
Finding Submasses in Weighted Strings with

Fast Fourier Transform

Nikhil Bansal a, Mark Cieliebak b, Zsuzsanna Lipták c,∗
aIBM Research, T.J. Watson Research Center

bInstitute of Theoretical Computer Science, ETH Zurich, and Center for Web
Research, Department of Computer Science, University of Chile

cAG Genome Informatics, Technical Faculty, University of Bielefeld

Abstract

We study the Submass Finding Problem: Given a string s over a weighted alphabet,
i.e., an alphabet Σ with a weight function μ : Σ → N, we refer to a mass M ∈ N

as a submass of s if s has a substring whose weights sum up to M . Now, for a set
of input masses {M1, . . . ,Mk}, we want to find those Mi which are submasses of s,
and return one or all occurrences of substrings with mass Mi. We present efficient
algorithms for both the decision and the search problem. Furthermore, our approach
allows us to compute efficiently the number of different submasses of s.

The main idea of our algorithms is to define appropriate polynomials such that we
can determine the solution for the Submass Finding Problem from the coefficients
of the product of these polynomials. We obtain very efficient running times by
using Fast Fourier Transform to compute this product. Our main algorithm for
the decision problem runs in time O(μs log μs), where μs is the total mass of string
s. Employing methods for compressing sparse polynomials, this runtime can be
viewed as O(σ(s) log2 σ(s)), where σ(s) denotes the number of different submasses
of s. In this case, the runtime is independent of the size of the individual masses of
characters.

Key words: string algorithms, weighted strings, protein identification, Fast
Fourier Transform

∗ Corresponding author. Universität Bielefeld, AG Genominformatik, Technische
Fakultät. Postfach 10 01 31, D-33592 Bielefeld, Germany.

Email addresses: nikhil@us.ibm.com (Nikhil Bansal),
cieliebak@inf.ethz.ch (Mark Cieliebak), zsuzsa@cebitec.uni-bielefeld.de
(Zsuzsanna Lipták).

Preprint submitted to Elsevier Science 27 September 2005



1 Introduction

Over the past few years, interest in the area of weighted strings has re-
ceived increasing attention. A weighted string is defined over an alphabet
Σ = {a1, . . . , a|Σ|} with a weight function μ : Σ → N, which assigns a specific
weight (or mass) to each character of the alphabet. The weight of a string s
is just the sum of the weights of all characters in s.

Several applications from bioinformatics can be formalized as problems on
strings over a weighted alphabet; most notably, mass spectrometry experi-
ments, which constitute an experimentally very efficient method of protein
identification and de-novo peptide sequencing. Mass spectrometry is also in-
creasingly being used for DNA molecules. For our purposes, proteins are
strings over the 20-letter amino acid alphabet, and DNA molecules are strings
over the alphabet of the four bases. The molecular masses of the amino acids
and the DNA bases are known up to high precision. In order to enforce that
the masses be positive integers, we assume that non-integer masses have been
scaled.

One of the main applications of protein mass spectrometry is database lookup.
Here, a protein is broken up into substrings, the molecular masses of the
substrings are determined, and the list of masses is compared to a protein
database. The latter step gives rise to the mass finding problems that we
study in this paper.

Definitions and Problem Statements

We first fix some notation for weighted strings. Let Σ be a finite alphabet
with a mass function μ : Σ → N, where we denote by N the set of positive
integers excluding 0. We refer to such an alphabet as a weighted alphabet. 1 We
denote by μmax = maxμ(Σ), the largest mass of a single character. For a string
s = s1 . . . sn over Σ, define μs :=

∑n
i=1 μ(si). We denote the length n of s by

|s|, and the empty string by ε. We call M > 0 a submass of s if there exists a
substring t of s with mass M , or, equivalently, if there is a pair of indices (i, j)
such that μ(si . . . sj) = M . We call such a pair (i, j) a witness of M in s, and
we denote the number of witnesses of M in s by κ(M) = κ(M, s). Note that
κ(M) ≤ n. Finally, we denote by σ(s) the number of different submasses of

string s. Note that for any string s with length n, n ≤ σ(s) ≤ n(n+1)
2

, the latter
being the number of different witnesses in s. Furthermore, σ(s) ≤ μs ≤ μmax n,
since all submasses are positive integers.

1 Note that we use the expressions “weight” and “mass” synonymously, hence
“weighted alphabet” but “mass function.”

2



We want to solve the following problems:

Submass Query Problem Fix a string s over Σ. Let |s| = n.
Input: k masses M1, . . . , Mk ∈ N.
Output: A subset I ⊆ {1, . . . , k} such that i ∈ I if and only if Mi is a
submass of s.

Submass Witness Problem Fix a string s over Σ. Let |s| = n.
Input: k masses M1, . . . , Mk ∈ N.
Output: A subset I ⊆ {1, . . . , k} such that i ∈ I if and only if Mi is a
submass of s, and a set {(bi, ei) : i ∈ I, (bi, ei) is a witness of Mi in s}.

Submass All Witnesses Problem Fix a string s over Σ. Let |s| = n.
Input: k masses M1, . . . , Mk ∈ N.
Output: A subset I ⊆ {1, . . . , k} such that i ∈ I if and only if Mi is a
submass of s, and for each i ∈ I, the set of all witnesses Wi := {(b, e) :
(b, e) is witness of Mi in s}.

Simple Solutions

The three problems above can be solved by one of several simple algorithms
that we now describe. The first algorithm, which we refer to as Linsearch,
moves two pointers along the string, one pointing to the potential beginning
and the other to the potential end of a substring with mass M . The right
pointer is moved if the mass of the current substring is smaller than M , the
left pointer, if the current mass is larger than M . The algorithm solves each
problem in O(kn) time and uses O(1) space in addition to the storage space
required for the input string and the output.

Another simple algorithm, Binsearch, computes all submasses of s in a pre-
processing step and stores them in a sorted array, which can then be queried
in time O(k log n) for k input masses for the Submass Query Problem and
the Submass Witness Problem. The storage space required is proportional
to σ(s), the number of different submasses of string s, and is thus O(n2), while
the preprocessing time is Θ(n2 log σ(n)). For the Submass All Witnesses
Problem, we need to store in addition all witnesses, requiring space Θ(n2);
in this case, the query time becomes O(k log n+K), where K =

∑k
i=1 κ(Mi) is

the number of witnesses for the query masses. Note that any algorithm solving
the Submass All Witnesses Problem will have runtime Ω(K).

Alternatively, we can use a Boolean array of size μs for storing all submasses
of s, thus allowing constant time access for queries. Then the query running
time becomes Θ(k) and the storage space Θ(μs). For the Submass Query
Problem and the Submass Witness Problem, this yields time Θ(k) and
space Θ(μs), and for the Submass All Witnesses Problem, Θ(max(k, K))

3



time and Θ(max(μs, n
2)) space.

While the query time of the latter two solutions is very efficient, their prepro-
cessing time is Ω(n2), since we need to compute the masses of all substrings of
s. Our goal is to find algorithms that have both a low preprocessing time and
a low query time. In particular, we are looking for algorithms that outperform
the näıve algorithms above in the case when σ(s) is significantly smaller than
n2.

Results

In this paper, we present a novel approach to the problems above which often
outperforms the näıve algorithms. The main idea is similar to using gener-
ating functions for counting objects, which have been applied, for instance,
in attacking the Coin Change Problem [1]. Instead of infinite polynomials
though, we use finite ones as follows. We define appropriate polynomials such
that we can determine the solution for the three problems above from the
coefficients of the product of these polynomials. We will obtain very efficient
running times by using Fast Fourier Transform to compute this product. More
precisely, Algorithm 1 solves the Submass Query Problem with prepro-
cessing time O(μs log μs), query time O(k log n), and storage space Θ(σ(s)).
For the Submass Witness Problem, we present a Las Vegas algorithm,
Algorithm 2, with preprocessing time O(μs log3 μs), expected query time
O(k log n), and storage space Θ(σ(s)). Finally, we present Algorithm 3, a
deterministic algorithm for the Submass All Witnesses Problem with
total running time O((Knμs log μs)

1
2 ), where K is the output size, i.e., the

total number of witnesses.

Many algorithms for weighted strings, such as Binsearch or our Algorithm
1, have a space complexity which is proportional to σ(s), the number of sub-
masses of s. For this reason, we define the following problem:

Number of Submasses Problem Given string s of length n, find σ(s).

This problem is of interest because we can use σ(s) to choose between al-
gorithms whose complexity depends on this number. It is easy to see that
n ≤ σ(s) ≤

(
n+1

2

)
. In [2], example strings are given with Θ(n) and Θ(n2)

many different submasses, respectively, for any constant size alphabet Σ with
|Σ| ≥ 2 and suitable weight functions. It is open, however, how the number
of submasses of a given string can be computed efficiently. It can, of course,
be done in Θ(n2 log σ(s)) time by computing the masses of all substrings s
and counting the number of different masses. We show that our Algorithm
1 can solve the Number of Submasses Problem in time O(μs log μs),
outperforming the näıve algorithm for small values of μs.

4



Our results above are stated in terms of μs, the total mass of the string s.
However, we can use the sparse polynomial multiplication technique of Cole
and Hariharan [3] in a straightforward way to give Las Vegas variants of
our algorithms, where each term μs in the expected running time can be
replaced by σ(s) polylog(σ(s)). We give a brief summary of the result: Given
two vectors v1 and v2 of length n, comprising only of non-negative entries. Let
w denote their convolution, and ||w|| the number of non-zero entries in w. In
[3] it is shown how to obtain the non-zero entries of w in time O(||w|| log2 n),
using a Las Vegas randomized algorithm whose failure probability is inverse
polynomial in n. This algorithm uses the idea of hashing the original entries
in the range α||w|| for a suitable constant α, so as not to have too many
collisions, and then performing O(log n) independent runs of the algorithms.
The proper value of ||w|| is determined by the standard guessing and doubling
trick. Thus, throughout this paper we present our runtimes as a function of
μs with the understanding that μs is identical to σ(s) up to polylogarithmic
factors.

To compare our results to previous results, note that if μmax is constant,
then the running times of our algorithms are significantly better than the
previously known algorithms. In fact, most results are better even if μmax is
allowed to be a function of the string length n. For example, for the Submass
Query Problem, the query time of our Algorithm 1 and Binsearch are
identical—namely, O(k log n)—but the preprocessing time of Algorithm 1 is
O(μs log μs) while that of Binsearch is O(n2). Thus, our algorithm performs
better as long as μmax = o(n/polylog n).

It should be pointed out that for real-life mass spectrometry applications with
today’s technology, our algorithms are unlikely to outperform the näıve al-
gorithms, in particular Binsearch. Our experiments show that the number
of submasses σ(s) is quadratic in the string length for real protein strings.
We tested approximately 5000 protein strings and domains from the protein
data base SCOP [4,5], with lengths between 50 and 1500 amino acids, and
precisions of 0.1 Da and 0.01 Da (thus, the scaling factors to obtain integers
were 10 and 100, respectively). The total mass of the strings was, as can be
expected, approximately 100 · (1/precision) · n, where n is the length of the
string; the average mass of one amino acid is around 100 Da. We found that
σ(s) was always above 1

2
n(n+1)

2
, i.e., more than half the maximum possible

number of witnesses. Obviously, in this case, the computational overhead of
our algorithms yields running times that are much larger than that of the
simple Binsearch.

For DNA strings with lengths of several hundreds of thousands of bases, on
the other hand, this will no longer be the case, since then the number of
submasses can be significantly smaller than n2. Although current mass spec-
trometry technology for DNA only allows accurate measurements of up to

5



a few thousand Da (this means that large submasses, corresponding to long
substrings, cannot be measured with high accuracy at present), the technol-
ogy is developing at a rapid pace, and we trust that the ideas and algorithms
presented in this paper will be applicable in the not-so-far future. In addi-
tion to untranscribed DNA, which can be of interest in its own right, very
large transcribed strings frequently occur in prokaryotes, where simultaneous
expression of several genes is common (polycistronic mRNA).

Related Work

Several simple algorithms for the Submass Query Problem were presented
in [2], including Linsearch and Binsearch (which we adapted here straight-
forwardly to solve the other two problems as well). Furthermore, an algorithm
was presented which solves the Submass Witness Problem for one query
with O(n) storage space and query time O( n

log n
), using O(n) time and space

for preprocessing. This algorithms can, of course, be used for k queries, yield-
ing an overall runtime of O(n + kn

log n
). However, this is an asymptotic result

only, since the constants in this running time are so large that for a 20-letter
alphabet and realistic string sizes, the algorithm is not applicable. For bi-
nary alphabets, another algorithm was presented which solves the Submass
Query Problem for one query with O(n) space and query time O(log n)
but does not produce witnesses.

Another algorithm for the Submass All Witnesses Problem preprocesses
the database by compressing witnesses using suffix trees [6]. This algorithm
works only under the assumption that the queries are limited in range.

In the context of database lookup for proteins, the fragmentation of a protein
is usually done using a site-specific cleavage enzyme, most commonly trypsin,
which cuts after each amino acid arginine (one-letter-code R) and lysine (K),
unless followed by a proline (P). In this case, only those submasses need to
be considered that have witnesses where either the first and last characters
or flanking substrings are known. From a theoretical point of view, this is an
easy problem, since all such submasses along with their witnesses can be com-
puted in a straightforward preprocessing step. This technique is implemented
in software tools such as Sequest [7]. On the other hand, a random digestion
model is increasingly used, where breaking points are not known in advance.
This model has been studied recently in [6,8,2], and is appropriate for instance
for collision induced dissociation (e.g. using argon or helium), or where several
enzymes are applied at the same time.

The study of weighted strings and their submasses has further applications
in those problems on strings over an un-weighted alphabet where the focus of
interest are not substrings, but rather equivalence classes of substrings defined
by multiplicities of characters. One examines objects of the form (n1, . . . , n|Σ|)

6



which represent all strings s1 . . . sn such that the cardinality of character ai in
each string is exactly ni, for all 1 ≤ i ≤ |Σ|. These objects have been referred to
in recent publications variously as compositions [9], compomers [10,11], Parikh-
vectors [12], multiplicity vectors [2], and π-patterns [13]. A similar approach
has been referred to as Parikh-fingerprints [14,15]. Here, Boolean vectors are
considered of the form (b1, . . . , b|Σ|), where bi = 1 if and only if ai occurs in
the string. Applications range from identifying gene clusters [15] to pattern
recognition [14], alignment [9] or SNP discovery [11].

2 Searching for Submasses Using Polynomials

In this section, we introduce the main idea of our algorithms, the encoding of
submasses via polynomials. We first prove some crucial properties, and then
discuss algorithmic questions.

Let s = s1 . . . sn. Define, for 0 ≤ i ≤ n,

pi :=
i∑

j=1

μ(sj) = μ(s1 . . . si),

the i’th prefix mass of s. In particular, p0 = μ(ε) = 0. We define two polyno-
mials

Ps(x) :=
n∑

i=1

xpi = xμ(s1) + xμ(s1s2) + . . . + xμs , (1)

Qs(x) :=
n−1∑
i=0

xμs−pi = xμs + xμs−μ(s1) + . . . + xμs−μ(s1...sn−1) (2)

Now consider the product of Ps(x) and Qs(x),

Cs(x) := Ps(x) · Qs(x) =
2μs∑
m=0

cmxm. (3)

Since any submass of s with witness (i, j) can be written as a difference of two
prefix masses, namely as pj − pi−1, we obtain the following

Lemma 2.1 Let Ps(x), Qs(x) and Cs(x) from Equations (1) through (3).
Then for any m ≤ μs, κ(m) = cm+μs, i.e., the coefficient cm+μs of Cs(x)
equals the number of witnesses of m in s.

7



Proof: By definition, we have

Cs(x) = Ps(x) · Qs(x) =
n∑

j=1

xpj

n−1∑
i=0

xμs−pi = xμs · ∑
1≤i,j≤n

xpj−pi−1

= xμs · ∑
1≤i≤j≤n

xμ(si...sj) + xμs · ∑
1≤j<i≤n

x−μ(sj+1...si−1).

Let [xi]A(x) denote the coefficient ai of xi of the polynomial A(x) =
∑

j ajx
j .

Then, for any m ≤ μs,

κ(m) = |{(i, j) : μ(si . . . sj) = m}| = [xm](
1

xμs
Cs(x))

= [xm+μs ]Cs(x) = cm+μs .

�

For a proposition Π, we denote by [Π] the Boolean function which equals 1
if Π is true, and 0 otherwise. 2 Lemma 2.1 immediately implies the following
facts.

Corollary 2.2 For Cs(x) from (3),
∑2μs

m=μs+1[cm �= 0] = σ(s), the number of

submasses of s. Furthermore,
∑2μs

m=μs+1 cm = n(n+1)
2

.

Thus, polynomial Cs also allows us to compute the number of submasses of s.

Example 1 Let s = baac, μ(a) = 2, μ(b) = 3, μ(c) = 5. Then Ps(x) =
x3 + x5 + x7 + x12, Qs(x) = x12 + x9 + x7 + x5, Cs(x) = x8 + 2x10 + 3x12 +
2x14 +x15 +x16 +2x17 +2x19 +x21 +x24. Dividing the terms cix

i with i > 12 by
x12 = xμs yields 2x2 +x3 +x4 +2x5 +2x7 +x9 +x12. This yields the submasses
2, 3, 4, 5, 7, 9, 12 with two witnesses for 2, 5, and 7, and one witness for each
of the other submasses.

2.1 Algorithm and Analysis

We now present an algorithm to solve the Submass Query Problem and
the Number of Submasses Problem. The algorithm primarily consists of
computing polynomial Cs(x).

2 Incidentally, our two different uses of ”[ ]” are both standard, for generating func-
tions and logical expressions, respectively. Since there is no danger of confusion, we
have chosen to use both rather than introducing new ones.

8



Algorithm 1

(1) Preprocessing step:
Compute μs, compute Cs(x), and store in a sorted array all numbers
m − μs for exponents m > μs where cm �= 0.

(2) Query step:
(a) For the Submass Query Problem: Search for each query mass Mi

for 1 ≤ i ≤ k, and return yes if found, no otherwise.
(b) For the Number of Submasses Problem: Return size of array.

Correctness of Algorithm 1 follows immediately from the previous lemmas.

Theorem 2.3 Algorithm 1 solves the Submass Query Problem in time
O(μs log μs + k log n) and the Number of Submasses Problem in time
O(μs log μs).

Proof: The polynomial Cs(x) can be computed efficiently using Fast Fourier
Transform (FFT)[16], which runs in time O(μs log μs), since Cs(x) has degree
2μs. Hence, the preprocessing step takes time O(μs log μs). The query time for
the Submass Query Problem is O(k log σ(s)) = O(k log n). �

Instead of using a sorted array, we can store the submasses in an array of
size μs (which can be hashed to O(σ(s)) size) and allow for direct access in
constant time, thus reducing the query time to O(k).

As mentioned in the Introduction, we can employ methods from [3] for sparse
polynomials and reduce deg Cs to O(σ(s)), the number of non-zero coeffi-
cients. However, for the rest of this paper, we will refer to the running time
as proportional to μs log μs.

As an aside, note that μs ≤ μmax n, where recall that μmax = maxμ(Σ). If the
maximal mass can be viewed as a constant, this yields runtime O(n log n) for
the preprocessing step. It may not always be realistic to assume that μmax is
constant, because in order to enforce that all masses be positive integers, a
scaling of the masses may be necessary, which can blow them up significantly. 3

However, even in this case, the algorithm outperforms Binsearch for the
Submass Query Problem as long as μmax = o( n

log n
).

Along the same lines, for the Number of Submasses Problem, our al-
gorithm allows computation of σ(s) in O(μs log μs) = O(n μmax log(n μmax))
time. The näıve solution of generating all submasses requires Θ(n2 log n) time
and Θ(σ(s)) space (with sorting), or Θ(n2) time and Θ(μs) space (with an

3 This can be the case, e.g., for protein strings, where the amino acid masses are
known up to a precision of more than 10−5.

9



array of size μs). Our algorithm thus outperforms this näıve approach as long
as μmax = o( n

log n
).

3 A Las Vegas Algorithm for Finding Witnesses

We now describe how to efficiently find a witness for each submass of the
string s. Our high level idea is the following: We first note that given a mass
M , if we know the ending position j of a witness of M , then, using the prefix
masses p1, . . . , pn, we can easily find the beginning position of this witness. To
do so, we simply do a binary search amongst the prefix masses p1, . . . , pj−1

for mass pj − M . Below, we will define two suitable polynomials of degree at
most μs such that the coefficient of xM+μs in their product equals the sum of
the ending positions of substrings that have mass M .

Now, if we knew that there was a unique witness of mass M , then the coeffi-
cient would equal the ending position of this witness. However, this need not
always be the case. In particular, if there are many witnesses with mass M ,
then we would need to check all partitions of the coefficient of xM+μs , which
is computationally far too costly. To get around this problem, we look for the
witnesses of M in the string s, where we do not consider all pairs of positions
but instead random subsets of these.

By using the definition of Q(x) from (2), set

Rs(x) :=
n∑

i=1

i · xpi and (4)

Fs(x) := Rs(x) · Qs(x) =
2μs∑
m=0

fmxm. (5)

In the following lemma, we use the definition of cm from (3).

Lemma 3.1 Let m > μs. If cm = 1, then fm equals the ending position of the
(sole) witness of m − μs.

Proof: By definition,
fm =

∑
(i,j) witness of m

j

for any m > μs. If cm = 1, then, by Lemma 2.1, m−μs has exactly one witness
(i0, j0). Thus, fm = j0. �

Example 2 We continue with Example 1 on string s = baac and masses
2, 3, 5 for characters a, b, c. We get Rs(x) = x3 +2x5 +3x7 +4x12 and Fs(x) =

10



x8 + 3x10 + 6x12 + 5x14 + x15 + 3x16 + 6x17 + 7x19 + 4x21 + 4x24. By checking
the coefficients of Cs(x), we see that among the exponents m > μs, c15, c16, c21,
and c24 equal 1. Thus, with Fs(x), we now know that the only witnesses of the
submasses 3, 4, 9, and 12 end at positions 1, 3, 4, and 4, respectively.

3.1 The Algorithm

We now present a Las Vegas algorithm for the Submass Witness Problem.
In the algorithm, we first use polynomial Cs(x) to generate a data structure
containing all submasses of s. We then run a procedure which uses random
subsets to try and find witnesses for each of these submasses. It outputs a set
of pairs (m, jm), where m is a submass of s, and jm is the ending position of
one witness of m. Then, for each query mass which is in this set, we find the
beginning position of the witness in time O(log n) with binary search within
the prefix masses, as described above. For any remaining query masses which
are submasses of s, we simply run Linsearch to find a witness.

Algorithm 2

(1) Compute Cs(x) from Equation (3), and store all submasses of s.
(2) Procedure try-for-witness

(i) For a from 1 to 2 log2 n, do:
(ii) Let b = 2−a/2. Repeat 24 lnn times:

(iii) • Generate a random subset I1 of {1, 2, . . . , n}, and a
random subset I2 of {0, 1, 2, . . . , n − 1}, where each
element is chosen independently with probability b.

• Compute PI1(x) =
∑

i∈I1 xpi, QI2(x) =
∑

i∈I2 xμs−pi

and RI1(x) =
∑

i∈I1 i · xpi.
• Compute CI1,I2(x) = PI1(x) · QI2(x) and FI1,I2(x) =

RI1(x) · QI2(x).
• Let cm = [xm]CI1,I2(x) and fm = [xm]FI1,I2(x).
• For m > μs, if cm = 1 and if m has not yet been

successful, then store the pair (m − μs, fm). Mark m
as successful.

(3) Check which of the query masses is a submass of s by looking them up in
the data structure generated in Step 1. Exclude all queries that are not
submasses of s.

(4) For all submasses amongst the queries M�, 1 ≤ � ≤ k, which are marked
as successful (i.e., an ending position was found by procedure try-for-
witness), find the beginning position with binary search amongst the
prefix masses.

(5) If there is a submass M� for which no witness was found, find one using
Linsearch.

11



3.2 Analysis

We first give an upper bound on the failure probability of procedure try-
for-witness for a particular query mass M .

Lemma 3.2 For a query mass M with κ(M) = κ, and a = 	log2 κ
, consider
the Step 2.iii of Algorithm 2. The probability that the coefficient cM+μs of
CI1,I2(x) for value a (as defined above) is not 1 is at most 7

8
.

Proof: Let the witnesses of M be {(b1, e1), . . . , (bκ, eκ)}. Clearly 0 ≤ κ ≤ n.
We first analyze the probability of the event that for this particular choice of
a, the coefficient of xμs+M in C(x) is exactly 1. This is the case if and only
if |{i : bi ∈ I1 and ei ∈ I2, 1 ≤ i ≤ κ}| = 1. Now, for 1 ≤ i ≤ κ, let Ei

denote the event Ei = {bi ∈ I1} ∩ {ei ∈ I2}. Since for any i �= j, we have
bi �= bj and ei �= ej , it follows that Ei and Ej are independent events. Thus,
the probability that exactly one of the Ei’s holds is

κ2−a · (1 − 2−a)κ−1 > κ2−a · (1 − 2−a)2a ≥ 1

2
· 1

4
=

1

8
.

The last inequality follows because (1 − ε)1/ε ≥ 1
4

for any ε ≤ 1
2
. �

Lemma 3.3 Procedure try-for-witness does not find a witness for a given
submass M with probability at most 1/n3. Moreover, the probability that the
procedure fails for some submass is at most 1/n.

Proof: By Lemma 3.2 we know that for any fixed submass M , and for the
particular choice of a, the probability that the random choice of I1 and I2

produces a unique witness for M is at least 1/8. Since Step 2.iii is repeated
24 lnn times, and all trials are independent of each other, the probability that
there is no unique witness for any run is at most (7/8)24 ln n ≤ e−3 ln n = 1

n3 .
This follows since (1 − ε)1/ε ≤ e−1 for any 0 < ε < 1. Since there are at most
O(n2) different submasses in a string of length n, using the union bound, the
algorithm generates a witness for each distinct submass with probability at
least 1 − n2 · 1

n3 = 1 − 1/n. �

Theorem 3.4 Algorithm 2 solves the Submass Witness Problem in
expected time O(μs log3 μs + k log n).

Proof: Denote the number of distinct submasses amongst the query masses
by k′, thus, k′ ≤ k. By Lemma 3.3, the probability that procedure try-for-
witness finds a witness for each of the k′ = O(n2) submasses is at least
1− 1/n. In this case, the running time is the time for running the procedure,
plus the time for finding witness beginning positions. On the other hand, the

12



probability that the procedure fails to find a witness is at most 1/n. In this
case, we run Linsearch for the missing query masses, each in time O(n),
thus at most in overall time O(k′n). Plugging it all together we get:

O(μs log μs︸ ︷︷ ︸
Step 1.

+ 2 logn︸ ︷︷ ︸
Step 2.i

· 24 lnn︸ ︷︷ ︸
Step 2.ii

·μs log μs︸ ︷︷ ︸
Steps 2.iii

)

+ O(k log n)︸ ︷︷ ︸
Step 3.

+(1 − 1

n
)O(k′ log n) +

1

n
O(k′n)

= O(μs log3 μs + k · log n).

�

4 A Deterministic Algorithm for Finding All Witnesses

Recall that, given the string s of length n and k query masses M1, . . . , Mk, we
are able to solve the Submass All Witnesses Problem in Θ(k · n) time
and O(1) space with Linsearch, or in Θ(n2 log n + k log n) time and Θ(n2)
space with Binsearch. Thus, the two näıve algorithms yield a runtime of
Θ(min(kn, (n2 + k) log n)).

Our goal here is to give an algorithm which outperforms the bound above,
provided certain conditions hold. Clearly, in general it is impossible to beat the
bound min(kn, n2) because that might be the size of the output, K, the total
number of witnesses to be returned. Our goal will be to produce something
good if K << kn.

First, consider two strings s and t and their concatenation s · t. We are inter-
ested in submasses of s · t with a witness which spans or touches the border
between s and t. More precisely, we refer to a witness (i, j) as a border-spanning
witness if and only if i ≤ |s| ≤ j. We can encode such witnesses again in a
polynomial, using the definition of P (x) from (1). The idea is that the mass
of a border-spanning witness can be written as the sum of a prefix mass of sr,
the reverse string of s, and a prefix mass of t. Note that here, we also allow 0
as a submass.

Lemma 4.1 For two strings s, t, and the polynomial

Ds,t(x) := (x0 + Psr(x)) · (x0 + Pt(x)) =
μ(s)+μ(t)∑

m=0

dmxm, (6)

the coefficient dm equals the number of border-spanning witnesses of m in s · t.

13



Proof: Straightforward. �

Example 3 Let s = ba, t = ac, and the masses as before. We get Ds,t(x) =
x0+2x2+x4+x5+2x7+x9+x12. We compare these to the terms of 1

x12 Cbaac(x)
with positive exponent in Example 1, since these yield all non-zero submasses
of baac: 2x2 + x3 + x4 + 2x5 + 2x7 + x9 + x12. We see that the (sole) witness
of 3 and one of the witnesses of 5 are not border-spanning witnesses.

4.1 The Algorithm

The algorithm combines the polynomial method with Linsearch in the fol-
lowing way: We divide the string s into g substrings of approximately equal
length. We then use polynomials to identify, for each query mass M and each
witness (b, e) of M , which substrings the beginning and end index lie in. Then
we use Linsearch on these substrings to actually find the witnesses. The
crucial observation is given in Lemma 4.2. We now describe the details.

We divide the string s into g substrings of approximately equal length: s =
t1 ·t2 · · · tg (where we will choose g below), and denote by Mi,j =

∑j−1
m=i+1 μ(tm).

In particular, if j ≤ i + 1, then Mi,j = 0.

In order to have a good choice for g, we need to know the total size of the
output, K =

∑k
�=1 κ(M�). This we can obtain by computing Cs(x) and then

adding up the coefficients cM�+μs for 1 ≤ � ≤ k. We now set g = 	( Kn
μs log μs

)
1
2 
.

Observe that if Kn ≤ μs log μs, then g = 1, in which case we are better off
running Linsearch. So let Kn > μs log μs.

In Step 2.(b) of the following algorithm, we modify Linsearch to only return
border-spanning submasses. This can be easily done by setting the second
pointer at the start of the algorithm to the last position of the first string, and
by breaking when the first pointer moves past the first position of the second
string.

14



Algorithm 3

(1) Preprocesssing step:
(a) Compute μs and Cs(x) as defined in (3), and compute

K =
∑k

�=1 cM�+μs . Set g = 	( Kn
μs log μs

)
1
2 
.

(b) For each 1 ≤ i ≤ g, compute Cti(x).
(c) For each 1 ≤ i < j ≤ g, compute Dti,tj (x) as defined in (6).

(2) Query step:
(a) Compute a witness-position-list for each query M� by iterating through

all terms of the Cti ’s and all terms of the Dti,tj ’s. The witness-
position-list of M� contains exactly those i such that M� is a submass
of ti, and those pairs (i, j), such that M� −Mi,j is a border-spanning
submass of ti · tj.

(b) For each 1 ≤ � ≤ k,
(i) If M�’s witness-position-list is empty, then return no.
(ii) For each i in M�’s witness-position-list, run Linsearch on ti

for M� and return all witnesses.
(iii) For each pair (i, j) in M�’s witness-position-list, run Linsearch

on ti · tj for submass M� − Mi,j and return all border-spanning
witnesses.

4.2 Analysis

The following lemma shows the correctness of Algorithm 3.

Lemma 4.2 For 1 ≤ M ≤ μs,

κ(M) =
g∑

i=1

[xM+μ(ti)]Cti +
∑

1≤i<j≤g

[xM−Mi,j ]Dti,tj (x).

Proof: First, observe that for any witness (b, e) of M , there is exactly
one pair (i, j) such that b lies in string ti and e in tj . If i = j, then M is
a submass of ti and by Lemma 2.1 contributes exactly 1 to the coefficient
[xM+μ(ti)]Cti(x). Otherwise, i < j, and M − Mi,j is a submass of the concate-
nated string ti ·tj with the witness (b′, e′), where (b′, e′) is shifted appropriately
(i.e., b′ = b −∑

i′<i |ti′ | and e′ = e −∑
i′<j |ti′|). Moreover, (b′, e′) is a border-

spanning submass of ti · tj . Thus, by Lemma 4.1, (b′, e′) contributes exactly 1
to [xM−Mi,j ]Dti,tj (x). �

For the runtime analysis of Algorithm 3, we first show that the preprocess-
ing step of Algorithm 3 has runtime O(gμs log μs). To see this, observe that
the time for computing the polynomials with FFT is

15



for Cs(x): O (μs log μs) ,

for the Cti(x)’s: O
( g∑

i=1

μ(ti) log(μ(ti))

)
,

for the Di,j(x)’s: O
⎛
⎝ ∑

1≤i<j≤g

(μ(ti) + μ(tj)) log(μ(ti) + μ(tj))

⎞
⎠ .

Together, the terms above yield

O( μs log μs +
g∑

i=1

μ(ti) log(μ(ti))︸ ︷︷ ︸
≤ μs log μs

+
∑

1≤i<j≤g

(μ(ti) + μ(tj)) log(μ(ti) + μ(tj))

︸ ︷︷ ︸
≤ gμs log μs

)

= O (gμs log μs) .

For the upper bound on the third term, note that
∑

1≤i<j≤g(μ(ti) + μ(tj)) =∑g
i=1(g − 1) · μ(ti) = (g − 1)μs.

Now for the query time of Algorithm 3: First, in Step 2a, we compute for
each query M� the witness-position-list that contains all i s.t. [xM�+μ(ti)]Cti(x) �=
0, and all (i, j) s.t. [xM�−Mi,j ]Dti,tj(x) �= 0. These lists can be computed by it-
erating first through all non-zero coefficients cm of each Cti, 1 ≤ i ≤ g, and
checking whether m + μ(ti) is among the query masses. Recall that there are
O(μs log μs) many of these coefficients. Next, we iterate through all non-zero
coefficients dm of each Dti,tj , 1 ≤ i < j ≤ g, and check whether m + Mi,j is
among the query masses. Again, there are O(gμs log μs) many coefficients to
check. Together, we get a runtime of O(gμs log μs) if we have constant access
to the query masses, or O(gμs log μs · log k) if they are stored in a binary array.

Now, in step 2b, for each query mass M�, we run Linsearch for each en-
try in the witness-position-list, thus at most κ(M�) many times. The Lin-
search step for one entry takes at most 2n/g time. Thus, we get query

time O(gμs log μs + K n
g
). With g = 	( Kn

μs log μs
)

1
2 
, the total runtime becomes

O((Knμs log μs)
1
2 ), and we have thus proved the following theorem:

Theorem 4.3 Algorithm 3 solves the Submass All Witnesses Prob-
lem in time O((Knμs log μs)

1
2 ), where K is the total number of witnesses,

i.e., the output size.

To better understand this result, let κ̄ denote the average size of the out-
put, i.e., κ̄ = K/k. Then the runtime is O((kκ̄nμs log μs)

1/2). Recall that
the running time of the combination of the näıve algorithms for the sub-
mass all witnesses problem is O(min(kn, n2 log n)). Thus, our algorithm beats

16



the running time of the näıve algorithms above if κ̄μs log μs = o(kn) and
κ̄kμs log μs = o(n3 log2 n).

4.3 A Variation for One Witness per Query

Algorithm 3 can be straightforwardly adapted to only produce one wit-
ness per query mass, i.e., to solve the Submass Witness Problem. Then
its runtime becomes O((knμs log μs)

1
2 ), i.e., somewhere between O(μs log μs)

and O(kn) (since kn needs to be the larger factor if we want to employ the
algorithm). If, say, k = O(μs), then we end up with a runtime of O(μs

√
n).

Comparing this to the O(μs polylog μs) runtime of Algorithm 2 leaves us
with an extra

√
n factor which we pay for the deterministic version.

5 Conclusion

In this paper we gave algorithms for several variants of finding substrings with
given masses in a given weighted string (the Submass Finding Problem). Our
algorithms are most interesting when the masses of the individual characters
are small compared to the length of the string, or more generally, when the
number of different possible submasses is small compared to n2.

Most of our algorithms have running time complexity dependent on the num-
ber of different submasses of the given weighted string (up to polylogarithmic
factors). While this may not be the best possible running time, it seems that
improving this significantly will be hard. For example, consider the problem of
finding the number of different submasses σ(s). Our algorithm for this prob-
lem has runtime O(σ(s) log σ(s)). On the other hand, the easier problem of
deciding whether σ(s) is exactly equal to n(n+1)/2 is already at least as hard
as the 4-Sum problem. To see this, let pi denote the i’th prefix mass as before
(i.e., the mass of the first i characters of the string s); then σ(s) < n(n +1)/2
if and only if there are distinct integers i, j, k, l such that pi − pj = pk − pl,
which is exactly the 4-Sum problem. The 4-Sum problem is conjectured to
have a runtime complexity of Ω(n2) [17,18] and is one of the major problems
in computational geometry. So, it is unlikely that even the number of different
submasses can be determined in time o(n2) in the general case.

Acknowledgments A preliminary version of this work appeared in the Pro-
ceedings of the Fifteenth Annual Combinatorial Pattern Matching Symposium
(CPM 2004).

17



References

[1] H. Wilf, generatingfunctionology, Academic Press, 1990.

[2] M. Cieliebak, T. Erlebach, Zs. Lipták, J. Stoye, E. Welzl, Algorithmic
complexity of protein identification: Combinatorics of weighted strings, Discrete
Applied Mathematics (DAM) 137 (1) (2004) 27–46.

[3] R. Cole, R. Hariharan, Verifying candidate matches in sparse and wildcard
matching, in: Proc. of the 34th Symposium on the Theory of Computing
(STOC), 2002, pp. 592–601.

[4] A. G. Murzin, S. E. Brenner, T. J. P. Hubbard, C. Chothia, SCOP: a
structural classification of proteins database for the investigation of sequences
and structures, Journal of Molecular Biology 247 (1995) 536–540.

[5] A. G. Murzin, L. L. Conte, A. Andreeva, D. Howorth, B. G. Ailey, S. E.
Brenner, T. J. P. Hubbard, C. Chothia, Structural classification of proteins,
http://scop.mrc-lmb.cam.ac.uk/scop/ (2004).

[6] N. Edwards, R. Lippert, Generating peptide candidates from amino-acid
sequence databases for protein identification via mass spectrometry, in: Proc.
of the 2nd International Workshop on Algorithms in Bioinformatics (WABI),
2002, pp. 68–81.

[7] J. Eng, A. McCormack, J. R. Yates III, An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database,
Journal of the American Society for Mass Spectrometry (JASMS). 5 (1994)
976–989.

[8] B. Lu, T. Chen, A suffix tree approach to the interpretation of tandem mass
spectra: Applications to peptides of non-specific digestion and post-translational
modifications, Bioinformatics, Supplement 2 (ECCB) (2003) ii113–ii121.

[9] G. Benson, Composition alignment, in: Proc. of the 3rd International Workshop
on Algorithms in Bioinformatics (WABI), 2003, pp. 447–461.

[10] S. Böcker, Sequencing from compomers: Using mass spectrometry for DNA de-
novo sequencing of 200+ nt, in: Proc. of the 3rd International Workshop on
Algorithms in Bioinformatics (WABI), 2003, pp. 476–497.

[11] S. Böcker, SNP and mutation discovery using base-specific cleavage and
MALDI-TOF mass spectrometry, Bioinformatics, Supplement 1 (ISMB) (2003)
i44–i53.

[12] A. Salomaa, Counting (scattered) subwords, Bulletin of the European
Association for Theoretical Computer Science (EATCS) 81 (2003) 165–179.

[13] R. Eres, G. M. Landau, L. Parida, A combinatorial approach to automatic
discovery of cluster-patterns, in: Proc. of the 3rd International Workshop on
Algorithms in Bioinformatics (WABI), 2003, pp. 139–150.

18



[14] A. Amir, A. Apostolico, G. Landau, G. Satta, Efficient text fingerprinting via
Parikh mapping, Journal of Discrete Algorithms 1 (5-6) (2003) 409–421.

[15] G. Didier, Common intervals of two sequences, in: Proc. of the 3rd International
Workshop on Algorithms in Bioinformatics (WABI), 2003, pp. 17–24.

[16] J. W. Cooley, J. W. Tukey, An algorithm for the machine calculation of complex
Fourier series, Mathematics of Computation 19 (90) (1965) 297–301.

[17] E. D. Demaine, J. S. B. Mitchell, J. O’Rourke, The open problems project,
http://cs.smith.edu/∼orourke/TOPP/ (2004).

[18] J. Erickson, Lower bounds for linear satisfiability problems, in: Proc. of 6th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1995, pp.
388–395.

19


