangular and
equiangular configurations, yielding running time O(n3). Our algorithms rely on
the notion of Thales circles, which we introduce below.
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Fig. 2: (a) A Thales circle of angle α < 90◦. (b) Cp3p9
is Thales circle for p3 and p9

with α = σ9 + σ1 + σ2, Cp7p8
is Thales circle for p7 and p8 with α = σ7.

2.1 Thales Circles

Given two points p and q and an angle 0◦ < α < 180◦, a circle C is a Thales circle

of angle α for p and q if p and q are on C, and there is a point x on C such that
^(p, x, q) = α, where ^(p, x, q) denotes the angle between p and q w.r.t. x. In the
following we will denote such a circle also by Cpq. An example of a Thales circle4

4 The name ”Thales circle” refers to Thales of Miletus, who was one of the first to
show that all angles in a semi-circle have 90◦.
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can be found in Figure 2(a). It is well-known from basic geometry that all angles
on a circle arc are identical, i.e., given a Thales circle C of angle α for points p
and q such that ^(p, x, q) = α for some point x on C, then ^(p, x′, q) = α for
every point x′ on the same circle arc of C where x is (cf. Figure 2(a)).

Lemma 1. Given two points p and q and an angle 0◦ < α < 180◦, the Thales

circles of angle α for p and q can be constructed in constant time.

The lemma can be proven using basic geometry.
Observe that for two points p and q, there is exactly one Thales circle of

angle 90◦, and there are two Thales circles of angle α 6= 90◦. However, in the
remainder of this paper we will often speak of “the Thales circle”, since it will
be clear from the context which of the two Thales circles we refer to.

The connection between Thales circles and σ-angular configurations is the
following (see Figure 2(b)): Assume that a point set P is in σ-angular configu-
ration with center c, for some string of angles σ = (σ1, . . . , σn). For two points
p, q ∈ P , let α be the angle between p and q w.r.t. c, i.e., α = ^(p, c, q). Then

α =
∑j

k=i σk for two appropriate indices i, j (taken modulo n). Let C be the
circle through p, q and c. Then C is a Thales circle of angle α for p and q. Since
this holds for any pair of points from P - with appropriate angles - this yields
the following:

Observation 1 The center of σ-angularity must lie in the intersection of Thales

circles for any two points from P of appropriate angle.

We will use this observation in our algorithms to find candidates for the
center of σ-angularity.

2.2 Algorithm for σ-Angular Configurations

We now present an algorithm that detects σ-angular configurations in time
O(n4 log n); before, we observe basic properties of σ-angular configurations that
we apply in our algorithm.

Let σ be a string of angles and P be a point set that is in σ-angular con-
figuration with center c. First, observe that the angles in σ must sum up to
360◦; thus, there can be at most one angle in σ that is larger than 180◦. Let
αmax be the maximum angle in σ. Then the following holds (cf. Figure 2.2): If
αmax > 180◦, then center c is outside the convex hull of P ; if αmax = 180◦ and
there is no other angle of 180◦ in σ, then center c is on the convex hull; if there
are two angles of 180◦ in σ, then all other angles in σ are of 0◦, and the points in
P are on a line; and, finally, if αmax < 180◦, then center c is strictly inside the
convex hull of P . Furthermore, observe for the last case – where c is inside the
convex hull – that the ordering of the points in P that yields σ, if restricted to
the points on the convex hull of P , corresponds to the ordering of these points
along the convex hull.

Our algorithm to detect σ-angularity will distinguish these four cases. For
each case, the algorithm will generate few candidate points that might be a
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center of σ-angularity. Then we test for each candidate c whether it is indeed a
center as follows: We compute the angle between a fixed point on the convex hull,
say x, and every other point p ∈ P w.r.t. c. We sort these angles and compute
sequence τ by subtracting each angle from its successor. Then candidate c is a
center of σ-angularity if sequence τ or its reverse is a cyclic shift of σ. This test
requires time O(n log n).
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Fig. 3: σ-angular configurations with (a) αmax > 180◦, (b) αmax unique angle of 180◦,
and (c) αmax < 180◦ (dashed lines show the convex hull of {p1, . . . , pn}).

Theorem 1. Given a point set P of n ≥ 3 distinct points in the plane and a

string σ = (σ1, . . . , σn) of n angles with
∑

i σi = 360◦, there is an algorithm

with running time O(n4 log n) that decides whether the points are in σ-angular

configuration, and if so, the algorithm outputs a center of σ-angularity.

Proof. The algorithm consists of different routines, depending on whether the
largest angle in σ is greater than, equal to, or less than 180◦. We present the
algorithm for the case that all angles are less than 180◦. The other cases are
solved similarly.

Case All angles less than 180◦. In this case, a center of σ-angularity, if it exists,
is strictly inside the convex hull of P (see Figure 2.2(c)). Moreover, if we fix three
points from P and compute the Thales circles for these points with appropriate
angles, then the center of equiangularity lies in the intersection of these circles
(cf. Observation 1). This idea is implemented in Algorithm 1.

To see the correctness of the algorithm, note that α and β are two consecutive
range sums of σ′ that sum over at most n angles. Thus, the algorithm has a loop
for each angle α that might occur between x and y according to σ.

If for some angle α all points from P are on the Thales circle Cxy, then α
cannot be the angle between x and y, since the center of σ-angularity would
have to be both on circle Cxy and inside the convex hull of the points, which is
not possible (recall that the center cannot be a point from P by definition).
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Algorithm 1 Algorithm for all angles less than 180◦.

1: If the points in P are on a line Then

2: Return �not σ-angular�
3: σ′ = (σ1, . . . , σn, σ1, . . . , σn)
4: x, y = two arbitrary neighbors on convex hull of P

5: For i = 1 To n Do

6: For j = i To i + n − 1 Do

7: α =
Pj

l=i σ′

l

8: Cxy = Thales circle of angle α for x and y

9: If at least one point from P is not on Cxy Then

10: z = arbitrary point from P that is not on Cxy

11: For k = j + 1 TO j + n Do

12: β =
Pk

l=j+1
σ′

l

13: Cxz = Thales circle of angle β for x and z

14: If Cxy and Cxz intersect in two points Then

15: c = point in intersection that is not x

16: If c is a center of σ-angularity Then

17: Return �σ-angular with center c�
18: Cyz = Thales circle of angle β for y and z

19: If Cxy and Cyz intersect in two points Then

20: c = point in intersection that is not y

21: If c is a center of σ-angularity Then

22: Return �σ-angular with center c�
23: Return �not σ-angular�

The running time of Algorithm 1 is O(n4 log n). ut

We now show how to simplify the previous algorithm to test in only cubic
time whether a point set is in biangular configuration, presumed we know the
two corresponding angles:

Corollary 1. For two given angles α and β with 0◦ ≤ α, β ≤ 180◦, biangular

configurations can be detected in time O(n3).

Proof. First observe that the special case where either α or β is of 180◦ is easy
to solve: In this case, the other angle has to be 0◦, the point set P consists of
exactly 4 points, all points are on a line, and the center of biangularity is every
point between the two median points in P .

In the following, we assume that α, β < 180◦, and adapt Algorithm 1 from
above for this special case: First, we pick two neighbor points x and y on the
convex hull of P . If the points in P are in biangular configuration, then the
angle between x and y is γ = k · (α + β) + δ, for some value k ∈ {0, . . . , n

2
}

and some angle δ ∈ {0◦, α, β}. For each of these possibilities, we compute the
corresponding Thales circle Cxy of angle γ. Like in Algorithm 1, if for some k
and δ all other points are on Cxy, then these values cannot be the right choice.
Otherwise, we pick a point z that is not on Cxy. The angle between y and z is
γ′ = k′ · (α + β) + δ′, for appropriate values k′ ∈ {0, . . . , n

2
} and δ′ ∈ {0◦, α, β}.
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We then compute all corresponding Thales circles Cyz of angle γ′ and check for
each of the (at most) two points in the intersection between Cxy and Cyz whether
it is a center of biangularity. The correctness follows from Observation 1.

The running time of this algorithm is O(n3), instead of O(n4 log n) for Algo-
rithm 1. This improvement results from two facts: First, instead of considering
all combinations of two consecutive range sums of σ in Algorithm 1, we consider
only all combinations of k(α+β)+ δ and k′(α+β)+ δ′, where k, k′ ∈ {1, . . . , n

2
}

and δ, δ′ ∈ {0◦, α, β}. This reduces the number of executions of the inner loop
from O(n3) to O(n2).

Second, within the loop, we can test a candidate c in linear time (instead
of O(n log n)) as follows: we compute all angles between x and p w.r.t. c for
all points p ∈ P . If any of these angles is not of the form k(α + β) + δ with
k ∈ {0, . . . , n

2
} and δ ∈ {0◦, α, β}, then c cannot be a center of biangularity.

Otherwise, we use three arrays of length n
2

to store the points from p, each
corresponding to one possible value of δ. More precisely, if the angle between x
and p is k · (α + β) + δ, then we store point p in position k of the corresponding
array. This process resembles a kind of bucket counting sort (see e.g. [6]). The
points are in biangular configuration with center c if and only if the following
three conditions hold: 1. in the array corresponding to δ = 0◦ there is exactly
one entry in each position; 2. one of the other two arrays is empty; and 3. in the
remaining array there is exactly one entry in each position. ut

Observe that if the configuration is biangular, then we can immediately de-
termine the corresponding ordering of the points from the values in the three
arrays from the algorithm above. Furthermore, note that the previous corollary
yields immediately an algorithm for equiangularity with running time O(n3),
since in this case α = β = 360

◦

n
. In the next section we will give an algorithm

that identifies equiangular configurations even in linear time.

3 Equiangular Configurations

In this section, we first show that there is at most one center of equiangularity.
Then we give a linear time algorithm that detects equiangular configurations.

Lemma 2. Given a point set P of n ≥ 3 distinct points in the plane that are in

equiangular configuration with center c, the following holds:

1. Center c is invariant under straight movement of any of the points towards to

or away from c, i.e., the points remain in equiangular configuration with center

c.
2. Center c is the Weber point of P .

3. The center of equiangularity is unique.

Proof. The first claim is trivial. For the second claim, assume that we move
the points in P straight in the direction of c until they occupy the vertices of
regular n-gon centered in c (cf. Figure 3(a)). These “shifted” points are rotational
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Fig. 4: (a) Equiangular configuration and its “shifted” points. (b) Median line Mx. (c)
Median cone Conex.

symmetric, with symmetry center c. It is straightforward to see that the Weber
point for these shifted points is c, since it must be at the center of rotational
symmetry. Since the movements were in the direction of c, and the Weber point
is invariant under straight movement of any of the points in its direction [1], c
must be the Weber point of P . The third claim of the lemma follows immediately
from the previous one and from the fact that the Weber point is unique if the
points are not collinear [3] (observe that more than two points in equiangular
configuration cannot be collinear). ut

A similar argument can be used to show that the center of biangularity, if
it exists, is unique. We now present an algorithm that identifies equiangular
configurations in linear time.

Theorem 2. Given a point set P of n ≥ 3 distinct points in the plane, there

is an algorithm with running time O(n) that decides whether the points are in

equiangular configuration, and if so, the algorithm outputs the center of equian-

gularity.

Proof. We handle separately the cases of n even and n odd, where the first case
turns out to be much easier. Both algorithms can be divided into two steps: First,
they compute (at most) one candidate point for the center of equiangularity; then
they check whether this candidate is indeed the center of equiangularity.

1. Case: n is even. The main idea for n even is as follows: assume for a moment
that the points in P are in equiangular configuration with center c. Since n is
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even, for every point p ∈ P there is exactly one corresponding point p′ ∈ P on the
line from p through c (there cannot be more than one point on this line, since
this would imply an angle of 0◦ between these points and p w.r.t. c). Hence,
the line through p and p′ divides the set of points into two subsets of equal
cardinality n

2
− 1. We will refer to such a line as median line (cf. Figure 3(b)).

Obviously, center of equiangularity c must lie in the intersection of the median
lines of all points in P . We will use this observation in the following algorithm by
first computing two median lines and then checking whether their intersection
is the center of equiangularity.

Algorithm 2 Algorithm for n even.

1: x = arbitrary point on the convex hull of P

2: Mx = median line of x

3: If |Mx ∩ P | > 2 Then Return �not equiangular�
4: y = clockwise neighbor of x on the convex hull of P

5: My = median line of y

6: If |My ∩ P | > 2 Then Return �not equiangular�
7: If Mx ∩ My = ∅ Then Return �not equiangular�
8: c = unique point in Mx ∩ My

9: If c is the center of equiangularity Then Return �σ-angular with center c�
10: Else Return �not equiangular�

Correctness. To see the correctness of Algorithm 2, observe the following:

For a point on the convex hull of P , the median line is unique. (This does not
necessarily hold for inner points.) If there are more than two points from P on
Mx, then the configuration cannot be equiangular. To see this, recall that the
center of equiangularity, if it exists, will lie on Mx. If there are at least three
points from P on Mx, then two of them will have angle 0◦ w.r.t. the center,
which is impossible for equiangular configurations.

If the two median lines Mx and My are equal, then the configuration cannot
be equiangular. To see this, first observe that in this case x and y are the only
points from P on Mx. Since x and y are adjacent points on the convex hull of
P , all points from P are on one side of Mx. On the other hand, since Mx is a
median line, by definition the number of points from P on both sides of Mx is
equal. Hence, n = 2, in contradiction to the assumption of the theorem.

On the other hand, if the two median lines Mx and My do not intersect, then
the points are not in equiangular configuration. This is obvious, since the center
of equiangularity will lie in the intersection of the median lines of all points from
P .

Finally, if the points are in equiangular configuration with center c, then c must
lie in the intersection of Mx and My.
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Time Complexity. We now show how to implement each step of Algorithm 2 in
linear time.

In order to find point x on the convex hull of P , we could just compute the
entire convex hull, but this would take time Θ(n log n). Instead, we take as x an
arbitrary point from P with a minimal x-coordinate. This is always a point on
the convex hull of P and can be found in linear time.

We can find Mx in linear time as follows. First, we compute the slopes of all lines
from x to any other point p ∈ P − {x} and store these slopes in an (unsorted)
array. Then we pick the line with the median slope. This requires only linear
time, since selecting the k-th element of an unsorted array - and consequently
the median as well - can be done in linear time [6].

Using the unsorted array from the previous paragraph, we can choose y ∈ P
such that the line through x and y has maximal slope amongst all lines through
x and a point in P , using the unsorted array from the previous step. If there is
more than one candidate for y, then we take the one closest to x. Then y is a
point on the convex hull of P .

Finally, the test whether c is the center of equiangularity can be done in linear
time as follows, analogous to the test in the proof of Corollary 1: Let α = 360

◦

n
.

We compute all angles between x and p w.r.t. c for all points p ∈ P, p 6= x. If
any of these angles is not a multiple of α, then the points are not in equiangular
configuration. Otherwise, we store the points from P in an array of length n−1,
where we store point p in the array at position k if the angle between x and p is
k · α. This process resembles again a kind of bucket counting sort (see e.g. [6]).
If there is exactly one point in each position of the array, then c is the center of
equiangularity; otherwise, the points in P are not in equiangular configuration.

2. Case: n is odd. For the odd case, we need to relax the concept of median line,
and introduce that of cone.

The basic idea of the algorithm for this case is similar to the case “n is even”,
but slightly more sophisticated, since we have to relax the concept of median
lines: assume for a moment that the points are in equiangular configuration with
center c. For every point p ∈ P , there is no other point on the line from c to p,
since n is odd and no angle of 0◦ can occur. Hence, such a line divides the set of
points into two subsets of equal cardinality n−1

2
. If we pick two points pl, pu ∈ P

that are ”closest” to this line, in the sense that the slope of the line from p to
c is between the slopes of lines Lp and Up from p to pl and pu, respectively,
then these two points define a cone with tip p (cf. Figure 3(c)). We will refer
to this cone as median cone, since the number of points from P on each side of
the cone (including lines Lp and Up, respectively) equals n−1

2
. Observe that the

median cone is unique for points on the convex hull of P , and that the center of
equiangularity, if it exists, lies in the intersection of all median cones of points
on the convex hull of P . Moreover, for two points x and y on the convex hull of
P , every point that is between x and y in the ordering of the points that yields
equiangularity is a point in the area “between” Conex and Coney (bold points
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Algorithm 3 Algorithm for n odd.

1: x = arbitrary point on the convex hull of P

2: Conex = median cone with tip x

3: y = clockwise neighbor of x on the convex hull of P

4: Coney = median cone of y

5: kxy = number of points from P − {x, y} that lie between the cones Conex and
Coney, including the boundaries

6: α = 360
◦

n

7: βxy = (kxy + 1) · α
8: Cxy = Thales circle for x and y of angle βxy

9: Arc = circle arc Cxy ∩ Conex ∩ Coney

10: g = line through the starting and ending point of Arc
11: H = halfplane defined by g that does not contain x and y

12: S = H ∩ P

13: If S = ∅ Then Return �not equiangular�
14: z = point from S with maximal perpendicular distance from g over all points in P

15: If z ∈ Cxy Then Return �not equiangular�
16: kyz = number of points from P − {x, y, z} that lie between the cones Coney and

Conez, including the boundaries
17: βyz = (kyz + 1) · α
18: Cyz = Thales circle for y and z of angle βyz

19: If |Cxy ∩ Cyz| = 1 Then Return �not equiangular�
20: c = unique point in Cxy ∩ Cyz − {y}
21: If c is the center of equiangularity Then Return �σ-angular with center c�
22: Else Return �not equiangular�

in the upper left area in Figure 3(c)). We denote this number by kxy. Notice
that the angle between x and y w.r.t. c would be (kxy + 1) · α.

The complete algorithm is shown in Algorithm 3, and illustrated in Figure 5.
Its main idea is to elect three points x, y, z on the convex hull of P ; to use the
median cones of these points to determine the angels between the points w.r.t.
the center of equiangularity (if it exists); to find one candidate center in the
intersection of Thales circles for these points of appropriate angles; and, finally,
to check whether this candidate is indeed the center of equiangularity.

Correctness. To see the correctness of Algorithm 3, observe the following:

By definition, no point from P can be strictly inside cones Conex or Coney.
The center of equiangularity, if it exists, is inside the convex hull of the points.

Thus, it is straightforward which of the two Thales circles for x and y is ap-
propriate, since x and y are points on the convex hull. The same holds for the
Thales circle for y and z.
After picking x and y, we need to find another point z on the convex hull such

that the intersection of the two corresponding Thales circles yields a candidate
for the center of equiangularity. For the choice of z we have to be careful: if we
simply took z as the next point on the convex hull (after x and y), it might
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happen that the corresponding Thales circle Cyz coincides with Cxy, and, conse-
quently, we do not obtain a single candidate for the center of equiangularity in
their intersection. Therefore, we have to chose z such that it is on the convex hull
and such that it does not lie on Cxy. This is done in Lines 9–15, and discussed
in the following (see Figure 5(b)).
If S is empty, then the points are not in equiangular configuration. To see this,

observe that the center of equiangularity, if it exists, must be on Arc, with Arc as
computed in Line 9. On the other hand, if S = ∅, then Arc is completely outside
the convex hull of P , in contradiction to the fact that the center of equiangularity
must be inside the convex hull.
Point z computed in Line 15 is on the convex hull of P : since, by construction,

all points from P are on one side of the line through z that is parallel to g (line
g′ in Figure 5(b)).
If point z is on Cxy, then the points in P are not in equiangular configuration.

To see this, assume that z ∈ Cxy. Then z ∈ Arc by construction, hence, z ∈
Conex∩Coney. By definition, no point from P can be strictly inside any median
cone; thus, z has to be at one of the two endpoints of Arc. Moreover, no point
from P can be strictly inside H , since H is delimited by g, and z is the point
from P furthest away from g. This implies that points on Arc are on or outside
the convex hull of P . On the other hand, only points on Arc might be a center of
equiangularity, since such a center must lie in the intersection of Conex, Coney

and Cxy. Since the center of equiangularity, if it exists, must be strictly inside
the convex hull of P (otherwise there would be an angle of 180◦), the points
cannot be in equiangular configuration.
The two circles Cxy and Cyz are different, since z 6∈ Cxy. Thus, they either

intersect in one or two points. If |Cxy ∩ Cyz| = 1, then y is the unique point in
the intersection, and the points in P cannot be in equiangular configuration. On
the other hand, if the center of equiangularity exists, then it is in Cxy ∩Cyz, and
thus found in Line 20.

Time Complexity. We now show how to implement each step of Algorithm 2 in
linear time.

Points x and y can be found in linear time like in the algorithm for the case “n
is even”.
To find the median cone Conex, we proceed analogous to the search for the

median line in algorithm for the case “n is even”: First we compute the slopes
of all lines from x to every other point p ∈ P , and store them in an (unsorted)
array. Let Lx and Ux be the two lines such that their slope is the bn/2c-th and
the dn/2e-th largest, respectively, among all stored slopes. These two lines define
Conex, and can be found in linear time using like before an algorithm to select
the k-th element of an unsorted list [6]. Analogous, we can find Coney.
To determine value kxy, let p be the point in the intersection of Ly and Ux, the

two lines that delimit cones Conex and Coney (cf. Figure 5(a)). Then kxy is the
number of points from P −{x, y} that lie inside or on the convex angle in p with
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Fig. 5: (a) Determination of kxy = 5 between Ux and Ly . (b) Determination of g′.

edges Ly and Ux. This number can be obtained in linear time by comparing
the position of every point in P against Ly and Ux. Value kyz can be found
analogous.
Finally, the test whether c is the center of equiangularity can be done in linear

time like in the algorithm for the case “n is even”.
ut

4 Conclusions

We have given an algorithm that decides in time O(n4 log n) whether n points
are in σ-angular configuration, and if so, the algorithm outputs a center of σ-
angularity. The adaption of this algorithm for biangular configurations runs in
cubic time, if the corresponding two angles are given. Finally, for the case of
equiangularity, we have given an algorithm that runs even in time O(n).

While the algorithm for equiangularity is already asymptotically optimal,
we believe that the running time of the algorithm for σ-angularity allows to be
significantly improved.

As already stated, our algorithm for equiangularity allows to find the Weber
point for such configurations, and this is a rather surprising result, since algo-
rithms to compute the Weber point (in finite time) are known for only few other
patterns. We are not aware of any general characterization of patterns where the
Weber point is easy to find; this might be an interesting line of future research.
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