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Abstract. The Partial Digest problem asks for the coordinates of m

points on a line such that the pairwise distances of the points form a given
multiset of

`

m

2

´

distances. Partial Digest is a well-studied problem
with important applications in physical mapping of DNA molecules. Its
computational complexity status is open. Input data for Partial Digest

from real-life experiments are always prone to error, which suggests to
study variations of Partial Digest that take this fact into account.
In this paper, we study the computational complexity of the variation
of Partial Digest in which each distance is known only up to some
error, due to experimental inaccuracies. The error can be specified either
by some additive offset or by a multiplicative factor. We show that both
types of error make the Partial Digest problem strongly NP-complete,
by giving reductions from 3-Partition. In the case of relative errors, we
show that the problem is hard to solve even for constant relative error.

1 Introduction

The Partial Digest problem is perhaps the classic combinatorial problem from
computational biology with applications in DNA sequencing. Despite consider-
able research efforts in the past twenty years, its computational complexity is
still an open problem. In the Partial Digest problem we are given a multiset
D of distances and are asked to find coordinates of points on a line, i.e., a point
set P , such that D is exactly the multiset3 of all pairwise distances of these
points. In this case, we say that D is the distance multiset of point set P . A
formal definition of the problem is as follows.

Definition 1 (Partial Digest). Given an integer m and a multiset of k =
(

m
2

)

positive integers D = {d1, . . . , dk}, is there a set of m integers P = {p1, . . . , pm}
such that {|pi − pj | | 1 ≤ i < j ≤ m} = D?

For example, if D = {2, 5, 7, 7, 9, 9, 14, 14, 16, 23}, then P = {0, 7, 9, 14, 23} is
one feasible solution (cf. Figure 1).

? Work partially done while M. Cieliebak was visiting LANL. LA-UR-03:6621.
3 We will denote multisets like sets, since the fact of being a multiset is not crucial for

our purposes.
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Fig. 1. Example for Partial Digest

Previous Work
Intriguingly, the computational complexity of this seemingly straight-forward
combinatorial puzzle is a long–standing open problem, and it appears in its pure
combinatorial formulation already in the 1930’s in the area of X–ray crystallog-
raphy (acc. to [16]). The problem is also known as “turnpike problem”, where
we are given the pairwise distances of cities along a highway, and we want to
find their ordering along the road [4]. The Partial Digest problem can be
solved in pseudo–polynomial time [10, 13], and there exists a backtracking algo-
rithm (for exact or erroneous data) that has expected running time polynomial
in the number of distances [16, 17], but exponential worst case running time [20].
The Partial Digest problem can be formalized by cut grammars, which have
one additional symbol δ, the cut, that is neither a non–terminal nor a terminal
symbol [14], and the problem is closely related to the theory of homometric sets4

[16]. Finally, if the points in a solution do not have to be on a line, but only in
d–dimensional space, then the problem is NP-hard for some d ≥ 2 [16]. However,
for the original Partial Digest problem, neither a polynomial–time algorithm
nor a proof of NP-hardness is known [2, 4, 11, 12, 15].

Biological Background
Partial Digest has several applications; the classical and most prominent is
in the study of the structure of DNA molecules. More precisely, given a large
DNA molecule (sequence of nucleotides A, C, G, and T), restriction enzymes
can be used to generate a physical map of the molecule. A restriction enzyme
cuts a DNA molecule at specific patterns, the restriction sites. For instance, the
enzyme Eco RI cuts occurrences of the pattern GAATTC into G and AATTC. Under
appropriate experimental conditions, all fragments between each two restriction
sites are created. This process is called partial digestion. The lengths of the
fragments (i.e., their number of nucleotides) are then measured by using gel
electrophoresis, a standard technique in molecular biology. This leaves us with
the multiset of distances between all restriction sites, and the objective is to

4 Two (non–congruent) sets of points are homometric if they generate the same mul-
tiset of pairwise distances.
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reconstruct the original ordering of the fragments in the DNA molecule, which
is the Partial Digest problem.

Erroneous Data
In real-life, partial digestion experiments cannot be conducted under ideal con-
ditions as outlined above, and thus errors occur in the data. In fact, there is no
such thing as error–free data, and typically four types of errors occur [5, 6, 8,
17]: additional fragments, for instance through contamination of the probe with
unrelated biological material; missing fragments, due to partial cleavage errors,
or because of small fragments that remain undetected by gel electrophoresis;
incorrect fragment lengths, due to the fact that fragment lengths cannot be de-
termined exactly using gel electrophoresis; and, finally, wrong multiplicities, due
to the intrinsic difficulty to determine the proper multiplicity of a distance by
gel electrophoresis5.

Algorithms for Partial Digest with inaccurate data have been studied in-
tensively in the literature [5, 8, 17], and different error models have been designed,
e.g. for measurement errors that are logarithmic in the size of the fragment
length [18, 19] or for intervals of absolute errors [1, 17]. Optimization variations
of Partial Digest where fragments are either omitted or added in the data,
and the number of errors has to be minimized, are known to be NP-hard or hard
to approximate, respectively [3].

In this work we will focus on the third type of error, where the lengths of
fragments can be erroneous (measurement errors). In partial digestion exper-
iments all measurements of fragment lengths are prone to inaccuracies: Using
gel electrophoresis, measurement errors within a range of up to 5 percent of the
fragment length can occur [5, 6, 17].

Many experimental variations of partial digest experiments have been stud-
ied, see [9] for a survey; and for more detailed discussions on the problem, see [12]
and [15].

Definitions and Results
In this paper, we study the computational complexity of Partial Digest in the
presence of measurement errors, where we allow both additive or multiplicative
errors.

We start with additive errors. The Partial Digest problem is known to
be strongly NP-hard if additive error bounds that can be even zero can be
assigned to each distance individually [9, 16]. However, this does not model reality
appropriately, since in real–life data we cannot assume that even one single
fragment length can be measured exactly. Therefore, we study the computational
complexity of the variation of Partial Digest where all measurements are
prone to some non–zero error. Moreover, we refrain from individual error bounds,
and study the variation where all measurements are prone to the same additive
non–zero error δ. More precisely, we say that value v matches a distance d

up to additive error δ if |v − d| ≤ δ; moreover, a multiset D is a distance
multiset of a point set P up to additive error δ, if there is a bijective function

5 The multiplicity of a fragment is determined from the intensity of the corresponding
band in the gel.
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f : D → ∆(P ) such that each distance d ∈ D matches value f(d) up to error
δ; here, ∆(P ) = {|pj − pi| | 1 ≤ i < j ≤ n} denotes the multiset of pairwise
distances in P . The PD–AbsError problem is defined as follows.

Definition 2 (PD–AbsError). Given an integer m, a multiset D of k =
(

m
2

)

positive integers, and an integer error bound δ > 0, is there a set P of m points
on a line such that D is the distance multiset of P up to additive error δ?

We show in Section 2 that PD–AbsError is strongly NP-complete, by giving
a reduction from 3-Partition.

We then turn to the case of multiplicative errors. We say that distance d

matches a value x up to multiplicative error ε > 0 if d(1 − ε) ≤ x ≤ d(1 + ε).
Observe that this definition is not symmetric, i.e., if d matches x up to error ε,
then this does not in general imply that x matches d (in contrast to the definition
of additive errors, which is symmetric). A multiset D is a distance multiset of
point set P up to multiplicative error ε if there is a bijective function f : D →
∆(P ) such that each distance d ∈ D matches value f(d) up to multiplicative
error ε. The PD–RelError problem is defined as follows.

Definition 3 (PD–RelError). Given an integer m, a multiset D of k =
(

m
2

)

positive integers, and a rational error ε > 0, is there a set P of m points on a
line such that D is the distance multiset of P up to multiplicative error ε?

We show in Section 3 that PD–RelError is strongly NP-complete, even for
constant error, by using a similar reduction as for PD–AbsError.

2 Strong NP-completeness of PD–AbsError

In this section, we show that PD–AbsError is strongly NP-complete, by giving
a reduction from 3-Partition, which is the following problem: Given 3n positive
integers q1, . . . , q3n and an integer h such that

∑3n
i=1 qi = nh and h

4 < qi < h
2 for

i ∈ {1, . . . , 3n}, are there n disjoint triples of qi’s such that each triple adds up
to h? The 3-Partition problem is NP-complete in the strong sense [7]. Observe
that h

4 < qi < h
2 already implies that each subset of the qi’s that adds up to h

must have exactly three elements.
The idea of the reduction is as follows. Given an instance q1, . . . , q3n and

h of 3-Partition, we define a multiset of distances D and an additive error
δ = h

4 that form an instance of PD–AbsError. Our construction is based on
the following observation: If there is a solution for the 3-Partition instance,
then we can arrange the qi’s such that triples of adjacent qi’s sum up to h. If we
sum up, say, 25 adjacent qi, then we sum over at least 7 complete triples that
each have sum h, plus some few (up to four) additional qi’s at the beginning
and the end. In the special and trivial case that all qi’s have exactly value h

3 ,
we can easily determine the exact sum of the 25 values. However, in a given
instance of 3-Partition typically not all qi’s will have value h

3 . However, they

have “approximately” value h
3 , since they satisfy h

4 < qi < h
2 by definition. In

the proof of the following theorem, we will use additive error δ to “close the gap”
between h

3 and the true values of the qi’s.
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Theorem 4. PD–AbsError is strongly NP-complete.

Proof. The problem PD–AbsError is in NP: Given a candidate point set P ,
we sort all distances between any two points in P , and all distances in D; then
P is a solution if error δ is sufficient to match the i-th distance from P to the
i-th distance from D.

To prove strong NP-hardness, we give a reduction from 3-Partition. Given
an instance of 3-Partition, i.e., integers q1, . . . , q3n and integer h, we define
a distance multiset D and an additive error δ that are an instance of PD–

AbsError. There will be a solution for this instance if and only if there is a
solution for the 3-Partition instance. Parallel to the definition of D, we show
already the “if” direction of the previous statement: To this end, we assume that
the 3-Partition can be solved, i.e., there are n triples T1, . . . , Tn of qi’s that
each sum up to h. We show how to construct a point set P that is a solution
for the PD–AbsError instance, i.e., P matches D up to additive error δ. The
opposite direction (“only if”) is shown in a second step. We want to stress at this
point that although the definition of D and the construction of P are presented
simultaneously, the definition of D itself does not rely on the fact that there
exists a solution for the 3-Partition instance.

We assume that h
12 is integer. Otherwise, we can achieve this by simply

multiplying all values qi and h by 12. Moreover, we assume w.l.o.g. that the values
q1, . . . , q3n are ordered such that the three qi’s that belong to the same triple
Tj in a solution are adjacent, i.e., T1 = (q1, q2, q3), T2 = (q4, q5, q6), and so on.
Finally, we assume that the elements in each Ti are sorted in ascending order, i.e.,
q1 ≤ q2 ≤ q3, q4 ≤ q5 ≤ q6, and so on. This ordering allows us to derive a set of
inequalities for the q′is. Let (q3k+1, q3k+2, q3k+3) be a triple that sums up to h, for
0 ≤ k ≤ n−1. Then q3k+1 ≤ h

3 , since q3k+1 is the smallest of the three elements in

the triple, and not all of them can be greater than h
3 . Similarly, h

3 ≤ q3k+3. With

q3k+1 + q3k+2 = h− q3k+3, we have q3k+1 + q3k+2 ≤ h− h
3 = 2h

3 . In combination

with the restriction h
4 < qi < h

2 (from the definition of 3-Partition) and

H := h
12 , this yields the following inequalities:

3H < q3k+1 ≤ 4H

3H < q3k+2 < 6H

4H ≤ q3k+3 < 6H (1)

6H < q3k+1 + q3k+2 ≤ 8H

8H ≤ q3k+2 + q3k+3 < 12H

12H = q3k+1 + q3k+2 + q3k+3

We will use these inequalities later to derive upper and lower bounds for the
additive error that we need to apply to our distances in order to guarantee the
existence of a solution for the PD–AbsError instance.

Before we define our distances, we need to introduce the level of a distance:
For a point set P , we say that a distance d between two points has level ` if it
spans ` − 1 further points, and we say that distance d is an atom if it has level
1. E.g. in Figure 1, distance 5 is an atom, and distance 16 has level 3.
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PSfrag replacements

ẑ1 ẑ2 ẑ3 ẑ4 ẑ5 ẑ6 ẑ7 ẑ8 ẑ9ĉ1 ĉ2 ĉ3

d [3, 0, 1]

d [7, 2, 1]

. . .

sum in third digit: q7sum in third digit: h

sum in third digit: q2 + q3 + h

Fig. 2. Atoms and distances in multiset D.

In the following, we will use a vector representation for large numbers that
will allow to add up the numbers digit by digit. The numbers are expressed
in the number system of some base Z. We denote by 〈a1, . . . , an〉 the number
∑n

i=1 aiZ
n−i; we say that ai is the i-th digit of this number. In our proofs, we

will choose base Z large enough such that the additions that we will perform do
not lead to carry–overs from one digit to the next. Hence, we can add numbers
digit by digit. The same holds for scalar multiplications. For example, having
base Z = 29 and numbers α = 〈3, 5, 1〉 and β = 〈2, 1, 0〉, then α + β = 〈5, 6, 1〉
and 3 · α = 〈9, 15, 3〉.

We now define our instance of PD–AbsError and show at the same time
how to construct a solution for this instance. Let c = n2 · h2. Moreover, define
error δ := 3H . The distances are expressed as numbers with base Z = 10nc, and
each distance consists of three digits. The first digit will denote the level of a
distance (the meaning of the other two digits will become clear soon).

First we define 4n−1 distances that will turn out to be atoms in our solution:
zi = 〈1, 0, qi〉−δ, for 1 ≤ i ≤ 3n, and ci = 〈1, c, 0〉−δ, for 1 ≤ i ≤ n−1. Observe
that operation “−δ” only affects the last digit (and in fact, we could have defined
zi by 〈1, 0, qi − δ〉 instead), since we choose base Z sufficiently large.

Using these distances, we can already define a “solution” P for distance mul-
tiset D (although we are not yet finished defining D; in fact, we will construct
D in the following such that it matches point set P up to additive error δ): Let
ẑi = zi + δ for 1 ≤ i ≤ 3n, and ĉi = ci + δ for 1 ≤ i ≤ n−1. Observe that each ẑi

has exactly value qi in its third digit. We call these values z–pseudoatoms or c–
pseudoatoms, respectively, and use them to define a point set P = {p1, . . . , p4n}
by specifying the pairwise distances between the points: Starting in 0, the points
have distances ẑ1, ẑ2, ẑ3, ĉ1, ẑ4, ẑ5, ẑ6, ĉ2, . . . , ĉn−1, ẑ3n−2, ẑ3n−1, ẑ3n, i.e., we alter-
nate blocks of three z–pseudoatoms and one c–pseudoatom, starting and ending
with a block of three z–pseudoatoms (see Figure 2).

We now show level by level how the distances in D are defined, and that
additive error δ (which is 3H) is sufficient to make all distances from D match
some distance between points in P .

By construction of P , the distances of level 1 are the pseudoatoms, and they
match the corresponding zi’s and ci’s up to additive error δ.

To denote the distances of higher levels we use notation d [`, j, k], for appro-
priate parameters `, j and k. These names already indicate the values of the



Measurement Errors Make the Partial Digest Problem NP-hard 7

three digits of a distance: Distance d [`, j, k] will have value ` in the first digit,
which will be the level of the distance in our point set P . The second digit of
the distance has value j · c, which denotes that this distance will be used to span
j c–pseudoatoms (and `− j z–pseudoatoms) in our point set P . For instance, in
Figure 2 distance d[7, 2, 1] spans the two pseudoatoms ĉ1 and ĉ2 (and five ẑi’s).
Finally, the third digit of distance d [`, j, k] has value k · h plus some “small off-
set”, which will be a multiple of H . Here, k specifies how many complete blocks
of three adjacent z–pseudoatoms the distance spans in P (recall that such a
block corresponds to three qi’s that sum up to exactly h). In the following, we
show how to choose these offsets in the third digit such that our point set P

matches distance multiset D up to additive error δ.

First consider distances of level 2 in P , i.e., two points pi, pi+2 ∈ P with
one point pi+1 in between. There are four possibilities for the two pseudoatoms
between these two points, for some 0 ≤ k ≤ n − 1: Case 1: ẑ3k+1 and ẑ3k+2;
Case 2: ẑ3k+2 and ẑ3k+3; Case 3: ẑ3k+3 and ĉk; and Case 4: ĉk and ẑ3k+1.

For the first case, the two pseudoatoms sum up to 2 in the first and to 0 in
the second digit. For the third digit of the sum, recall that ẑ3k+1 has value q3k+1

in its third digit, and ẑ3k+2 has value q3k+2 in its third digit. Hence, inequalities
(1) yield that the third digit of ẑ3k+1 + ẑ3k+2 is bounded below by 6H and
bounded above by 8H . We define a distance d [2, 0, 0] := 〈2, 0, 9H〉. Obviously,
we can span the two pseudoatoms by this distance if we apply at most error δ

(recall that δ = 3H). Observe that we could have chosen other values for the
third digit of d [2, 0, 0], namely any value between 5H and 9H (which still allows
to match the bounds using additive error δ). Here, we chose value 9H , since we
will use that same distance to cover the two pseudoatoms in Case 2 as well (see
below).

Case 1 occurs exactly n times in our point set P , once for each block of
three z–pseudoatoms. Hence, we let distance d [2, 0, 0] be n times in our distance
multiset D.

Case 2 is similar to Case 1: The third digit of ẑ3k+2 + ẑ3k+3 is bounded below
by 8H and bounded above by 12H , using again inequalities (1). Like before,
this case occurs n times, and we can use n additional distances d [2, 0, 0] in D to
span such two pseudoatoms up to error δ. Thus, in total we have 2n distances
d [2, 0, 0] in D that arise from the first two cases.

For the remaining two cases of two pseudoatoms, the last digit of the two
pseudoatoms is at least 4H and at most 6H in Case 3, and at least 3H and at
most 4H in Case 4. Moreover, in both cases the first digit of the sum is 2 and
the second digit is c, and both cases occur exactly n − 1 times. Hence, we can
define distance d [2, 1, 0] := 〈2, c, 4H〉 and enclose it 2(n−1) times in D, in order
to cover these pairs of pseudoatoms, again up to additive error δ.

Before we specify the distances of higher level, we introduce a graphical
representation of pseudoatoms: Each z–pseudoatom is represented by a •, and
each c–pseudoatom by a |. This allows us to depict sequences of pseudoatoms
without referring to their exact names. E.g. pseudoatoms ẑ3ĉ1ẑ4ẑ5ẑ6ĉ2 yield
•|•••|, and the four cases of two adjacent pseudoatoms above can be represented
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level ` pseudoatoms multiplicity lower bound upper bound distance name distance value

2 • • n 6H 8H d [2, 0, 0] 〈2, 0, 9H〉
• • n 8H 12H d [2, 0, 0]
• | n − 1 4H 6H d [2, 1, 0] 〈2, c, 4H〉
| • n − 1 3H 4H d [2, 1, 0]

3 • • • n 12H 12H d [3, 0, 1] 〈3, 0, 12H〉 + δ

| • • n − 1 6H 8H d [3, 1, 0] 〈3, c, 9H〉
• | • n − 1 7H 10H d [3, 1, 0]
• • | n − 1 8H 12H d [3, 1, 0]

4 • • | • n − 1 11H 16H d [4, 1, 0] 〈4, c, 13H〉
• | • • n − 1 10H 14H d [4, 1, 0]
• • • | n − 1 12H 12H d [4, 1, 1] 〈4, c, 12H〉
| • • • n − 1 12H 12H d [4, 1, 1]

5 • • | • • n − 1 14H 20H d [5, 1, 0] 〈5, c, 17H〉
• • • | • n − 1 15H 16H d [5, 1, 1] 〈5, c, 16H〉
• | • • • n − 1 16H 18H d [5, 1, 1]
| • • • | n − 2 12H 12H d [5, 2, 1] 〈5, 2c, 12H〉

6 • • • | • • n − 1 18H 20H d [6, 1, 1] 〈6, c, 21H〉
• • | • • • n − 1 20H 24H d [6, 1, 1]
• | • • • | n − 2 16H 18H d [6, 2, 1] 〈6, 2c, 16H〉
| • • • | • n − 2 15H 16H d [6, 2, 1]

7 • • • | • • • n − 1 24H 24H d [7, 1, 2] 〈7, c, 24H〉
• • | • • • | n − 2 20H 24H d [7, 2, 1] 〈7, 2c, 21H〉
• | • • • | • n − 2 19H 22H d [7, 2, 1]
| • • • | • • n − 2 18H 20H d [7, 2, 1]

Fig. 3. Distances up to level 7.

by ••, ••, •| and |•. Figure 3 shows the distances, bounds, and multiplicities for
level 2 to 7.

Observe that d [2, 0, 0] and d [6, 1, 1] are in a sense “equivalent”, since they are
used for cases that differ only in one complete block of three z–pseudoatoms and
one c–pseudoatom. Hence, we could have written d [6, 1, 1] = d [2, 0, 0] + 〈4, c, h〉
instead. Moreover, d [6, 2, 1] = d [2, 1, 0] + 〈4, c, h〉 and d [7, 2, 1] = d [3, 1, 0] +
〈4, c, h〉. Similarly, distances of level greater than 7 can be decomposed into a
distance of low level (4 to 7) and an appropriate number of blocks of three z–
pseudoatoms and one c–pseudoatom. We set β := 〈4, c, h〉 and define in Figure 4
the distances of level 8 to 4n − 5. In the table, the number of blocks k varies
from 1 to n−3. Finally, in Figure 5 the distances that have level 4n−4 to 4n−1
are shown. Observe that as before they are derived from distances of level 4 to
7, for k = n−2. However, not all combinations are necessary for these distances.

Our distance multiset D consists of all atoms zi and ci, and all distances
specified in Figures 3, 4 and 5, with the corresponding multiplicities. There are
4n − 1 levels, and for each level ` there are 4n − ` distances in D. In total, this
yields

∑4n−1
`=1 (4n − `) =

(

4n
2

)

distances. The cardinality of D is polynomially
bounded in n, and each distance in D is polynomial in h. Hence, multiset D can
be constructed in polynomial time from a given instance of 3-Partition.

In parallel to the definition of D, we have shown already that a solution for
the 3-Partition instance yields a solution for the PD–AbsError instance. In
the following, we show the opposite direction, i.e., we show that a solution for
the PD–AbsError instance yields a solution for the 3-Partition instance.
Let R = {r1, . . . , r4n} be any set of 4n points on a line that is a solution for the
PD–AbsError instance, i.e., multiset D is the multiset of pairwise distances
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level ` pseudoatoms multiplicity distance name distance value

4k + 4 • • | . . . | • n − k − 1 d [4 + 4k, 1 + k, 0 + k] d [4, 1, 0] + k · β
• | . . . | • • n − k − 1 d [4 + 4k, 1 + k, 0 + k]
• • • | . . . | n − k − 1 d [4 + 4k, 1 + k, 1 + k] d [4, 1, 1] + k · β

| . . . | • • • n − k − 1 d [4 + 4k, 1 + k, 1 + k]
5 + 4k • • | . . . | • • n − k − 1 d [5 + 4k, 1 + k, 0 + k] d [5, 1, 0] + k · β

• • • | . . . | • n − k − 1 d [5 + 4k, 1 + k, 1 + k] d [5, 1, 1] + k · β
• | . . . | • • • n − k − 1 d [5 + 4k, 1 + k, 1 + k]
| . . . | • • • | n − k − 2 d [5 + 4k, 2 + k, 1 + k] d [5, 2, 1] + k · β

6 + 4k • • • | . . . | • • n − k − 1 d [6 + 4k, 1 + k, 1 + k] d [6, 1, 1] + k · β
• • | . . . | • • • n − k − 1 d [6 + 4k, 1 + k, 1 + k]
• | . . . | • • • | n − k − 2 d [6 + 4k, 2 + k, 1 + k] d [6, 2, 1] + k · β
| . . . | • • • | • n − k − 2 d [6 + 4k, 2 + k, 1 + k]

7 + 4k • • • | . . . | • • • n − k − 1 d [7 + 4k, 1 + k, 2 + k] d [7, 1, 2] + k · β
• • | . . . | • • • | n − k − 2 d [7 + 4k, 2 + k, 1 + k] d [7, 2, 1] + k · β
• | . . . | • • • | • n − k − 2 d [7 + 4k, 2 + k, 1 + k]
| . . . | • • • | • • n − k − 2 d [7 + 4k, 2 + k, 1 + k]

Fig. 4. Distances with level 8 to 4n − 5 (with β = 〈4, c, h〉). Value k varies between 1
and n − 3.

of R, up to additive error δ for each distance. We assume w.l.o.g. that the points
are ordered from left to right, i.e., r1 < r2 < . . . < r4n. We will show that R is
basically identical to P , the point set that we constructed above.

Obviously, additive error δ can affect only the last digit of each distance,
since base Z is sufficiently large. Thus, exactly those distances with value 1 in
the first digit are atoms, since all other distances have value greater than 1
in the first digit, and since there must be exactly 4n − 1 atoms. This implies
immediately that the first digit of each distance denotes the level of the distance
in any solution.

We now show that error +δ has to be applied to each single atom to make it
fit to the distances between adjacent points in R. To see this, first observe that
the atoms sum up to

∑3n
i=1 zi +

∑n−1
i=1 ci = 〈4n − 1, (n − 1)c, nh〉 − (4n − 1)δ.

On the other hand, d [4n − 1, n− 1, n] = 〈4n − 1, (n − 1)c, nh〉+ δ is the largest
distance in D. Each atom is the distance between two adjacent points in R, up
to additive error δ, while d [4n− 1, n − 1, n] is the distance between the first and
the last point in R, again up to additive error δ. Hence, the atoms must sum up
to the length of the largest distance. This is only possible if we apply error +δ

to each atom, yielding sum 〈4n − 1, (n − 1)c, nh〉, and if we apply error −δ to
the largest distance, yielding 〈4n − 1, (n − 1)c, nh〉 as well. Knowing this, we can
again define pseudoatoms ẑi = zi +δ and ĉi = ci +δ, which represent exactly the
distances of adjacent points in R (without error). Observe that if we represented
the distances between adjacent points in R in our number representation, then
pseudoatom ẑi would have exactly value qi in its last digit, for all 1 ≤ i ≤ 3n.

We now show that the ordering of the pseudoatoms arising from R is such that
there are n blocks of three pseudoatoms ẑi, and each two blocks are separated
by one pseudoatom ĉi. Between any two adjacent c–pseudoatoms there must be
exactly three z–pseudoatoms: Since there are no distances of level 4 with value
2c in the second digit, no combination || or |•| or |••| is possible, and there are at
least three z–pseudoatoms in between two c–pseudoatoms; moreover, since there



10 Mark Cieliebak and Stephan Eidenbenz

level ` lower bound upper bound distance name distance value

4n − 4 (n − 2)h + 11H (n − 2)h + 16H d [4n − 4, n − 1, n − 2] d [4, 1, 0] + (n − 2) · β
(n − 2)h + 10H (n − 2)h + 14H d [4n − 4, n − 1, n − 2]
(n − 1)h (n − 1)h d [4n − 4, n − 1, n − 1] d [4, 1, 1] + (n − 2) · β

(n − 1)h (n − 1)h d [4n − 4, n − 1, n − 1]
4n − 3 (n − 1)h + 3H (n − 1)h + 4H d [4n − 3, n − 1, n − 1] d [5, 1, 1] + (n − 2) · β

(n − 1)h + 4H (n − 1)h + 6H d [4n − 3, n − 1, n − 1]
(n − 2)h + 14H (n − 2)h + 20H d [4n − 3, n − 1, n − 2] d [5, 1, 0] + (n − 2) · β

4n − 2 (n − 1)h + 6H (n − 1)h + 8H d [4n − 2, n − 1, n − 1] d [6, 1, 1] + (n − 2) · β
(n − 1)h + 8H (n − 1)h + 12H d [4n − 2, n − 1, n − 1]

4n − 1 nh nh d [4n − 1, n − 1, n] 〈4n − 1, (n − 1)c, nh〉 + δ

Fig. 5. Distances with level 4n − 4 to 4n − 1. Each case occurs once.

are n− 2 distances of level 5 with value 2c in the second digit, there must be at
least n− 1 c–pseudoatoms such that there are always at most 3 z–pseudoatoms
in between. Hence, the points in R are such that blocks of three z–pseudoatoms
alternate with one c–pseudoatom, starting and ending with a block of three
z–pseudoatoms.

Finally, we show that the third digits of each three adjacent z–pseudoatoms
sum up to h: Consider those distances of level 3 that have a zero in the second
digit. There are n such distances, and their third digits sum up to nh+nδ. Each
of these distances must span exactly one of the n blocks of three z–pseudoatoms.
The total sum of the last digit of all z–pseudoatoms is exactly

∑3n
i=1 qi = nh.

Since the distances of level 3 that span these blocks do not overlap, they have
to sum up to the same total. Hence, the error for each such distance of level
3 must be −δ. This implies that each three qi’s that correspond to one block
sum up to exactly h (since we have applied error +δ to each atom to define
the z–pseudoatoms). Thus, these triples yield a solution for the 3-Partition

instance. ut

3 Strong NP-completeness of PD–RelError

In this section, we show that PD–RelError is strongly NP-complete by using
a reduction from 3-Partition similar to the one used to prove strong NP-
completeness of PD–AbsError (see Theorem 4).

Theorem 5. PD–RelError is strongly NP-complete, even if the error is a
constant.

Proof (sketch). The problem is in NP analogously to the proof of Theorem 4.
The proof of NP-hardness is also along the lines of the proof of Theorem 4. In
fact, the proof has a similar structure overall, but the details are quite different.
Given an instance of 3-Partition, we define a multiset E of distances which
are expressed as numbers with a base Z, with Z = 10hnc and c = n2h2.

We replace the definition of the atoms as follows: zi = 〈1, 0, qi〉 ·
1

1+ε
, for

1 ≤ i ≤ 3n, and ci = 〈1, c, 0〉 · 1
1+ε

, for 1 ≤ i ≤ n − 1. All zi’s and ci’s are part
of the distance set E. Note that for a fixed level `, the corresponding distances
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d [`, ·, ·] from the proof of Theorem 4 are defined for at most two consecutive
values of the second digit, say j and j + 1. Here, we define distances e [`, j] and
e [`, j + 1] for all levels 2 ≤ ` ≤ 4n−1 and corresponding j or j+1, respectively, as
follows: e [`, j] = 〈`, j, Bu(`, j)〉· 1

1+ε
, and e [`, j + 1] = 〈`, j + 1, Bl(`, j + 1)〉· 1

1−ε
,

using values Bu() and Bl() as specified below.

The first digit ` still indicates the level of the distance (i.e., how many atoms
it will span in a solution) and the second digit j or j + 1 indicates the number
of c-atoms it will span. Value Bu(`, j) is the maximum upper bound from the
corresponding column in Figure 3, Figure 4, or Figure 5, taken over all distances
d [`, j, ·] (for Figure 4, these bounds result from Figure 3 by adding appropriate
multiples of h); similarly, value Bl(`, j + 1) is the minimum lower bound from
the corresponding column in the figures, taken over all distances d [`, j + 1, ·].
The multiplicity of distance e [`, j] is the sum of the multiplicities for all distance
values d [`, j, ·] taken from the same figures, likewise for distance e [`, j + 1]. Thus,
for example e [5, 1] = 〈5, 1, 20H〉 · 1

1+ε
with multiplicity 3(n− 1), while e [6, 2] =

〈6, 2, 15H〉 · 1
1−ε

with multiplicity 2(n − 2).

For d [·]-distances with levels divisible by four (i.e., distances d [4`′, j, ·] with
integer `′ < n), we only have one possible value j for the second digit. Thus,
we define the corresponding e [·]-distances by e [4`′, j] = 〈4`′, j, Bu(4`′, j)〉 · 1

1−ε
.

Finally, we define two special distances: e [3, 0] = 〈3, 0, h〉 · 1
1+ε

, with multiplicity

n, and e [4n− 1, n − 1] = 〈4n − 1, (n − 1)c, nh〉 · 1
1−ε

with multiplicity 1.

All the distances, including the atoms, are put into distance multiset E.
We set error ε = 1

100 . This completes our description of how to construct a
PD–RelError instance from a given 3-Partition instance. The proof that a
solution for the 3-Partition instance yields a solution for the PD–RelError

instance, and vice versa, as well as the strategy to transform these distances into
integer distances, can be found in the full version of this paper. ut

4 Conclusion

We have shown that Partial Digest is NP-complete if all measurements are
prone to the same additive or multiplicative error. This answers the question
whether Partial Digest on real-life data can be solved in polynomial time.
However, it also gives rise to new questions: While we have shown NP-hardness
for even constant relative error, our proof for absolute error uses error h

4 , which
is not constant. Is Partial Digest still NP-complete if we restrict the additive
error to some (small) constant? What if we allow only one-sided errors (i.e., if
the lengths of the distances are always underestimated)? Moreover, the main
open problem is still the computational complexity of Partial Digest itself.

Acknowledgments We would like to thank Claudio Gutiérrez, Fabian Hennecke,
Roland Ulber, Birgitta Weber, and Peter Widmayer for helpful discussions, and
Riko Jacob, who suggested the graphical presentation used in Section 2.



12 Mark Cieliebak and Stephan Eidenbenz

References

1. L. Allison and C. N. Yee. Restriction site mapping is in separation theory. Com-
puter Applications in the Biosciences, 4(1):97–101, 1988.
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