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Abstract

In this thesis, we focus on two applications of digestion experiments, namely
physical mapping of DNA and protein identification, and study the compu-
tational complexity of combinatorial problems that arise in this context.

Digestion experiments play an important role in molecular biology. In
such experiments, enzymes are used to cleave DNA molecules or proteins at
specific sequence patterns, the restriction sites. The resulting fragments are
used in many different ways to study the structure of DNA and proteins,
respectively.

In the Double Digest problem, we are given the lengths of DNA frag-
ments arising from digestion experiments with two enzymes, and we want
to find a physical map of the DNA, i.e., the positions of the restriction
sites of the enzymes along the DNA sequence. Double Digest is known
to be NP-hard. We show that the problem is even strongly NP-hard, even
if the two enzymes always cut at disjoint restriction sites. Moreover, we
show that for partial cleavage errors the problem to find solutions with a
minimum number of errors is hard to approximate.

In the Partial Digest problem, we are given DNA fragment lengths
arising from digestion experiments with only one enzyme, and we again
ask for a physical map of the DNA. Neither a proof of NP-hardness nor
a polynomial–time algorithm is known for Partial Digest. We study
variations of Partial Digest that model missing fragments, additional
fragments, and erroneous fragment lengths, and show that these variations
are NP-hard, hard to approximate, and strongly NP-hard, respectively.

The Equal Sum Subsets problem, where we are given a set of positive
integers and we ask for two subsets such that their elements add up to
the same total, is known to be NP-hard. Equal Sum Subsets can be
used to prove NP-hardness for Partial Digest variants. Motivated by
this, we study variations of Equal Sum Subsets, where we, for instance,
allow any positive rational factor between the sums of the two subsets.
We give (pseudo–)polynomial algorithms or (strong) NP-hardness proofs,
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respectively, for several natural variations of Equal Sum Subsets.
In the second part of this thesis, we address the problem of protein

identification. The mass fingerprint of a protein contains the masses of
fragments that emerge when digesting the protein. Mass fingerprints are
used, for instance, to search for proteins in large protein databases, without
sequencing them. The Mass Finding problem arises in this context. Here,
we are given a mass M and a protein sequence, and we ask whether there is
a fragment of the protein that has mass M . Mass Finding can be solved
easily in time linear in n, the length of the protein sequence. We present
an algorithm that solves the problem even in sublinear time O( n

log n
). This

algorithm uses a data structure that is generated in a preprocessing step,
and that requires only linear storage space.

A different approach to identifying a protein is to establish its amino acid
sequence (de novo sequencing). Here, a fragment of the protein (peptide)
is dissociated, and the masses of the resulting pieces are measured using
tandem mass spectrometry. This yields an MS/MS spectrum of the peptide.
For the case of error–free data, algorithms exist that construct the amino
acid sequence of a peptide from its MS/MS spectrum. We have implemented
a software tool (Audens) that allows for de novo peptide sequencing even
in the case of erronoeous data, and evaluated its performance on real–life
spectra.

One problem that arises in the context of Audens is the Decomposition

problem, where we ask whether a given mass can be represented as a sum
of amino acid masses. This problem is known to be NP-hard. We show
that Decomposition can be solved in polynomial time if the number of
different amino acid masses is constant, or if the masses of all but a constant
number of amino acids are polynomially bounded. On the other hand, we
show that if we ask for the minimum or maximum number of amino acids
whose masses add up to the given mass, then no polynomial–time algorithm
can guarantee any constant approximation ratio (unless P = NP).



Zusammenfassung

In dieser Arbeit betrachten wir zwei Anwendungen von Verdau-Experimen-
ten (digestion experiments): physikalische Kartierung von DNS–Molekülen
und Identifikation von Proteinen. Wir untersuchen die algorithmische Kom-
plexität von verschiedenen kombinatorischen Problemen, die in diesem Zu-
sammenhang auftreten.

Verdau-Experimente spielen eine wichtige Rolle in der Molekularbiolo-
gie. In diesen Experimenten werden Enzyme verwendet, um DNS–Moleküle
oder Proteine an bestimmten Sequenzmustern, den Restriktionsmustern,
aufzuspalten. Die entstehenden Fragmente werden verwendet, um die Struk-
tur der DNS-Moleküle bzw. Proteine zu untersuchen.

Beim Double Digest Problem sind die Längen von DNS–Fragmenten
aus Verdau-Experimenten mit zwei Enzymen gegeben. Hieraus soll eine phy-
sikalische Karte der DNS berechnet werden, die die Positionen in der DNS–
Sequenz angibt, an der die Restriktionsmuster der Enzyme auftreten. Das
Double Digest Problem ist NP-schwer. Wir zeigen, dass es sogar stark
NP-schwer ist, selbst wenn die beiden Enzyme die DNS stets an verschie-
denen Positionen aufspalten. Ausserdem zeigen wir, dass Double Digest

schwer zu approximieren ist, wenn ein Enzym die DNS an einer Position
möglicherweise nicht spaltet, obwohl dort das Restriktionsmuster des En-
zyms vorliegt (partial cleavage error).

Beim Partial Digest Problem sind Fragment-Längen aus Verdau-
Experimenten mit nur einem Enzym gegeben, und wie bei Double Di-

gest soll eine physikalische Karte der DNS berechnet werden. Es ist nicht
bekannt, ob Partial Digest polynomiell lösbar oder NP-schwer ist. Wir
untersuchen das Problem für die Fälle, dass einige Fragment-Längen in
der Eingabe fehlen oder dass zusätzliche Längen vorkommen oder dass die
Längen nicht exakt gemessen wurden. Wir zeigen, dass die entsprechenden
Varianten von Partial Digest NP-schwer bzw. schwer zu approximieren
bzw. stark NP-schwer sind.

Das Equal Sum Subsets Problem, bei dem n natürliche Zahlen ge-
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geben sind und wir nach zwei Teilmengen suchen, deren Elemente sich zur
selben Summe aufaddieren, tritt im Zusammenhang mit Partial Digest

auf. Equal Sum Subsets ist NP-schwer. Wir untersuchen verschiedene
Varianten von Equal Sum Subsets, z.B. wenn ein beliebiger positiver ra-
tionaler Faktor zwischen den Summen der beiden Teilmengen erlaubt ist,
und geben (pseudo–)polynomielle Algorithmen an oder beweisen, dass sie
(stark) NP-schwer sind.

Im zweiten Teil dieser Arbeit beschäftigen wir uns mit der Identifikation
von Proteinen. Der Fingerabdruck eines Proteins enthält die Massen von
Protein-Fragmenten, die beim Verdauen des Proteins entstehen. Fingerab-
drücke werden z.B. verwendet, um ein Protein in einer Proteindatenbank zu
suchen. In diesem Zusammenhang tritt das Mass Finding Problem auf, bei
dem eine Masse M und eine Proteinsequenz gegeben sind und entschieden
werden soll, ob das Protein ein Fragment der Masse M enthält. Das Mass

Finding Problem kann in Zeit linear in n, der Länge der Proteinsequenz,
gelöst werden. Wir präsentieren einen Algorithmus mit sublinearer Lauf-
zeit O( n

log n
). Dieser Algorithmus verwendet eine Datenstruktur, die vorab

berechnet wird und die nur linearen Speicherplatz benötigt.
Proteine können auch identifiziert werden, indem man ihre Aminosäu-

ren-Sequenz bestimmt (de novo sequencing). Eine Methode hierfür spaltet
zunächst das Protein in Fragmente (Peptide) auf. Die Peptide werden dann
einzeln weiter zerkleinert, und die Massen der entstehenden Teilstücke wer-
den mittels Massenspektrometrie bestimmt. Dies liefert ein Tandem–Mas-
senspektrum (MS/MS Spektrum) für jedes einzelne Peptid. Es existieren
effiziente Algorithmen, die aus einem MS/MS Spektrum die Aminosäuren-
Sequenz des Peptids berechnen, falls die Daten fehlerfrei sind. Da diese
Annahme jedoch i.d.R. auf reale Spektren nicht zutrifft, haben wir ein
Sequenzierungs-Programm (Audens) implementiert, das auch Fehler in den
Daten zulässt, und seine Qualität anhand von realen Spektren evaluiert.

Ein Problem, das im Zusammenhang mit Audens auftaucht, ist das De-

composition Problem, bei dem entschieden werden soll, ob eine gegebene
Zahl sich als Summe von Aminosäuren-Massen darstellen lässt. Dieses Pro-
blem ist NP-schwer. Wir zeigen, dass das Problem in polynomieller Zeit
lösbar ist, wenn die Anzahl der verschiedenen Aminosäuren-Massen kon-
stant ist oder wenn es nur konstant viele Aminosäuren gibt, deren Masse
nicht polynomiell beschränkt ist. Ausserdem betrachten wir die beiden Op-
timierungsvarianten, bei denen wir nach einer maximalen bzw. minimalen
Anzahl von Aminosäuren fragen, deren Massen sich zu einer bestimmten
Zahl aufsummieren. Wir zeigen, dass kein polymieller Algorithmus für diese
beiden Optimierungsprobleme existiert, der einen konstanten Approximati-
onsfaktor garaniert (falls P 6= NP).
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Mark2, for climbing Cotopaxi and Züriberg with me, for the wonderful
queensize bed, and for all the silent moments during our hikes;

Roland, for pushing the SOI to the limits, for exciting travels to three
continents, and for providing striking insights into the internet, Islam, and
loaded dice;
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Chapter 1

Introduction

1.1 Biological Motivation

Molecular biology has made tremendous progress since Watson and Crick
proposed their double helix model for the DNA molecule in 1953: Today,
the central dogma of molecular biology is well–established. DNA cloning
and sequencing have become standard techniques, and complete genomes
of several organisms, including humans, are available. The genetic code
has been used to predict proteins from DNA sequences, and huge databases
exist that contain hundreds of thousands of proteins, both hypothetical and
real ones, together with their amino acid sequences and, if available, their
function in the cell.

The rapid progress of molecular biology, especially in the last two deca-
des, is strongly connected to the development of automated techniques for
efficient data analysis. In fact, computational molecular biology, also re-
ferred to as bioinformatics, has evolved to a discipline of its own, and covers
topics as diverse as sequence alignment, efficient search techniques in large
databases, or prediction of three–dimensional protein structures. A general
introduction to computational molecular biology can be found for instance
in the books by Gusfield [43], by Pevzner [71], by Setubal and Meidanis [79],
or by Waterman [91].

In this thesis, we will focus on combinatorial problems that arise in the
realm of digestion experiments using enzymes. Enzymes are catalysts that
can speed up chemical reactions in a cell. We focus on nucleases, that can
cut DNA molecules, and proteases, that cleave proteins. Each enzyme type
cuts at specific sequence patterns, the restriction sites. In the remainder of
this introduction, we describe how nucleases can be used to cleave DNA,
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in particular in double and partial digestion experiments, and how proteins
can be digested using proteases. Furthermore, we give a survey of the results
that we present in this thesis.

1.2 Digesting DNA

A DNA molecule is a large molecule that is composed of smaller molecules,
the nucleotides. There are four nucleotides, namely adenine (A), cytosine
(C), guanine (G), and thymine (T), which form – very roughly speaking –
sequences to build up DNA molecules. For our purposes, a DNA molecule
is a string over the alphabet {A, C, G, T}.

A nuclease is an enzyme that can cleave DNA molecules at specific re-
striction sites. This process is called digestion. For instance, the enzyme
EcoRI cuts each occurrence of the recognition pattern GAATTC in a DNA
molecule into G and AATTC.1 More than 3000 different nucleases are known,
and their recognition patterns are usually sequences of four to eight letters.

Digestion Experiments

A digestion experiment for a DNA molecule works as follows. First, clones
of the molecule are generated by replicating it many times. Then these
clones are digested using a restriction enzyme. If the enzyme is applied for
long enough, then it cuts at all restriction sites in each clone, yielding frag-
ments between any two adjacent restriction sites. This process is called full
or complete digestion, in contrast to partial digestion, where only very small
amounts of the enzyme are used, or the enzyme is exposed for different
amounts of time, such that we obtain all fragments between any two re-
striction sites (that do not need to be adjacent). In both cases, the number
of nucleotides of a fragment can be measured by using gel electrophoresis,
a standard technique in molecular biology. Here, the DNA fragments are
placed on one side of a gel block. Since DNA molecules are charged, they
start moving through the gel if they are exposed to an electric field. The
distance a fragment travels in the gel is inversely proportional to the mass
of the molecule, which is itself proportional to the number of nucleotides
in the molecule. Hence, we can interpolate the fragment length, i.e., the
number of nucleotides in a fragment, from the position of the fragment in

1In fact, DNA molecules form a double stranded helix, where each adenine is paired
with a thymine, and each cytosine is paired with a guanine (Watson–Crick pairs). For
this reason, if EcoRI cuts at GAATTC in one strand, then it cuts at CTTAAG in the other
strand at the same time, and the recognition pattern often forms a palindrome, respecting
the Watson–Crick pairs.
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the gel after a certain amount of time. This leaves us with a multiset of
fragment lengths, one for each fragment, which can be used to explore the
structure of the DNA molecule, e.g. by physical mapping (see below). An
example for full and partial digestion using a fictional enzyme that cuts each
occurrence of CG into C and G is shown in Figure 1.1.

electrophoresis

Full Partial

Enzyme restriction sites

digestion digestion

Gel

{3, 4, 6, 10, 10, 13, 14, 17, 20, 23}{3, 4, 6, 10}

Gel
electrophoresis

ATTCTCGATCGGTCAGTCTCGTA

ATTCTCGATCGGTCAGTCTC

ATTCTCGATC

ATTCTC
GATC

GGTCAGTCTC
GTA

ATTCTCGATCGGTCAGTCTCGTA

ATTCTC  GATC  GGTCAGTCTC  GTA

GATCGGTCAGTCTC
GGTCAGTCTCGTA

GATCGGTCAGTCTCGTA

Figure 1.1: Full and partial digestion of DNA molecule ATTCTCGATCGGTCA-

GTCTCGTA for an enzyme that cuts every pattern CG into C and G.

Digestion experiments can be used to construct physical maps of DNA
molecules. A physical map describes the location of markers (in this case
the restriction sites) along the DNA molecule. Physical maps are used for
instance to find the appropriate positions of known fragments of a DNA
molecule, even without sequencing the complete molecule. First successful
restriction site mappings were performed in the 1970’s [30, 83].

Double Digestion

The fragment lengths resulting from a single full digestion experiment can-
not yield any information about the ordering of the fragments or the po-
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sitions of the restriction sites, respectively, in an unknown DNA molecule.
For this reason, double digestion experiments are performed, where two dif-
ferent enzymes are used as follows. First a set of clones of the DNA molecule
is digested by an enzyme A; then a second set of clones is digested by an-
other enzyme B; and finally, a third set of clones is digested by a mix of
both enzymes A and B, which we will refer to as C. All digestions are
full digestions. This results in three multisets of DNA fragments, and in
three multisets of distances between all adjacent restriction sites. The ob-
jective is to reconstruct the original ordering of the fragments in the DNA
molecule. This is referred to as the Double Digest problem. In the fol-
lowing definition of the Double Digest problem, sum (S) denotes the sum
of the elements in a multiset S, and dist (P ) is the multiset of all distances
between two neighboring points in a set P of points on a line.

Definition 1.2.1 (Double Digest). Given three multisets A, B and C
of positive integers with sum (A) = sum (B) = sum (C), are there three sets
P A, P B and P C of points on a line, such that 0 is the minimal point in each
set, dist (P A) = A, dist (P B) = B, dist (P C) = C, and P A ∪ P B = P C?

For example, given multisets A = {5, 15, 30}, B = {2, 12, 12, 24} and
C = {2, 5, 6, 6, 7, 24} as an instance of Double Digest, then P A = {0, 5,
20, 50}, P B = {12, 14, 26, 50} and P C = {5, 12, 14, 20, 26, 50} is a feasible
solution, which is shown in Figure 1.2 (there may exist more solutions).

5 15 30

2 12 2412

5 7 2 6 6 24

PSfrag replacements

A

B

C

Figure 1.2: Example for the Double Digest problem.

The Double Digest problem is NP-complete, and several approaches,
including exponential algorithms, heuristics, or computer–assisted interac-
tive strategies, have been proposed (and implemented) in order to tackle
the problem. We will study the Double Digest problem in Chapter 3. In
particular, we will show that the problem becomes hard to approximate if
the input data is prone to error.

Partial Digestion

A second approach to finding physical maps of DNA molecules is by partial
digestion experiments. Here, we use only one enzyme to partially digest one
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set of clones, resulting in all fragments between any two restriction sites,
respectively in the corresponding multiset of fragment lengths. Again, the
objective is to reconstruct the original ordering of the fragments in the
DNA molecule, which is referred to as Partial Digest problem. A formal
definition of this problem is as follows.

Definition 1.2.2 (Partial Digest). Given an integer m and a multiset
D of k =

(

m
2

)

positive integers, is there a set P = {p1, . . . , pm} of m points
on a line such that {|pi − pj | | 1 ≤ i < j ≤ m} = D?

For example, for the distance multiset D = {2, 5, 7, 7, 9, 9, 14, 14, 16,
23}, the point set P = {0, 7, 9, 14, 23} is a feasible solution, which is shown
in Figure 1.3 (there exist more solutions).

1497 230

7 2 5 9

14 16

23

149 7

Figure 1.3: Example for the Partial Digest problem.

The exact computational complexity of Partial Digest is a long–
standing open problem; in fact, in its pure combinatorial formulation it
appears already in the 1930’s in the area of X–ray crystallography. The
problem can be solved in pseudo–polynomial time, and there exists a back-
tracking algorithm, for exact or erroneous data, which has expected run-
ning time polynomial in the number of distances, but exponential worst
case running time. For the original Partial Digest problem, neither a
polynomial–time algorithm nor a proof of NP-completeness is known. In
Chapter 4, we will show that Partial Digest becomes hard to solve if
the input data is prone to error, namely if there are missing or additional
distances, or if length measurements are erroneous.

1.3 Digesting Proteins

Proteins are large molecules that are made up of smaller molecules, the
amino acids, which are linked together by peptide bonds. There are 20
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3–Letter 1–Letter Monoisotopic Average
Amino Acid Code Code Mass Mass
Alanine Ala A 71.03711 71.0788
Arginine Arg R 156.10111 156.1876
Asparagine Asn N 114.04293 114.1039
Aspartic Acid Asp D 115.02694 115.0886
Cysteine Cys C 103.00919 103.1448
Glutamic Acid Glu E 129.04259 129.1155
Glutamine Gln Q 128.05858 128.1308
Glycine Gly G 57.02146 57.0520
Histidine His H 137.05891 137.1412
Isoleucine Ile I 113.08406 113.1595
Leucine Leu L 113.08406 113.1595
Lysine Lys K 128.09496 128.1742
Methionine Met M 131.04049 131.1986
Phenylalanine Phe F 147.06841 147.1766
Proline Pro P 97.05276 97.1167
Serine Ser S 87.03203 87.0782
Threonine Thr T 101.04768 101.1051
Tryptophan Trp W 186.07931 186.2133
Tyrosine Tyr Y 163.06333 163.1760
Valine Val V 99.06841 99.1326

Figure 1.4: Amino acid codes and masses (acc. to [84, 101, 102]).

amino acids2, and their sequence constitutes the primary structure of a
protein.3 For the purposes of this thesis, we will view a protein as a string
over an alphabet of size 20, where each amino acid is represented by its
single letter code (see Table 1.4). Protein sizes range from below 100 to
several thousand amino acids, where a typical protein has length 300 to
600.

Proteomics is the field that investigates the proteins which are expressed
(i.e., produced) at a certain time in a certain cell type. Due to the devel-
opment of novel techniques in proteomics that allow for high–throughput
experiments, large amounts of data are being accumulated in databases.
For instance, SWISS–PROT contains information on approximately 100,000
proteins [11, 113], and PIR has even more than 200,000 entries [96, 110].

2Recently, two new amino acids have been discovered [85]; however, in this thesis we
will refer only to the 20 amino acids that are most common.

3Higher order structures of proteins determine the positions of the amino acids in the
three–dimensional space.
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When a protein is isolated in an experiment, one would like to know whether
it is already known, and if so, one would like to find the corresponding in-
formation in the databases. Otherwise, if the protein is new, then we will
start to investigate it from scratch. Hence, fast algorithms for protein iden-
tification are required.

An obvious way to identify a protein is to establish its amino acid se-
quence. This is called de novo protein sequencing. However, standard pro-
tein sequencing, unlike DNA sequencing, is very expensive both in time and
money. For instance, identifying one amino acid by Edman degradation,
a standard method for protein sequencing, takes about 45 minutes, which
makes this approach infeasible in a high–throughput context. Therefore,
other methods are required for fast and reliable identification of proteins.
In the second part of this thesis, we will study two different methods for
protein identification that are both based on data obtained from enzyme
digestion experiments, namely mass fingerprints and tandem mass spectra.

Mass Fingerprints

Similar to nucleases (which cut DNA molecules), proteases are enzymes
that can cleave proteins, where one specific protease always cuts proteins
at the same patterns of amino acids. For instance trypsin, one of the most
frequently used proteases, cuts after each occurrence of arginine (R) or lysine
(K), unless the next amino acid is proline (P). Digesting a protein results
in a set of protein fragments, referred to as peptides. The masses of these
fragments can be determined by mass spectrometry, which yields a multiset
of peptide masses referred to as mass fingerprint of the protein.

For example, if a protein with sequence VNGYSEIERFGMLGAARPAKEF is
digested by trypsin, then this results in peptides VNGYSEIER, FGMLGAARPAK
and EF, and mass fingerprint {1065.49851, 1117.59604, 294.111}. Observe
that the values in a mass fingerprint differ from the sums of the amino acid
masses in the peptide sequence by +18, since each peptide has an additional
hydrogen atom (+1) and an additional OH–group (+17) at its terminals.

For a short introduction to the main techniques in mass spectrometry,
we refer the reader to the survey by Mann et al. [58]. More detailed intro-
ductions to mass spectrometry can be found for instance in the books by
James [49] or by Snyder [84].

A commonly employed approach for protein identification without se-
quencing uses the mass fingerprint of a protein to look up databases of
known proteins: If the breakup pattern of the enzyme is known, which is
the case for most enzymes, then we can compute the theoretical mass fin-
gerprint for each protein in a database, and compare it to the experimental
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fingerprint.4 For each protein in the database this takes time linear in the
length of the protein. If the breakup points are known in advance, e.g. if
we know that we will always use trypsin to cleave the protein, then we can
preprocess the database in an appropriate way to allow even for sublinear
search time.

The problem to look up a database becomes more challenging if the
breakup points are not known. This can be the case, for instance, when
different proteases are used in the digestion step, or when the protein was
subject to post–translational modifications such as phosphorylation or gly-
cosylation, where an additional phosphorus or sugar molecule, respectively,
attaches to some amino acids in the protein. If such modifications occur at
restrictions sites where the enzyme would be supposed to cut, then cleav-
ages at these sites are diminished (the sites are “blocked”), thus they may
yield an experimental fingerprint that does not match the theoretical fin-
gerprint of the protein. In the extreme, we can assume that nothing is
known about the breaking points in the digestion process, i.e., we assume
that the protein breaks at arbitrary positions. In this case, we ask for a
protein in the database that matches the experimental fingerprint best, i.e.,
that has a maximum number of disjoint substrings whose sum of amino acid
masses occur in the fingerprint (submasses). For our purposes, substrings
are always contiguous. One obvious way to find such best matches in a
database is to check for each single mass in the fingerprint whether it is
a submass of a protein from the database, individually for each protein in
the database. This yields the Mass Finding problem, which is formally
defined as follows, where N denotes the set of positive integers.

Definition 1.3.1 (Mass Finding). Given an alphabet A, a mass function
µ : A → N, and a string σ over A, find a data structure and a query
algorithm which, for a given positive integer M , decides whether σ has a
substring of mass M , where the mass of a string is the sum of the masses
of its letters.

String σ is referred to as weighted string, and mass M is also referred
to as weight. We use integer masses in the definition of the Mass Finding

problem, since the accuracy of mass measurements is restricted, and we can
multiply the masses in a mass fingerprint by an appropriate factor, e.g. a
power of 10, to obtain integers.

4This is an idealistic point of view: In fact, real–life data is always prone to error,
and for biological applications methods are needed that are not only efficient, but also
fault tolerant: They need to be tolerant to measurement errors, missing or additional
masses in the fingerprint, and to sequencing errors of the database entries. However, for
the purposes of this introduction we assume that we are given data without error.
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In Chapter 6, we will study different algorithms for the Mass Finding

problem. In particular, we will present an algorithm that allows to answer
queries in time sublinear in the length of σ, using a data structure that
requires only linear space.

Tandem Mass Spectra

Identifying a protein using its mass fingerprint has become a powerful tool in
protein analysis, and in fact it is today a standard technique in proteomics.
However, this method depends upon the presence of the protein in question
in the database, and if the protein cannot be found in the database, e.g.
because it is an unknown protein, then this technique must fail. For this
reason, other database independent techniques are required that allow to
identify proteins. One such technique – that we study here – is de novo
peptide sequencing using tandem mass spectrometry. This technique makes
use of the differences in molecular weights of amino acids to determine the
amino acid sequence of a peptide: First, the protein is digested using an
enzyme such as trypsin, breaking it up into peptides (shorter amino acid
sequences). Then these peptides are ionized, separated according to their
mass using a mass spectrometer, and single peptides are further fragmented
using collision induced dissociation (CID). In this dissociation step, ideally5

each single peptide molecule breaks at one random position between two
amino acids, resulting in two complementary ion types: b–ions, that cor-
respond to prefixes of the amino acid sequence of the peptide, and y–ions,
that correspond to suffixes. In fact, fragment ions occur that correspond
to all prefixes and all suffixes of the amino acid sequence of the peptide.
E.g. peptide VNGYSEIER can break up into fragments V and NGYSEIER, into
fragments VN and GYSEIER, into fragments VNG and YSEIER, and so on.

The abundance of fragments of different masses are measured, again
using mass spectrometry, which results in the tandem mass spectrum (or
MS/MS spectrum) of the peptide.6 E.g. peptide VNGYSEIER yields b-ions
with masses 100.06841, 214.11134, 271.1328, 434.19613, 521.22816, 650.27075,
763.35481, 892.3974, 1048.4985, and y-ions with masses 175.10111, 304.1437,
417.22776, 546.27035, 633.30238, 796.36571, 853.38717, 967.4301, 1066.4985.
Observe that these masses differ from the sum of amino acid masses of the
corresponding prefixes respectively suffixes, since every b–ion has an addi-
tional terminal hydrogen atom (+1), while y–ions have an additional termi-

5We say “ideally” because a single molecule can – rather infrequently – break up into
more than one fragment.

6To be exact, the mass/charge ratios of the fragments are measured in tandem mass
spectrometry; however, we will speak of masses here, since in our setting, the charge state
will be known, hence we can easily determine the mass from the ratio, and vice versa.
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nal OH–group (+17), an additional hydrogen atom (+1), and an additional
proton (+1).

MS/MS spectra can be visualized by a graph, where the x–axis shows
the masses, and the y–axis their abundances. A tuple (mass, abundance) is
referred to as peak. Figure 1.5 shows a spectrum for peptide VNGYSEIER in
ASCII–format representation; the corresponding graphical representation
is shown in Figure 1.6, and Figure 1.7 shows an annotated variant, where
those peaks that correspond to b–ions and y–ions are marked. Observe that
only few peaks in the spectrum correspond to peptide ions. We will refer to
these peaks as true peaks, in contrast to noise peaks, that do not directly
correspond to ions.

MS/MS spectra can be used for de novo peptide sequencing as follows:
Two adjacent prefixes of a protein sequence differ by exactly one amino acid,
and the corresponding masses in the MS/MS spectrum differ by the corre-
sponding amino acid mass. The same holds for adjacent suffixes. Moreover,
if we assume a noise–free spectrum, where only peaks occur that correspond
to prefixes or suffixes, then for each prefix peak there is a corresponding suf-
fix peak such that their masses sum up to the total peptide mass (up to a
constant offset). Although we cannot distinguish between prefix peaks and
suffix peaks directly from the data, there are algorithms available that can
determine the correct peptide sequence efficiently, given a noise–free MS/MS
spectrum. However, real–life MS/MS spectra are always prone to error; in
fact, the number of noise peaks is often much larger than the number of
true peaks in a spectrum, while on the other hand some true peaks can be
missing. Hence, for real–life data the problem becomes challenging, since
we have to identify the true peaks in a spectrum, and we have to “guess”
which true peaks are missing. We have implemented a tool for de novo
sequencing that uses diverse heuristics to identify true peaks. In Chapter 7,
we present this tool, and discuss its performance on real–life data.

1.4 Overview and Summary of Results

Overview

In the following, we summarize the main results that we present in this the-
sis. For formal definitions, previous work, and more biological background,
we refer the reader to the introductory sections in the corresponding chap-
ters.

We first introduce some notation and basic definitions in Chapter 2. In
particular, we recapitulate definitions of several combinatorial problems that
we will use later on to prove NP-hardness respectively inapproximability
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Figure 1.5: Example of a spectrum for peptide VNGYSEIER, represented as
.dta–file (printed in 5 columns): The first line specifies the mass of the
peptide, here 1066.91, and its charge state, here 2; each of the following
lines denote a mass and its abundance.
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Figure 1.6: Graphical representation of the spectrum from Figure 1.5 for
peptide VNGYSEIER (peak 525.3 is truncated).

results. In Chapters 3–5, we study the complexity of problems that arise in
the realm of digestion experiments for DNA molecules, namely the problems
Double Digest, Partial Digest and Equal Sum Subsets. In the
second part of this thesis we address proteins instead of DNA, and study
in Chapters 6–8 the problems Mass Finding and Decomposition, and
present our de novo peptide sequencing tool Audens.

A summary of the results obtained in this thesis and final conclusions
can be found in Chapter 9. In the Appendix, we present the experimental
results for Audens. Moreover, we give a list of all combinatorial problems
that are used throughout this thesis. The accompanying CD includes the
Audens program, the test data used to evaluate Audens, and the thesis
itself. The contents of the CD is shown in Appendix B.
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Figure 1.7: Annotated graphical representation for the spectrum from Fig-
ure 1.5. Part of the abundances are scaled by factor 2 respectively 8 for sake
of presentation, denoted by “×2” respectively “×8”. Peaks with squares cor-
respond to b–ions, those with triangles to y–ions (peak 525.3 is truncated).

Double Digest

In Chapter 3, we study the complexity of combinatorial problems in the
realm of Double Digest. The Double Digest problem is known to
be NP-complete, and several approaches including exponential algorithms,
heuristics, and computer–assisted interactive strategies have been proposed
in the literature.

In real–life, double digest experiments are usually carried out with two
enzymes that cut at different restriction sites. For this reason, we introduce
the Disjoint Double Digest problem, which is equivalent to the Double

Digest problem with the additional requirement that the two enzymes may
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never cut at the same site. As a first set of results we prove in Section
3.2 that both Double Digest and Disjoint Double Digest are NP-
complete in the strong sense.

A partial cleavage error occurs in a double digestion experiment if an
enzyme fails to cut at a restriction site where it would be supposed to cut.
In Section 3.3, we discuss several models to measure partial cleavage errors,
and study the corresponding optimization variations of Double Digest.
We first show that the problem Min Absolute Error Double Digest,
where we want to minimize the absolute number of partial cleavage errors
|(P A∪P B)−P C |+ |P C −(P A∪P B)| in a solution, cannot be approximated
to within any finite approximation ratio, unless P = NP. The situation be-
comes slightly better if we measure the amount of errors relative to the
input size by adding offset |A|+ |B|+ |C|. We show that the corresponding
minimization problem Min Relative Error Double Digest cannot be
approximated to within factor 877

876 , unless P = NP. On the other hand, we
show that any arbitrary arrangement of the distances achieves an approxi-
mation ratio of 2.

We then study the Min Point Number Double Digest problem,
where we measure the total size of a solution, i.e., where we want to minimize
the total number of points |P A ∪ P B ∪ P C | in a solution. We show that
this problem cannot be approximated to within factor 392

391 , unless P = NP.
On the other hand, we again show that any arbitrary arrangement of the
distances achieves an approximation ratio of 3.

For each of our Double Digest optimization problems, a variation can
be defined where the enzymes may only cut at disjoint restriction sites,
analogous to Disjoint Double Digest. The corresponding optimization
problems are Min Relative Error Disjoint Double Digest and Min

Point Number Disjoint Double Digest. In Section 3.4, we show that
these problems are even harder to solve than the unrestricted variants. In
fact, we show that it is NP-hard to even find feasible solutions for instances
of any (reasonable) optimization variation of Double Digest with disjoint
restriction sites. To establish this result, we introduce the problem Disjoint

Ordering, where we have to arrange two given sets of numbers in a disjoint
fashion:

Definition 1.4.1 (Disjoint Ordering). Given two multisets A and B of
positive integers with sum (A) = sum (B), are there two sets P A and P B of
points on a line, such that 0 is the minimal point in each set, dist (P A) =
A, dist (P B) = B and P A ∩ P B = {0, sum (A)}?

We show that Disjoint Ordering is NP-hard. Any polynomial–time
algorithm that claims to achieve a finite approximation ratio for any Dou-
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ble Digest optimization variation with disjoint restriction sites has to be
able to find feasible solutions for all instances, which is just the Disjoint

Ordering problem. Thus, no such algorithms can exist, unless P = NP.

Partial Digest

The Partial Digest was – as a combinatorial problem – already proposed
in the 1930’s and has since then been subject of intensive research: There
exist backtracking and pseudo–polynomial algorithms, polynomial bounds
on the number of feasible solutions, and numerous other insights; however,
the exact computational complexity of Partial Digest is still open.

In partial digest experiments, typically four types of errors occur: addi-
tional fragments, for instance through contamination of the probe with un-
related biological material; missing fragments due to partial cleavage errors,
or because of small fragments that remain undetected by gel electrophore-
sis; incorrect fragment lengths, due to the fact that fragment lengths cannot
be determined exactly using gel electrophoresis; and, finally, wrong multi-
plicities due to the intrinsic difficulty to determine the proper multiplicity
of a distance from the intensity of its band in a gel. In an effort to model
real–life data, we introduce variations of Partial Digest that model the
first three error types.

We first study the computational complexity of the minimization prob-
lem Min Partial Digest Superset, in which we model omissions: Only
a subset of all pairwise distances is given – the rest are lacking due to ex-
perimental errors – and we ask for a minimum number of points on a line
which cover all these distances. We show in Section 4.2 that this variation
is NP-hard to solve exactly. This result answers an open problem proposed
in the book by Pevzner [71].

The Max Partial Digest Subset problem models the situation of
additions, where we are given data in which some wrong distances were
added, and we search for a point set P of maximum cardinality such that all
pairwise distances from P are covered by the input distances (or, expressed
differently, such that the number of distances in the input that do not
occur in the solution P is minimum). In Section 4.3, we show that this

maximization problem is hard to approximate to within factor |D| 1
2
−ε, for

any ε > 0, unless NP = ZPP. Here, |D| is the number of input distances.
This inapproximability result is tight up to low–order terms, as we give
a trivial approximation algorithm that achieves a matching approximation
ratio.

Finally, in Section 4.4, we study the computational complexity of the
variation of Partial Digest where all distances are present, but each is
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prone to some additive error. If individual additive error bounds can be as-
signed to each distance, then it is known that the Partial Digest problem
becomes strongly NP-hard. In the corresponding proof, the fact that even
error bound zero can be assigned to some distances (and a non–zero error
bound can be assigned to other distances) is heavily exploited. We study
the more general problem variation where all distances are prone to the
same non–zero error. More precisely, we introduce the problem Partial

Digest With Errors, where we are given a multiset of distances and an
error ε > 0, and we ask for a set of points on a line such that their pairwise
distances match D, up to error at most ±ε for each individual distance. We
show that this problem is strongly NP-complete.

Equal Sum Subsets

As mentioned above, we prove in Section 4.2 that Partial Digest be-
comes NP-hard if we are given only a subset of all pairwise distances (Min

Partial Digest Superset). To establish this result we give a reduction
from Equal Sum Subsets, which is the problem where we are given a set
of positive integers, and we ask for two disjoint subsets of the numbers that
add up to the same sum. More formally, this problem is defined as follows.

Definition 1.4.2 (Equal Sum Subsets). Given a set A of n positive
integers, are there two disjoint non–empty subsets X, Y ⊆ A such that
sum (X) = sum (Y )?

We do not allow multisets here, as the problem is trivially solvable if
the same number exists more than once in the input. While Equal Sum

Subsets is known to be NP-complete, only very few studies have investi-
gated the complexity of its variations. Motivated by the connection between
Equal Sum Subsets and Partial Digest, we study several natural vari-
ations of the problem in Chapter 5.

We first study the problem Factor–r Sum Subsets, where we need to
find two subsets such that the ratio of their sums meets some given ratio
r. For r = 1, this is Equal Sum Subsets. We prove in Section 5.2 that
Factor–r Sum Subsets is NP-complete for any rational r > 0.

In Section 5.3, we study the problem k Equal Sum Subsets, in which
we need to find k disjoint subsets of equal sum. For k = 2, this is again the
Equal Sum Subsets problem. We first show that k Equal Sum Subsets

is NP-complete. Then we consider the case that k is not part of the problem
definition, but a fixed function in n. We give a pseudo–polynomial time
algorithm for k Equal Sum Subsets for the case that k is a constant,
denoted by k = O(1). On the other side, we prove that the problem is
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strongly NP-complete for k linear in n, denoted by k = Ω(n). We then study
the problem under the additional requirement that the subsets should be of
equal cardinality. We present a polynomial–time algorithm for the problem
kESS Of Cardinality c, where the cardinality is part of the problem
definition (i.e., a constant). On the other hand, if the cardinality is part of
the input or not specified at all, then the corresponding problems – called
kESS Of Specified Cardinality and kESS Of Equal Cardinality –
are NP-complete. However, we can modify the algorithm for k Equal Sum

Subsetsmentioned above in a way such that it runs in pseudo–polynomial
time for these two problems.

After that we come back to the case of two equal sum subsets (instead of
k). In many situations, a solution for an Equal Sum Subsets instance has
to fulfill additional requirements. In ESS With Exclusions, we ask for
two equal sum subsets such that certain pairs of numbers are not allowed
to appear in the same subset. This problem is NP-complete, since it is
equivalent to Equal Sum Subsets if there are no excluded pairs. We give a
pseudo–polynomial time algorithm for this variation. On the other hand, we
show NP-completeness for the problem ESS With Enforced Element,
where we enforce one of the input numbers to be used in a solution, and
for the problem Alternating Equal Sum Subsets, where we are given
pairs of numbers and have to use either none of the two numbers of one
pair, or both, and then in different sets.

We then study again variations of Equal Sum Subsets where we re-
strict the cardinality of a solution. The case that the two subsets should
have equal cardinality is a special case of kESS Of Equal Cardinality,
hence, the corresponding results can be transferred. We show in addition
that the problem ESS Of Different Cardinality, where we ask for two
subsets of different cardinality, is NP-complete.

Finally, we consider the situation where we are given two input sets and
ask for two subsets of these sets that have equal sum. This is the ESS From

Two Sets problem. We show that this problem is again NP-complete, and
that it remains NP-complete even if we restrict the choice of elements from
the two sets to have identical indices, or disjoint indices, or disjoint indices
that cover all possible indices, or the same number of indices.

Mass Finding

In the second part of this thesis, we address problems that arise in the realm
of protein identification. We start in Chapter 6 with the Mass Finding

problem, where we ask whether a mass M occurs as submass in a given
protein. Among others, we present two simple algorithms for this problem:
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The first one answers a query for mass M in time linear in n, the number
of amino acids of the given protein, and needs no additional data structure;
the second algorithm stores in a preprocessing step all submasses of the
protein in a hash table (or a sorted array) of size at most quadratic in n,
and runs queries in constant (logarithmic) time. Since both linear time and
quadratic space are inefficient in the setting of large databases, we ask for
algorithms for the Mass Finding problem that beat both bounds at the
same time. In fact, we present an algorithm called Lookup that solves
the Mass Finding problem with linear storage space and sublinear query
time O( n

log n
). However, this algorithms only serves as a proof that the

two efficiency requirements can be met at the same time, since it requires
unreasonably large inputs to become efficient.

De Novo Sequencing

De novo peptide sequencing on the basis of tandem mass spectrometry data
is one of the most challenging problems in proteomics. As a first step on the
way towards a new automated de novo sequencing tool, we have developed
and implemented a prototype called Audens that works as follows. In a
preprocessing step, we assign a relevance value to each peak in the input
spectrum, using a number of heuristics (“grass mowers”). For instance, the
relevance of peak p is increased if isotope peaks p+1 and p+2 are present in
the spectrum as well, since this indicates that the peak belongs to a peptide
ion, hence is not a noise peak. We then use a sequencing algorithm that is
a modification of a dynamic programming algorithm introduced by Chen et
al. [14] to find peptide sequences that maximize the sum of relevances of the
corresponding peaks in the spectrum. Finally, the best matching sequences
are output in a ranked list. In Chapter 7, we describe the basic concepts of
Audens, in particular, the grass mowers and the sequencing algorithm that
we apply. To determine the performance of Audens on real–life data, we
ran it for a test set of 266 spectra for which the correct peptide sequence is
known. Audens lists the correct sequence for 79 of these spectra among its
first three candidates. For comparison, Lutefisk, another sequencing tool,
found the correct sequence for only 68 of these spectra.

Decomposition

In the sequencing algorithm that we apply in Audens (see above), we use
a subroutine that decides for a given mass M whether there exists a se-
quence of amino acids whose masses add up to M . We solve this problem
by precomputing all masses M , up to a certain upper bound, that can be
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decomposed into amino acids. While this solves the problem for the pur-
poses of our de novo sequencing tool, it poses at the same time the question
how this problem can be solved in general, and gives rise to the following
definition.

Definition 1.4.3 (Decomposition). Given n positive integers c1, . . . , cn

and a positive integer M , are there non–negative integers λ1, . . . , λn such
that

∑n
i=1 λi · ci = M?

In the case of de novo sequencing, the ci’s correspond to the amino acid
masses, and M to the mass we are looking for. This problem is also referred
to as Coin Change problem or Integer Knapsack problem, and it is
known to be NP-complete. In Chapter 8, we study the computational com-
plexity of Decomposition under various restrictions, where we measure
the time complexity in the input length, i.e., in the number n of amino acid
masses and the logarithm of the total mass M .

We first observe that the Decomposition problem can be solved in
polynomial time if the number of amino acids is constant, which is in princi-
ple the case for the 20 most common amino acids. However, due to the huge
set of possible post–translational modifications that can virtually change the
masses of amino acids, it is also reasonable to consider n to be non–constant.

We then study how the size of the amino acid masses in the input affects
the complexity of Decomposition. If the total mass M itself is “small”,
i.e., bounded by a polynomial in n, then a standard dynamic programming
algorithm solves the Decomposition problem in polynomial time. For the
opposite case, where all amino acid masses are small and the total mass
M is arbitrarily large, we give an algorithm that solves the problem in
polynomial time as well. Then we extend this algorithm and show that
the Decomposition problem can be solved in polynomial time even in the
presence of few large amino acid masses , i.e., if there are few amino acids
(e.g. a constant number) that have mass super–polynomial in n.

In the second part of Chapter 8, we study the complexity and approx-
imability of the optimization variations Min Decomposition and Max

Decomposition, where we ask for decompositions with a minimum re-
spectively maximum number of amino acids (if a decomposition exists at
all). We show for both problems that no polynomial time algorithm can
exist that has constant approximation ratio, unless P = NP.
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Chapter 2

Notation and Definitions

2.1 Introduction

In this chapter, we introduce the notation and basic concepts that we will
use throughout this thesis. We first fix some notation and describe a vector
representation for large numbers in Section 2.2. In Section 2.3, we sketch
some concepts from complexity and approximability theory. Finally, in
Section 2.4 we recapitulate the definitions of several combinatorial problems
from the literature (like Partition), together with some known hardness
and approximability results. We will use these results in our hardness and
inapproximability proofs.

2.2 Notation

We do not distinguish between sets and multisets in our notation, and de-
note a multiset with elements 1, 1, 3, 5, 5, and 8 by {1, 1, 3, 5, 5, 8}. Subtract-
ing an element from a multiset will remove it only once (if it is there), thus
{1, 1, 3, 5, 5, 8}− {1, 4, 5, 5} = {1, 3, 8}. Given a set or multiset S, then |S|
denotes the cardinality of S, e.g. |{1, 1, 3, 5, 5, 8}| = 6. By sum (S) we de-
note the sum of all elements in a set or multiset S, i.e., sum (S) =

∑

x∈S x.
E.g. sum ({1, 1, 3, 5, 5, 8}) = 23.

By Z we denote the set of all integers, while N denotes the set of positive
integers without 0.

For two points x and y in the plane we denote the Euclidean distance
between x and y by |x − y|. Let P = {p1, . . . , pn} be a set of points on
the real line, with p1 ≤ . . . ≤ pn. We define the distance multiset of P by
∆(P ) := {|pi − pj | | 1 ≤ i < j ≤ n}, and say that P covers a multiset D
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if D ⊆ ∆(P ). By dist (P ) we denote the multiset of all distances between
two neighboring points in P , i.e., dist (P ) = {|pi+1 − pi| | 1 ≤ i ≤ n − 1}.

We introduce a vector representation for large numbers that will allow
to add up the numbers digit by digit, like polyadic numbers. The num-
bers are expressed in the number system of some base Z. We denote by
〈a1, . . . , an〉 the number

∑

1≤i≤n aiZ
n−i; we say that ai is the i-th digit of

this number. In our proofs, we will choose base Z large enough such that
the additions that we will perform do not lead to carry–overs from one digit
to the next. Hence, we can add numbers digit by digit. The same holds
for scalar multiplications. For example, having base Z = 27 and numbers
α = 〈3, 5, 1〉, β = 〈2, 1, 0〉, then α + β = 〈5, 6, 1〉 and 3 · α = 〈9, 15, 3〉. We
define the concatenation of two numbers by 〈a1, . . . , an〉 ◦ 〈b1, . . . , bm〉 :=
〈a1, . . . , an, b1, . . . , bm〉, i.e., α ◦ β = αZm + β, where m is the number of
digits in β. Let ∆n(i) := 〈0, . . . , 0, 1, 0, . . . , 0〉 be the number that has n
digits, all 0’s except for the i–th position, where the digit is 1. Moreover,
1n := 〈1, . . . , 1〉 has n digits, all 1’s, and 0n := 〈0, . . . , 0〉 has n zeros. Notice
that 1n = Zn − 1.

2.3 Concepts from Complexity and Approx-

imability Theory

Complexity

We now recapitulate some concepts from complexity and approximability
theory that we will use throughout this thesis. A more detailed discussion of
computational complexity can be found for instance in the book by Garey
and Johnson [40], while the books by Hochbaum, by Ausiello et al. and
by Wegener give an introduction to (in–) approximability [3, 46, 92]. An
online compendium of approximability results is maintained by Crescenzi
and Kann and can be found in [106].

We say that an algorithm has pseudo–polynomial running time if the
running time is polynomial in the input size for the case that all numbers
in the input instance are coded unary. Expressed differently, the running
time is bounded polynomially in the input size and in the largest number
occurring in the input (in contrast to polynomial running times, which are
bounded only in the input size). For instance, there exists an algorithm
for Subset Sum that has pseudo–polynomial running time O(n ·S), where
n is the number of integers in the input, and S is the sum we are looking
for [40]. Observe that this running time is not polynomial in n, unless we
restrict S to be polynomial in n. Of course, if there are no numbers in
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the input of a problem, like in 3–Satisfiability, then pseudo–polynomial
running times do not differ from polynomial running times; hence, we will
speak of pseudo–polynomial running times only in the context of problems
like Subset Sum, where numbers occur in the input.

A problem Π is NP-hard in the strong sense, or strongly NP-hard, if no
algorithm can exist that solves the problem in pseudo–polynomial running
time (unless P = NP). We can prove strong NP-hardness for a problem Π by
giving a polynomial reduction to the problem Π from a problem Π′ that is
itself strongly NP-hard, e.g. 3–Partition or 3–Satisfiability, such that
the reduction creates only instances in which all numbers are polynomially
bounded in the size of the input instance of Π.

Approximability

Let Π be a maximization problem. The approximation ratio of an algo-

rithm A for instance I is OPT (I)
A(I) , where A(I) is the value of the objective

function of the solution generated by algorithm A for instance I (the ob-
jective value), and OPT (I) is the objective value of an optimum solution.
The approximation ratio of A is the maximum approximation ratio for any
instance I . The approximation ratio for minimization problems is defined

by A(I)
OPT (I) . In the following, we consider only maximization problems; the

corresponding definitions for minimization problems are analogous.

In a promise problem variation of maximization problem Π we are pro-
mised that the objective value of an optimum solution for any instance I
is either at least U(I) or strictly less than L(I), with U(I) < L(I), and
we have to decide which of the two cases is true. Such problems are also
called gap–problems. For several NP-hard optimization problems it is known
that the corresponding promise problems are still NP-hard for specific upper
and lower bounds. For instance, for the problem Max Clique, where we
are given a graph G = (V, E) with n vertices and we ask for the maximum
cardinality of a clique in G, the promise problem with upper bound U(I) = k
and lower bound bound L(I) = k

n
1
2
−ε

is NP-hard to decide for any 0 < ε < 1
2

and suitable integer k ≤ n [44].

If a promise problem variation of a maximization problem Π is NP-
hard for bounds L(I) and U(I), then this implies that no polynomial–time

algorithm for Π can achieve an approximation ratio of U(I)
L(I) , unless P =

NP. To see this, assume that there is a polynomial–time algorithm A with

approximation ratio R(I) ≤ U(I)
L(I) . We can use this algorithm to decide the

promise problem of Π in polynomial time as follows. Given an instance I
of the promise problem of Π, we interpret I as an instance of Π itself, and
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apply algorithm A to this instance. If the objective value of solution A(I)
is less than L(I), then a maximum solution cannot be too large; in fact,

we have OPT (I)
A(I) = R(I) ≤ U(I)

L(I) from the definition of the approximation

ratio of A, hence OPT (I) ≤ A(I) U(I)
L(I) < L(I)U(I)

L(I) = U(I). This yields

the correct answer for the promise problem, since the objective value of a
maximum solution by definition cannot be within the gap between L(I) and
U(I). On the other hand, if A(I) ≥ L(I), then this implies immediately
that a maximum solution for I has at least objective value U(I), since again
the objective value cannot be between L(I) and U(I) by definition of the
promise problem.

Let Π and Π′ be two maximization problems. A gap–preserving reduction
with parameters (c, ρ) and (c′, ρ′) transforms an instance I of Π into an
instance I ′ of Π′ in polynomial time such that the following two implications
hold:

If OPT (I) ≥ c, then OPT (I ′) ≥ c′.

If OPT (I) <
c

ρ
, then OPT (I ′) <

c′

ρ′
.

(2.1)

Here, c and ρ are functions in the size of I , and c′ and ρ′ are functions
in the size of I ′, with ρ(I), ρ′(I ′) ≥ 1. In the following we observe that
gap–preserving reductions can be used to transfer NP-hardness from one
promise problem to the other (for a proof, see e.g. [47]).

Fact 2.3.1. Given two maximization problems Π and Π′ and a gap–pre-
serving reduction from Π to Π′ with parameters (c, ρ) and (c′, ρ′). If the
promise problem of Π with upper bound U(I) = c and lower bound L(I) = c

ρ

is NP-hard to decide, then the promise problem of Π′ with upper bound
U(I ′) = c′ and lower bound L(I ′) = c′

ρ′ is NP-hard.

The existence of a gap–preserving reduction from Π to Π′ implies imme-
diately that if the promise problem of Π is NP-hard, then no approximation
algorithm can exist for the optimization problem Π′ that achieves an ap-
proximation ratio of ρ′, unless P = NP. In this case, we say that Π is hard
to approximate to within factor ρ′.

The class APX contains all optimization problems Π such that, for some
ρ > 1, there is a polynomial–time algorithm for Π with approximation ratio
ρ. Problem Π′ is APX-hard if every problem Π from APX can be reduced
to Π′ by using an approximation preserving reduction (for a definition of
approximation preserving reductions, see e.g. [3]).
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2.4 Problems from the Literature

Throughout this thesis we will prove NP-hardness or inapproximability for
several problems. In the proofs, we will give reductions from combinatorial
problems from the literature that are known to be hard to solve or approxi-
mate. We recapitulate the definitions of these problems here, together with
the corresponding hardness results.

Definition 2.4.1 (3–Partition). Given 3n positive integers q1, . . . , q3n

and an integer h such that
∑3n

i=1 qi = nh and h
4 < qi < h

2 , for i ∈
{1, . . . , 3n}, are there n disjoint triples of qi’s such that each triple adds
up to h?

The 3–Partition problem is NP-complete in the strong sense [40]. Ob-
serve that h

4 < qi < h
2 already implies that each subset of the qi’s that adds

up to h must have exactly three elements.

Definition 2.4.2 (Max 3–Dimensional Matching). Given three dis-
joint sets of positive integers W, X and Y of equal cardinality and a set
T ⊆ W × X × Y , find a subset M ⊆ T of maximum cardinality such that
no two elements in M agree in any coordinate.

The problem Max 3–Dimensional Matching is APX-hard [3] and
hard to approximate to within factor 95

94 , unless P = NP [16].

Definition 2.4.3 (Max Clique). Given a graph G = (V, E) with vertices
V and edges E, find a maximum clique in G, i.e., a maximum complete
subgraph of G.

The Max Clique problem is hard to approximate to within factor n1−ε

for any ε > 0, unless NP = ZPP, where n is the number of vertices in G
[44].

Definition 2.4.4 (Exact 3–Satisfiability). Given a set of m clauses
c1, . . . , cm over n Boolean variables x1, . . . , xn such that each clause contains
three positive literals, is there a (satisfying) assignment for the variables that
satisfies exactly one literal per clause?

The problem Exact 3–Satisfiability, which is also called One–in–

Three 3–Satisfiability, is NP-complete [40].

Definition 2.4.5 (Partition). Given a set of n positive integers A, is
there a subset X ⊆ A such that sum (X) = sum (A − X)?

Like Subset Sum, the Partition problem is NP-complete, but can be
solved in pseudo–polynomial time O(n · sum (A)) [40].
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Definition 2.4.6 (Subset Sum). Given a set of n positive integers P and
a number S, is there a subset X ⊆ P such that sum (X) = S?

The Subset Sum problem is NP-complete, but can be solved in pseudo–
polynomial time O(n · S) [40].

Definition 2.4.7 (Alternating Partition). Given n pairs of positive
integers (u1, v1), . . . , (un, vn), are there two disjoint sets of indices I and J
with I ∪ J = {1, . . . , n} such that

∑

i∈I ui +
∑

j∈J vj =
∑

i∈I vi +
∑

j∈J uj?

The problem Alternating Partition, which is a variation of Parti-

tion, is NP-complete [40].



Chapter 3

Double Digestion

3.1 Introduction

In this chapter, we study the Double Digest problem, where we are given
three multisets of distances and we ask for points on a line such that they
cover all these distances. We recapitulate the definition from the introduc-
tion (cf. Definition 1.2.1):

Definition. Given three multisets A, B and C of positive integers with
sum (A) = sum (B) = sum (C), are there three sets P A, P B and P C of
points on a line, such that 0 is the minimal point in each set, dist (P A) =
A, dist (P B) = B, dist (P C) = C, and P A ∪ P B = P C?

Due to its importance in molecular biology, the Double Digest prob-
lem has been subject of intense research since the first successful restriction
site mappings in the early 1970’s [30, 83]: The Double Digest problem is
NP-complete [41], and several approaches, including exponential algorithms,
heuristics, additional experiments, and computer–assisted interactive strate-
gies, have been proposed and implemented in order to tackle the problem
[2, 8, 48, 52, 95]. The number of feasible maps for a Double Digest in-
stance can be exponential in the number of fragments [41]. However, some
maps can be transformed into each other using cassette transformations, and
the set of different maps for an instance – modulo cassette transformations
– can be characterized by using alternating Eulerian paths in appropriate
graph classes [61, 70, 76]. For more information on the Double Digest

problem, see for instance the books by Pevzner [71] and by Waterman [91].
The double digest experiment is usually carried out with two enzymes

that cut DNA molecules at different restriction sites. For example, nuclease
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BalI cleaves each occurrence of string TGGCCA into two substrings TGG and
CCA, while nuclease SalI cuts each occurrence of string GTCGAC into two
substrings G and TCGAC. In this case, the two enzymes never cut at the
same site. A majority of all possible enzyme pairings of the more than
3000 known enzymes are pairs with such disjoint cutting behavior. On the
other hand, some results in the literature rely on enzymes that cut at the
same site in some cases (coincidences) [61]. In particular, NP-hardness of
the Double Digest problem has so far only been shown using enzymes
that allow for coincidences [41, 79, 91]. Indeed, such enzyme pairs exist.
For example enzyme HaeIII cuts each GGCC string into GG and CC, and
thus cleaves at a superset of the sites at which enzyme BalI cuts. However,
having two enzymes that are guaranteed to always cut at disjoint sites seems
more natural and might lead – at least intuitively – to easier reconstruction
problems. For example, such instances always fulfill |C| = |A| + |B| − 1
(recall that |S| denotes the cardinality of a multiset S). To reflect these
different types of experiments, we define the Disjoint Double Digest

problem, which is equivalent to the Double Digest problem with the
additional requirement that the two enzymes may never cut at the same
site, or, equivalently, that P A and P B are disjoint except for the first point
(which is 0) and the last point (which is sum (A) = sum (B)).

Definition 3.1.1 (Disjoint Double Digest). Given three multisets A, B
and C of positive integers with sum (A) = sum (B) = sum (C), are there
three sets P A, P B and P C of points on a line such that 0 is the minimal point
in each set, dist (P A) = A, dist (P B) = B, dist (P C) = C, P A ∪ P B = P C ,
and P A ∩ P B = {0, sum (A)}?

The NP-hardness results for Double Digest in the literature [41, 79,
91] rely on reductions from weakly NP-complete problems (namely Parti-

tion). As a first set of results, we prove in Section 3.2 that both Double

Digest and Disjoint Double Digest are actually NP-complete in the
strong sense, by giving reductions from 3–Partition.

In Section 3.3, we try to model reality more closely by taking into ac-
count that double digestion data usually contains errors. As a matter of
fact, all data in double digestion experiments is prone to error. Here, we
consider partial cleavage errors, where an enzyme can fail to cut at some
restriction site. Then one large fragment occurs in the data instead of two,
or even more, smaller fragments. Such errors can occur for many reasons,
e.g. improper reaction conditions or inaccurate DNA concentration (see for
instance [111] for a list of possible causes). A partial cleavage error occurs
for instance when an enzyme fails to cut at a site where it is supposed to
cut in the first (second) stage of the double digest experiment, but then
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does cut at this site in the third phase, where it is mixed with the other
enzyme. Such an error usually will make it impossible to find a solution for
the corresponding Double Digest instance. In fact, only P A ∪ P B ⊆ P C

can be guaranteed for any solution. Vice–versa, if an enzyme cuts only in
the first (second) phase, but fails to cut in the third phase, then we can
only guarantee P C ⊆ P A ∪ P B .

In the presence of errors, usually the data is such that no exact solutions
can be expected. Therefore, optimization criteria are necessary in order to
compare and gauge solutions. We will define optimization variations of the
Double Digest problem taking into account different optimization crite-
ria; our objective will be to find good approximation algorithms. Obviously,
an optimal solution for a problem instance with no errors will be a solution
for the Double Digest problem itself.1 Thus, the optimization problems
cannot be computationally easier than the original Double Digest prob-
lem, and (strong) NP-hardness results for Double Digest carry over to
the optimization variations.

In this chapter, we present several inapproximability results for optimiza-
tion variations of Double Digest. These results only hold unless P = NP.
For sake of readability, we refrain from mentioning this fact explicitely in
the remainder of this chapter.

An obvious optimization criterion for Double Digest is to minimize
the absolute number of partial cleavage errors in a solution, i.e., to minimize
|(P A ∪ P B) − P C | + |P C − (P A ∪ P B)|. Here, points in (P A ∪ P B) − P C

correspond to errors where enzyme A or B failed to cut in the third phase
of the experiment, and points in P C − (P A ∪ P B) correspond to errors
where enzyme A or B failed to cut in the first respectively second phase.
The corresponding optimization problem Min Absolute Error Double

Digest, in which we try to find point sets P A, P B and P C such that the
absolute error is minimum, is formally defined as follows.

Definition 3.1.2 (Min Absolute Error Double Digest). Given three
multisets A, B and C of positive integers such that sum (A) = sum (B) =
sum (C), find three sets P A, P B and P C of points on a line such that 0 is the
minimal point in each set, dist (P A) = A, dist (P B) = B, dist (P C) = C,
and e(P A, P B , P C) := |(P A ∪P B)−P C |+ |P C − (P A ∪P B)| is minimum.

We show in Section 3.3 that Min Absolute Error Double Digest

cannot be approximated to within any finite approximation ratio. This
follows immediately from the fact that instances of Double Digest, if
seen as an instance of our optimization problem, have optimum solutions
with error 0.

1Of course, this only holds if the optimization criterion is well–designed.
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We obtain a more sensible optimization criterion by measuring the a-
mount of error relative to the input size, by adding |A| + |B| + |C| as an
offset to the number of errors. This yields the following problem definition.

Definition 3.1.3 (Min Relative Error Double Digest). Given three
multisets A, B and C of positive integers such that sum (A) = sum (B) =
sum (C), find three sets P A, P B and P C of points on a line such that 0 is the
minimal point in each set, dist (P A) = A, dist (P B) = B, dist (P C) = C,
and r(P A, P B , P C) := |A| + |B| + |C| + e(P A, P B , P C) is minimum.

We show that Min Relative Error Double Digest cannot be ap-
proximated to within factor 877

876 . On the other hand, the problem can be
approximated with factor 2, as we show that any arbitrary arrangement of
the distances yields already a solution that is at most a factor 2 off the op-
timum. To show the non–approximability result, we give a gap–preserving
reduction from Max 3–Dimensional Matching to Min Relative Er-

ror Double Digest.
As a third optimization criterion, instead of counting the number of

errors, we measure the total size of a solution, which is a very natural
optimization criterion, even if it does not model cleavage errors exactly. In
this case, we want to minimize the total number of points in a solution, i.e.,
to minimize |P A∪P B ∪P C |. This yields the Min Point Number Double

Digest problem, which is defined as follows.

Definition 3.1.4 (Min Point Number Double Digest). Given three
multisets A, B and C of positive integers such that sum (A) = sum (B) =
sum (C), find three sets P A, P B and P C of points on a line such that 0 is the
minimal point in each set, dist (P A) = A, dist (P B) = B, dist (P C) = C,
and |P A ∪ P B ∪ P C | is minimum.

We show that Min Point Number Double Digest cannot be ap-
proximated to within factor 392

391 . In the proof, we use basically the same
techniques as for Min Relative Error Double Digest (in fact, we
present the proof for Min Point Number Double Digest first). On the
other hand, we show that any arbitrary arrangement of the distances yields
a solution that is at most a factor of 3 off the optimum.

For each optimization problem of Double Digest, a variation can be
defined where the enzymes may only cut at disjoint restriction sites, thus
yielding equivalent variations of Disjoint Double Digest. In Section 3.4,
we study these variations and show that – rather surprisingly – they are
even harder than the unrestricted problems: It is NP-hard to even find a
feasible solution for a given instance. To establish this result we show that
the problem Disjoint Ordering, where we have to arrange two sets of
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numbers such that they do not intersect, is already NP-hard. Given an
instance of any optimization variation of Disjoint Double Digest, it is
obvious that the distances from A and B are arranged without intersections
in any feasible solution, which is just the Disjoint Ordering problem.
Hence, no polynomial–time algorithm can find feasible solutions, and thus,
no finite approximation ratio can be achieved for any Disjoint Double

Digest variation. This result does not only hold for the optimization crite-
ria that we consider in this thesis, but it holds as well for any (reasonable)
optimization variation of Disjoint Double Digest, since the proof does
not depend on the optimization measure, but only on the requirement of
disjointness.

Part of the results in this chapter have been published previously [23, 22].

3.2 Strong NP-Completeness of Double Di-

gest and Disjoint Double Digest

In this section, we show strong NP-completeness for the decision problems
Double Digest and Disjoint Double Digest. To this end, we present
reductions from 3–Partition (see Definition 2.4.1).

We first extend the NP-completeness result from [41] for the Double

Digest problem.

Theorem 3.2.1. Double Digest is strongly NP-complete.

Proof: The Double Digest problem is obviously in NP. To show strong
NP-hardness we reduce 3–Partition, which is NP-complete in the strong
sense [40], to Double Digest as follows: Given an instance q1, . . . , q3n

and h of 3–Partition, let ai = ci = qi, for 1 ≤ i ≤ 3n, and let bj = h
for 1 ≤ j ≤ n. The three multisets A, B and C of ai’s, bj ’s and ci’s,
respectively, are an instance of Double Digest. If there is a solution for
the 3–Partition instance, then there exist n disjoint triples of qi’s (or ai’s,
respectively) such that each triple sums up to h. Starting from 0, we arrange
the distances ai on a line such that each three ai’s that correspond to the
same triple are adjacent. The same ordering is used for the ci’s. This yields
a solution for the Double Digest instance.

On the other hand, if there is a solution for the Double Digest in-
stance, say P A, P B and P C , then there exist n subsets of ci’s such that each
subset sums up to h, since each point in P B must occur in P C as well, and
all adjacent points in P B have distance h. Then each of these subsets has
exactly three elements, since h

4 < qi < h
2 by definition. Thus, these subsets

yield a solution for the 3–Partition instance.
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2

In the following, we show that Double Digest is strongly NP-complete
even if we restrict it to enzymes that cut at disjoint restriction sites, which
is the Disjoint Double Digest problem.

Theorem 3.2.2. Disjoint Double Digest is strongly NP-complete.

Proof: Disjoint Double Digest is obviously in NP. We show strong
NP-hardness by reduction from 3–Partition. Given an instance q1, . . . , q3n

and h of 3–Partition, let s =
∑3n

i=1 qi and t = (n+1)·s. Recall that s = nh.
We construct an instance of Disjoint Double Digest as follows. Let

ai = qi for 1 ≤ i ≤ 3n,

âj = 2t for 1 ≤ j ≤ n − 1,

bj = h + 2t for 1 ≤ j ≤ n − 2,

b̂k = h + t for 1 ≤ k ≤ 2,

ci = qi for 1 ≤ i ≤ 3n, and

ĉj = t for 1 ≤ j ≤ 2n − 2.

Let multiset A consist of the ai’s and âj ’s, B consist of the bj ’s and b̂k’s,
and C consist of the ci’s and ĉj ’s. Then sum (A) = sum (B) = sum (C) =
s + (2n − 2) · t, and multisets A, B and C are an instance of Disjoint

Double Digest.
If there is a solution for the 3–Partition instance, then there exist n

disjoint triples of qi’s such that each triple sums up to h. Assume w.l.o.g.
that the qi’s, and thus the ai’s and the ci’s, are ordered such that the three
elements of each triple are adjacent. Starting in 0, we arrange the distances
from A on a line such that each three ai’s that belong to the same triple
are adjacent, and such that each three ai’s are separated by one âj (see
Figure 3.1). Let P A be the corresponding point set. The distances from

B are ordered b̂1, b1, . . . , bn−2, b̂2, and P B is the corresponding point set,
starting in 0. For the distances ci we use the same ordering as for the
distances ai, and each three ci’s are separated by two ĉj ’s. Let P C be
the corresponding point set. Then P A, P B and P C yield a solution for the
Disjoint Double Digest instance: By construction, the distances in each
point set yield exactly the corresponding set of distances. Each point in P A

is the sum of an integer less than t and an even multiple of t. On the other
hand, each point in P B except for the first and the last one is the sum of a
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Figure 3.1: Solution for Disjoint Double Digest, for n = 4.

multiple of h and an odd multiple of t. Thus, sets P A and P B are disjoint
except for the first and the last point. Moreover, P C = P A ∪P B , hence the
three point sets yield a solution for the Disjoint Double Digest instance.

For the opposite direction, let P A, P B and P C be a solution for the
Disjoint Double Digest instance. We consider only sets P B and P C .
Each of the n + 1 points in P B consists of a multiple of h and a multiple of
t, and each two points in P B differ in the multiplicity of h. Since P B ⊆ P C ,
there must exist n + 1 points in C that are of the same form. Each point
in P C corresponds to the sum of some distances from C. The distances ĉj

contribute only to the multiplicity of t by construction. Thus, the points
in P C must be such that the distances ci “generate” the n + 1 points with
different multiples of h. Since 0 is the minimal point in C, this yields n
subsets of ci’s that each sum up to h. Moreover, with ci = qi and h

4 < qi < h
2

by definition, each of the n subsets has exactly three elements. Thus, the
corresponding triples of qi’s are a solution for the 3–Partition instance.

2

3.3 Approximability of Optimization Varia-

tions of Double Digest

In this section, we study the approximability of optimization variations of
Double Digest. In particular, we show that Min Absolute Error

Double Digest cannot be approximated at all, while we give constant up-
per and lower bounds for the approximability of the Min Relative Error

Double Digest and Min Point Number Double Digest.
First, we show that there is no polynomial time algorithm for Min Ab-

solute Error Double Digest that achieves any finite approximation
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ratio.

Theorem 3.3.1. Min Absolute Error Double Digest cannot be ap-
proximated to within any finite approximation ratio, unless P = NP.

Proof: By contradiction, assume the existence of a polynomial–time ap-
proximation algorithm A with finite approximation ratio r. Then we have
e(solution of algorithm A for I) ≤ r · e(any optimal solution for I) for any
instance I . This is also true for instances that actually have no partial
cleavage error at all, and are thus instances of Double Digest. For such
instances, an optimal solution has error 0, and therefore the approximation
algorithm needs to find a solution with no error as well. Hence, this algo-
rithm could be used to decide the Double Digest problem, which is in
fact NP-complete [41].

2

We now show that the problem Min Point Number Double Digest

is hard to approximate, by giving a gap–preserving reduction from Max

3–Dimensional Matching.

Theorem 3.3.2. Min Point Number Double Digest cannot be approx-
imated to within 392

391 , unless P = NP.

Proof: Let T be a given instance of Max 3–Dimensional Matching

with T ⊆ W ×X ×Y , where W = {w1, . . . , wd}, X = {x1, . . . , xd} and Y =
{y1, . . . , yd}. Let n = |T |. We construct an instance of Min Point Number

Double Digest as follows: Let base Z = d2 + 1. Let w′
i = ∆3d(i), x′

i =
∆3d(d + i), and y′

i = ∆3d(2d + i) for 1 ≤ i ≤ d. Each of the digits in these
numbers corresponds one–to–one to a value from W ∪ X ∪ Y , and the sum
over all elements w′

i, x
′
i and y′

i is 13d. For each triple tl = (wi, xj , yk) ∈ T we
define t′l = w′

i+x′
j +y′

k. Moreover, let z =
∑

tl∈T t′l−13d. We define multiset
A containing all numbers w′

i, x
′
j , y

′
k, and number z; multiset B contains all

values t′l; and C is the same as A. Then sum (A) = sum (B) = sum (C)
(due to the choice of z), and the three multisets are a valid instance of Min

Point Number Double Digest.
We denote solutions of the Max 3–Dimensional Matching instance

by SOL, and solutions of the Min Point Number Double Digest in-
stance by SOL′. We now show the following equivalence:

∃SOL : |SOL| ≥ m ⇐⇒ ∃SOL′ : |SOL′| ≤ 3d + n + 1 − m. (3.1)

To prove the direction from left to right in (3.1), let SOL be a solution of the
Max 3–Dimensional Matching instance with at least m triples. W.l.o.g.
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Figure 3.2: Solution SOL′ for Min Point Number Double Digest in-
stance.

assume that t1, . . . , tm are the triples in SOL, and that tl = (wl, xl, yl) for
1 ≤ l ≤ m. This assumption is valid since each element from W ∪ X ∪ Y
occurs at most once in the first m triples. We define a solution SOL′ for the
Min Point Number Double Digest instance as follows (cf. Figure 3.2):
Starting in 0, we define n + 1 points P B on a line such that the adjacent
distances between the first m + 1 points are exactly values t′1, . . . , t

′
m, and

the distances between the other points are the remaining values from B.
Analogously, we define 3d + 2 points P A such that the distances of adja-
cent points are, in that ordering, w′

1, x
′
1, y

′
1, w

′
2, x

′
2, y

′
2, w

′
3, . . . , y

′
d, z. With

P C = P A, the three point sets yield a solution for the Min Point Num-

ber Double Digest instance with at most 3d + n + 1−m points. To see
this, observe there are 3d + 2 points in P A and n + 1 points in P B . Since
P C = P A, set P C does not contribute to the total number of points. All
points in P B corresponding to the first m triples in B occur in P A as well.
In addition, the two sets agree in 0 and the last point. Hence, the number
of points in P A ∪ P B is at most 3d + 2 + n + 1 − (m + 2).

For the direction from right to left in (3.1), let SOL′ = (P A, P B , P C)
be a solution of the Min Point Number Double Digest instance with
at most 3d+n+1−m points. If P C 6= P A in SOL′, we can construct a new
solution by setting P C = P A. This does not increase the number of points,
hence, we assume in the following that P C = P A. There exist two points
p, q ∈ P A ∩ P B such that p < q, such that z is the distance between some
two points between p and q, and such that no other point from P A ∩ P B

is inbetween p and q (cf. Figure 3.3). We assume in the following that
q = sum (A), i.e., z is between the two rightmost points from P A ∩ P B .
If this is not the case in SOL′, we can achieve this by swapping the block
between p and q and the block between q and sum (A), for each set P A, P B ,
and P C . This swap operation does not change the total number of points.

We now define a solution for the Max 3–Dimensional Matching

instance: Let SOL ⊆ T be the set of all triples that correspond to a value
in B that is the distance between two adjacent points in P B that are to the
left of p. We now show that the triples in SOL are disjoint. Since p is a
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Figure 3.3: Swap operation moving the block that contains distance z to
the end of P A.

point in both P A and P B , the sums of the distances from A and from B,
respectively, that occur to the left of p are equal. Let s be this sum. Then
s is a number with 3d digits. Each digit in s is either 0 or 1, since no two
values in A − {z} (recall that z is not to the left of p) have a one in the
same digit. Hence, no two values from B that are to the left of p can have a
one in the same digit, since we chose base Z sufficiently large such that no
carry–overs occur. Since each digit corresponds one–to–one to an element
from W ∪X ∪ Y , the triples in SOL must be disjoint. Moreover, each such
element from W ∪ X ∪ Y occurs in exactly one triple from SOL, i.e., SOL
is a perfect matching for this set of elements. In the following, we assume
that the values from A and B that are to the left of p are arranged such that
the three elements that belong to a single triple are adjacent (analogous to
Figure 3.2). If this is not the case in SOL′, we can rearrange the points
in P A accordingly without increasing the total number of points. Observe
that this assumption ensures that between two adjacent matching points
from P A and P B that are to the left of p we have exactly one value from B
(and three values from A, respectively).

By assumption, the total number of points in SOL′ is at most 3d + n +
1 − m. Point set P A must contain 3d + 2 points (since |A| = 3d + 1) and
point set P B contains n + 1 points. Hence, there are at least m + 2 points
that occur in both P A and P B . By definition of point p, there exists only
one point to the right of p that is in both P A and P B , namely q. Hence,
at least m + 1 points to the left of p, inclusive, occur in both P A and P B .
Thus, there are at least m triples in SOL, each of them corresponding to
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one of the values from B that is to the left of p. This finishes our proof of
Equivalence (3.1).

We now show how a gap–problem of Max 3–Dimensional Matching

transforms into a gap–problem of Min Point Number Double Digest.
Let OPT and OPT ′ denote the size of optimum solutions for the Max 3–

Dimensional Matching and the Min Point Number Double Digest

instance, respectively. For constants α, β > 0, Equivalence (3.1) yields the
following implications:

� OPT ≥ (1 − α)d ⇒ OPT ′ ≤ 3d + n + 1 − (1 − α)d

� OPT < (1 − β)d ⇒ OPT ′ > 3d + n + 1 − (1 − β)d

Figuratively, this means the following: Given a gap–problem of Max 3–

Dimensional Matching, our reduction transforms it into a gap–problem
of Min Point Number Double Digest such that the width of the gap
remains the same, but it is “reflected”. Observe that the range of possible
solutions increases from d triples to 3d+n+1 points. Furthermore, observe
that applying Equivalence (3.1) to optimum solutions yields OPT = m ⇐⇒
OPT ′ = 3d + n + 1 − m.

To finish our proof, we now show that Min Point Number Dou-

ble Digest is hard to approximate. It is NP-hard to decide for Max

3–Dimensional Matching whether OPT ≥ (1 − 2δ + ε)d, or OPT <
(1−3δ)d, for any constant 0 < δ ≤ 1

97 and arbitrarily small ε > 0 [15, 16, 17].
This result even holds for the restricted version of the problem where every
element from W ∪ X ∪ Y occurs in exactly 2 triples. In this case n = 2d.
Using our reduction and the two implications above, we have shown that
it is NP-hard to decide for Min Point Number Double Digest whether
OPT ′ ≤ 4d + 1 + (2δ − ε)d or OPT ′ > 4d + 1 + 3δd, for any constant
0 < δ ≤ 1

97 and arbitrarily small ε > 0. With δ = 1
97 and sufficiently large

instances (i.e., d > 97), we have

4d + 1 + 3δd

4d + 1 + (2δ − ε)d
= 1 +

δd + εd

4d + 1 + (2δ − ε)d

> 1 +
δd

4d + 1 + 2δd

= 1 +
δ

4 + 1
d

+ 2δ

> 1 +
δ

4 + 3δ

= 1 +
1

391
.
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Thus, Min Point Number Double Digest cannot be approximated to
within 1 + 1

391 , unless P = NP.
2

Observe that Min Point Number Double Digest can be approx-
imated with factor 3: If all distances from an instance A, B and C are
arranged on three lines in an arbitrary fashion, each starting in 0, then this
results in a solution with at most |A| + |B| + |C| − 1 points; on the other
hand, an optimum solution will always use at least max(|A|, |B|, |C|) + 1
points. Thus, this trivial “algorithm” achieves an approximation ratio of 3
for Min Point Number Double Digest.

Similarly, the problem Min Relative Error Double Digest can be
approximated with factor 2: We can again arrange all distances from an
instance A, B and C in an arbitrary fashion. Then we obtain a solution
with an optimization measure of at most r(P A, P B, P C) = |A|+ |B|+ |C|+
|A|+ |B|+ |C|−3, since not a single point might be matched except for the
first and the last point. In an optimum solution, the optimization measure
would be at least |A| + |B| + |C|, thus giving an approximation ratio of 2
for this “algorithm”.

We now use basically the same proof technique as for the previous the-
orem to prove that Min Relative Error Double Digest is hard to
approximate.

Theorem 3.3.3. Min Relative Error Double Digest cannot be ap-
proximated to within 877

876 , unless P = NP.

Proof: We use the same reduction as in Theorem 3.3.2 and show the
following equivalence (recall that r(SOL′) is defined as |A| + |B| + |C| +
|(P A ∪ P B) − P C | + |P C − (P A ∪ P B)|):

∃SOL : |SOL| ≥ m ⇐⇒ ∃SOL′ : r(SOL′) ≤ 6d + 2n + 1 − m. (3.2)

The implication from left to right can be shown by using the same arguments
as in the proof of Theorem 3.3.2: Given a solution SOL with at least m
triples, we define a solution SOL′ like in the previous proof. With P A = P C

by construction, we have r(SOL′) = |A| + |B| + |C| + |P B − P C | ≤ (3d +
1) + n + (3d + 1) + n − m − 1 = 6d + 2n + 1 − m.

For the opposite direction of the equivalence, let SOL′ = (P A, P B , P C)
be a solution with r(SOL′) ≤ 6d + 2n + 1 − m. If P A 6= P C , then the
number of unmatched points does not increase by setting P̂ A = P C , since
in this case |(P̂ A ∪ P B) − P C | = |P B − P C | ≤ |(P A ∪ P B) − P C | and
|P C − (P̂ A ∪P B)| = 0 ≤ |P C − (P A ∪P B)|. Hence, constructing a solution
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SOL from SOL′ as in the proof of Theorem 3.3.2, and using the same
arguments, shows Equivalence 3.2.

Using Equivalence 3.2 and the fact that Max 3–Dimensional Match-

ing is hard to approximate [15, 16, 17], the claim is shown analogous to the
proof of Theorem 3.3.2. 2

3.4 NP-hardness of Finding Feasible Solutions

for Optimization Variations of Disjoint

Double Digest

In this section, we show that no Disjoint Double Digest optimization
variation can be approximated by any polynomial–time approximation al-
gorithm with a finite approximation ratio, unless P = NP. We achieve
this by showing that even finding feasible solutions for such problems is
NP-hard. To this end, we first show that the problem Disjoint Order-

ing (see Definition 1.4.1) is NP-complete. We then show how to reduce
Disjoint Ordering to any optimization variation of Disjoint Double

Digest.

Lemma 3.4.1. Disjoint Ordering is NP-complete.

Proof: Obviously, Disjoint Ordering is in NP. To show NP-hardness,
we reduce 3–Partition to it. Given an instance q1, . . . , q3n and h of 3–

Partition, we construct an instance of Disjoint Ordering as follows.
Let

ai = qi for 1 ≤ i ≤ 3n,

âj = h for 1 ≤ j ≤ n + 1,

bi = h + 2 for 1 ≤ i ≤ n, and

b̂j = 1 for 1 ≤ j ≤ (n + 1) · h − 2n.

Let A consist of the ai’s and âj ’s, and let B consist of the bi’s and b̂j ’s.
Then sum (A) = sum (B) = (2n + 1) · h. The number of distances in A
is polynomial in n, while the cardinality of B is only polynomial in n and
h. However, since 3–Partition is NP-complete in the strong sense, it is
still NP-complete if h is polynomially bounded in n. In this case, A and B
are an instance of Disjoint Ordering which can be constructed in time
polynomial in n. We now show that any solution for the 3–Partition
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instance yields a solution for the Disjoint Ordering instance, and vice
versa.

If there is a solution for the 3–Partition instance, then there exist
n disjoint triples of qi’s such that each triple sums up to h. W.l.o.g., we
assume that the qi’s are ordered such that each three qi’s from one triple
are adjacent. We arrange the distances from A on a line, starting in 0, such
that each three ai’s that belong to the same triple are adjacent, and such
that each three ai’s are separated by one âj (see Figure 3.4). The distances
from B are arranged on a line as follows: First we have h − 1 distances
b̂j , followed by n combinations of one distance bi and h − 2 distances b̂j ,

and at the end there are again h − 1 distances b̂j . Let P A and P B be the
corresponding point sets. Then P A and P B are disjoint except for the first
and the last point, and they yield a solution for the Disjoint Ordering

instance.

For the opposite direction, assume that P A and P B are a solution for
the Disjoint Ordering instance. We first show that the ordering of the
distances from B constructed in the previous paragraph is the only possible
arrangement. In P B , there are n distances bi. They separate at most n + 1
blocks of consecutive distances b̂j , including the two margin blocks. Some
of the blocks might be empty. Since h is the largest number in A, the
length of a margin block is at most h− 1, and the length of an inner block
is at most h − 2. Thus, the total length of the blocks of b̂j ’s is at most
2 · (h − 1) + (n − 1) · (h − 2) = (n + 1)h − 2n. This is exactly the number

of distances b̂j , and therefore their total length. Thus, each of the previous
upper bounds has to be tight. This yields the ordering of the distances
from B presented above (see Figure 3.4). For the ordering in P A, the n + 1

distances âj must be used to cover the n + 1 blocks of consequtive b̂j . This
leaves exactly n gaps, each of length h, which are covered by the distances
ai. This yields a solution for the 3–Partition instance, since h

4 < qi < h
2 by

definition, which implies that each gap is covered by exactly three distances.

2



3.5 Conclusion 41

We now show how to reduce Disjoint Ordering to Min Relative

Error Disjoint Double Digest: Let A and B be an instance of Dis-

joint Ordering. We “construct” an instance of Min Relative Error

Disjoint Double Digest by simply letting multisets A and B be the
same, and multiset C be the empty set. If an approximation algorithm for
Min Relative Error Disjoint Double Digest finds a feasible solu-
tion for this instance, this yields immediately a solution for the Disjoint

Ordering instance, since any feasible solution for Min Relative Error

Disjoint Double Digest must arrange the elements from A and B in a
disjoint fashion.

The same argument applies to Min Point Number Disjoint Double

Digest, and for any other (reasonable) optimization variation of Disjoint

Double Digest, since the reduction is totally independent of the opti-
mization criterion. Thus, we have the following.

Theorem 3.4.2. No polynomial–time approximation algorithm can achieve
a finite approximation ratio for any (reasonable) optimization variation of
Disjoint Double Digest, unless P = NP.

3.5 Conclusion

We have shown that Double Digest and Disjoint Double Digest are
NP-complete in the strong sense. Moreover, we studied the approximabil-
ity of three optimization variations of Double Digest that model partial
cleavage errors. We proved that Min Absolute Error Double Digest

cannot be approximated by any finite approximation ratio, and showed that
the problems Min Relative Error Double Digest and Min Point

Number Double Digest cannot be approximated to within factor 877
876

and 392
391 , respectively, unless P = NP. On the other hand, arranging the

distances in an arbitrary fashion yields already solutions for both problems
that are only a factor 2 and 3, respectively, off the optimum. In a last set of
results, we showed for Disjoint Double Digest optimization variations
that even finding feasible solutions is NP-hard. To this end, we proved that
the problem Disjoint Ordering is NP-complete.

While our approximability results are tight for all Disjoint Double

Digest variations, our results leave considerable gaps regarding the exact
approximability threshold for Min Relative Error Double Digest and
Min Point Number Double Digest, which present challenges for future
research.

Moreover, optimization variations of Double Digest that model other
error types (e.g. wrong fragment lengths or additional fragments) or even
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combinations of different error types should be defined and studied. On
a meta–level of arguing, it seems unlikely that an optimization variation
that models partial cleavage errors and some other error types could be any
easier than the problems that model only partial cleavage errors, but there
is a possibility that some error types might offset each other in a cleverly
defined optimization problem.



Chapter 4

Partial Digestion

4.1 Introduction

In the Partial Digest problem, we are given a multiset D of distances and
we ask for a set P of points on a line such that D is the pairwise distance
multiset for P . We recapitulate the definition from the introduction (cf.
Definition 1.2.2):

Definition. Given an integer m and a multiset D of k =
(

m
2

)

positive
integers, is there a set P = {p1, . . . , pm} of m points on a line such that
{|pi − pj | | 1 ≤ i < j ≤ m} = D?

The exact computational complexity of Partial Digest is a long–
standing open problem, and it appears in its pure combinatorial formulation
already in the 1930’s in the area of X–ray crystallography (acc. to [81]). The
problem can be solved in pseudo–polynomial time [56, 75], and there exists
a backtracking algorithm (for exact or erroneous data) that has expected
running time polynomial in the number of distances [81, 82], but exponen-
tial worst case running time [100]. The Partial Digest problem can be
formalized by cut grammars, which have one additional symbol δ, the cut,
that is neither a non–terminal nor a terminal symbol [78], and the prob-
lem is closely related to the theory of homometric sets1 [81]. Finally, if the
points in a solution do not have to be on a line, but only in d–dimensional
space, then the problem is NP-hard [81]. However, for the original Par-

tial Digest problem, neither a polynomial–time algorithm nor a proof of
NP-hardness is known [10, 28, 64, 74, 71, 79].

1Two (non–congruent) sets of points are homometric if they generate the same multiset
of pairwise distances.
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In the biological setting of partial digestion, many experimental varia-
tions have been studied: Probed partial digestion, where probes (markers)
are hybridized to partially digested DNA [1, 63]; simplified partial digestion,
where clones are cleaved either in one or in all restriction sites [10]; labeled
partial digestion, where both ends of the DNA molecule are labeled before
digestion2 [64]; and multiple complete digestion, where many different en-
zymes are used [34] (which is as well a generalization of double digestion).
For an introduction to the Partial Digest problem, see for instance the
survey by Lemke et al. [55], and the books by Pevzner [71] or by Setubal
and Meidanis [79].

In reality, the partial digest experiment cannot be conducted under ideal
conditions, and thus errors occur in the data. In fact, there are four types
of errors that occur in partial digest experiments [31, 39, 48, 82, 95]:

Additional fragments An enzyme may erroneously cut in some cases at
a site that is similar, but not exactly equivalent to a restriction site;
thus, some distances will be added to the data even though they do not
belong there. Furthermore, fragments can be added through contam-
ination with biological material, such as DNA from unrelated sources.

Missing fragments Obviously, partial cleavage errors (see page 28) lead
to missing fragments. Furthermore, fragments are not detected by
gel electrophoresis if their amount is insufficient to be detected by
common staining techniques. Finally, small fragments may remain
undetected at all since they run off at the end of the gel.

Fragment length Using gel electrophoresis, it is almost impossible to de-
termine the exact length of a fragment. Typical error ranges are be-
tween 2% and 7% of the fragment length.

Multiplicity detection Determining the proper multiplicity of a distance
from the intensity of its spot in the gel is almost impossible in practice.

We define variations of Partial Digest for the first three types of
errors, and prove hardness results for each of these variations. Intuitively,
the problem of modeling real–life instances – in which all error types can
occur – is even harder than having only one error type.

The Min Partial Digest Superset problem models the situation of
omissions, where we are given data for which we know that some distances
are missing, and we search for a set of points on a line such that the number

2Note that labeled partial digestion is connected to de novo peptide sequencing using
MS/MS data; we will study this problem in Chapter 7.
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of missing distances is minimum. This problem is formally defined as follows
(recall that ∆(P ) denotes the multiset of all distances between any two
points in P ).

Definition 4.1.1 (Min Partial Digest Superset). Given a multiset D
of k positive integers, find the minimum number m such that there is a set
P of m points on a line with D ⊆ ∆(P ).

For example, if D = {2, 5, 7, 7, 9, 14, 23}, then the point set P =
{0, 7, 9, 14, 23} (as shown in Figure 1.3 on page 5) would be a minimum
solution for the Min Partial Digest Superset instance D. On the other
hand, if D′ = {2, 7, 9, 9, 16}, then the points in P would still cover all dis-
tances from D′, but there exist solutions with fewer points that cover D′, e.g.
point set P ′ = {0, 2, 9, 18} (yielding distance multiset {2, 7, 9, 9, 16, 18}).

We show in Section 4.2 that computing an optimal solution for the Min

Partial Digest Superset problem is NP-hard, by giving a reduction from
Equal Sum Subsets. Our result provides in a sense an answer to the open
problem 12.116 in the book by Pevzner [71], which asks for an algorithm to
reconstruct a set of points, given a subset of their pairwise distances.

We can even strengthen our hardness result by considering the problem
t–Partial Digest Superset, where we restrict the cardinality of a solu-
tion to at most t, for some parameter t that is specified as a fixed function
in |D|, the cardinality of the input distance multiset:

Definition 4.1.2 (t–Partial Digest Superset). Given a multiset D of
positive integers, is there a set P of m ≤ t integers such that D ⊆ ∆(P )?

We show that the t–Partial Digest Superset problem is NP-hard
for any parameter t = f(|D|) := |D| 12 +ε, for any 0 < ε < 1

2 . This result is
tight in a sense, since any solution (even for the original Partial Digest)

must have at least cardinality Ω(|D| 12 ).
In Section 4.3, we study the Max Partial Digest Subset problem,

which models the situation of additions: We are given data in which some
wrong distances were added, and we search for a set of points on a line
such that they cover a maximum number of the given distances. A formal
definition is as follows.

Definition 4.1.3 (Max Partial Digest Subset). Given a multiset D
of k positive integers, find the maximum number m such that there is a set
P of m points on a line with ∆(P ) ⊆ D.

We show that there is no polynomial–time algorithm for this problem
that guarantees an approximation ratio of |D| 12−ε for any ε > 0, unless
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NP = ZPP.3 To establish this result, we give a gap–preserving reduction
from Max Clique. We also point to a trivial approximation algorithm
for Max Partial Digest Subset that achieves a matching asymptotic
approximation ratio. Thus, our inapproximability result is tight up to low–
order terms.

Our two optimization variations of the Partial Digest problem allow
the multiset of pairwise distances in a solution to be either a superset (i.e.,
to cover all given distances in D plus additional ones) or a subset (i.e., to
contain only some of the distances in D) of the input set D. If a polynomial–
time algorithm existed for either Min Partial Digest Superset or Max

Partial Digest Subset, we could use this algorithm to solve the original
Partial Digest problem as well: Any YES instance of Partial Digest is

an instance of both optimization problems whose optimum is 1
2 +

√

1
4 + 2k;

any NO instance of Partial Digest is an instance of Max Partial Di-

gest Subset (resp., Min Partial Digest Superset) whose optimum is

at most 1
2 +

√

1
4 + 2k − 1 (at least 1

2 +
√

1
4 + 2k + 1, respectively).

As a third type of error that can occur in real–life data, we study mea-
surement errors in Section 4.4. Algorithms for Partial Digest with inac-
curate data have been studied intensively in the literature [31, 48, 82, 95],
and different error models have been proposed, e.g. for measurement errors
that are logarithmic in the size of the fragment length [90, 91, 95] or for
intervals of absolute errors [2, 82].

The Partial Digest problem is known to be strongly NP-hard if ad-
ditive error bounds that can be even zero can be assigned to each distance
individually [55, 81]. However, this does not model reality appropriately,
since in real–life data we cannot assume that even one single fragment length
can be measured exactly, and moreover, we cannot expect individual error
bounds. Therefore, we study the computational complexity of the variation
of Partial Digest where all measurements are prone to the same additive
non–zero error.

We say that value v matches a distance d up to (additive) error ε if
|v − d| ≤ ε; moreover, a multiset D is a distance multiset for point set P
up to error ε, if each distance between any two points in P can be matched
with a distance in D up to error ε, and this matching is bijective. The
Partial Digest With Errors problem is defined as follows.

Definition 4.1.4 (Partial Digest With Errors). Given an integer m,
a multiset D of k =

(

m
2

)

positive integers, and an error bound ε > 0, is there

3A problem Π is in class ZPP if there is a probabilistic algorithm for Π with polynomial
running time which never outputs a wrong result, and which fails with probability less
than 1

2
.
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Figure 4.1: Trivial solution for a distance multiset D.

a set P of m points on a line such that D is the distance multiset for P up
to error ε?

In Section 4.4, we prove that Partial Digest With Errors is strongly
NP-complete by giving a reduction from 3–Partition.

Note that it would be even closer to real–life data to consider measure-
ment errors that are relative to the distance length. We conjecture that the
Partial Digest variation for relative errors is NP-hard as well, but we did
not succeed to prove this conjecture. The same holds for the case of wrong
multiplicities in the data.

Part of the results in this chapter have been published previously [21, 20].

4.2 NP-hardness of Min Partial Digest Su-

perset

In this section, we study the Min Partial Digest Superset problem and
show that this problem is NP-hard by giving a reduction from Equal Sum

Subsets.
First observe that the minimum cardinality of a point set that covers

all distances in a given multiset D cannot be too large. To see this, let
D = {d1, . . . , dk} be a distance multiset. If m is the minimum number such
that a set P of cardinality m with D ⊆ ∆(P ) exists, then m ≤ k+1: We set
p0 = 0, pi = pi−1 +di for 1 ≤ i ≤ k, and Ptriv = {p0, . . . , pk}, i.e., we simply
put all distances from D in a chain “one after the other” (see Figure 4.1).
In Ptriv , each distance di induces a new point, and we use one additional
starting point 0. Obviously, set Ptriv covers D and has cardinality k + 1.

Observe that Partial Digest can be easily reduced to Min Partial

Digest Superset: Given an instance D of Partial Digest of cardinality
|D| = k, there is a solution for D if and only if the minimal solution for the

Min Partial Digest Superset instance D has size m = 1
2 +

√

1
4 + 2k

(in this case, k =
(

m
2

)

).
We now show that Min Partial Digest Superset is NP-hard by

giving a reduction from Equal Sum Subsets (see Definition 1.4.2).
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Figure 4.2: Solution if there are two sets of equal sum.

Theorem 4.2.1. Min Partial Digest Superset is NP-hard.

Proof: We reduce Equal Sum Subsets to Min Partial Digest Su-

perset. Given an instance A = {a1, . . . , an} of Equal Sum Subsets, we
set D = A (and k = n), and prove in the following that there is a solution
for the Equal Sum Subsets instance A if and only if a minimal solution
for the Min Partial Digest Superset instance D has at most n points.

Let X and Y be a solution for the Equal Sum Subsets instance.
Assume w.l.o.g. that X = {a1, . . . , ar} and Y = {ar+1, . . . , as}, for some
1 ≤ r < s ≤ n. We construct a set P that covers D and that has at most
cardinality n. Similarly to the construction of Ptriv , we line up the distances
from D. In this case, two chains start at point 0: Those distances from X
and those from Y (see Figure 4.2); the remaining distances from D−(X∪Y )
are positioned at the end of the two chains. More precisely, we set

p0 = 0

pi = pi−1 + ai for 1 ≤ i ≤ r

pr+1 = ar+1

pj = pj−1 + aj for r + 2 ≤ j ≤ s − 1

qs+1 = pr + as+1

q` = q`−1 + a` for s + 2 ≤ ` ≤ n.

Set P = {p0, . . . , ps−1, qs+1, . . . , qn} is the corresponding set of points. No-
tice that there is no point “ps” in set P , since the two chains corresponding
to X and Y share two points, namely p0 = 0 and their common endpoint
pr.

Obviously, P is a set of cardinality n. Moreover, the definition of the
points yields immediately that except for i = s each ai is the difference
between two of the points (either pi − pi−1, or qs+1 − pr, or q` − q`−1).
To see that as occurs as well, first observe that pr =

∑r
i=1 ai = sum (X)

and that ps−1 =
∑s−1

j=1 aj = sum (Y ) − as. Thus, pr − ps−1 = sum (X) −
(sum (Y ) − as) = as, since X and Y are a solution of the Equal Sum
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Figure 4.3: A solution containing a cycle yields two subsets of equal sum:
the overall length of right jumps equals the overall length of left jumps.

Subsets instance and yield the same sum. Hence, P covers every distance
from D.

For the opposite direction, let P = {p1, . . . , pm} be an optimal solution
for the Min Partial Digest Superset instance with m < n + 1. Since
P covers D, for each a ∈ D there is a pair (p, q) of points p, q ∈ P such
that a = |p − q|. For each a ∈ D we choose one such pair and say that
it is associated with value a. We define a graph G = (V, E) with V = P
and E = {(p, q) | (p, q) is associated with some a ∈ D}, i.e., G contains
only those edges corresponding to some distance in D. Thus, |V | = m and
|E| = |D| = n. Since m < n + 1, this graph contains at least one cycle. We
show in the following that such a cycle induces a solution for the Equal

Sum Subsets instance.

Let C = c1, . . . , cs be any cycle in G (see Figure 4.3). Then |ci+1 − ci| ∈
D, for all 1 ≤ i ≤ s (here, we abuse notation and identify cs+1 with c1).
Assume w.l.o.g. that |ci+1−ci| is associated with ai, for 1 ≤ i ≤ s. We define
I+ := {i ∈ {1, . . . , s} | ci+1 > ci}, and I− := {j ∈ {1, . . . , s} | cj+1 < cj},
i.e., we partition the edges in the cycle into two sets, those that are oriented
to the left (I−) and those that are oriented to the right (I+). This yields

0 = cs+1 − c1

=

s
∑

i=1

(ci+1 − ci)

=
∑

i∈I+

(ci+1 − ci) +
∑

j∈I−

(cj+1 − cj)

=
∑

i∈I+

|ci+1 − ci| −
∑

j∈I−

|cj+1 − cj |

=
∑

i∈I+

ai −
∑

j∈I−

aj .
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Sets X := {ai | i ∈ I+} and Y := {aj | j ∈ I−} yield equal sums, and thus
a solution for the Equal Sum Subsets instance.

2

In the previous theorem, we have shown NP-hardness of Min Partial

Digest Superset by reduction from Equal Sum Subsets. In the proof,
we distinguished whether a minimal solution uses at most n points, or n+1
points (which in fact are always sufficient). We will now extend this result
and allow to “decrease” the bound to some value t that is still sufficiently
large. In fact, we show that the corresponding problem t–Partial Digest

Superset is NP-hard for every 0 < ε < 1
2 , if we set t to be f(|D|) = |D| 12+ε.

Observe that for a distance multiset D, a minimal set of points covering D

has cardinality at least 1
2 +

√

1
4 + 2|D| ≈ |D| 12 . Moreover, the Partial

Digest problem is equivalent to t–Partial Digest Superset with t =
1
2 +

√

1
4 + 2|D| = O

(

|D| 12
)

.

Theorem 4.2.2. t–Partial Digest Superset is NP-hard for any con-
stant 0 < ε < 1

2 and for any t = f(|D|) := |D| 12+ε.

Proof: We show NP-hardness by reduction from Equal Sum Subsets,
analogous to the proof of Theorem 4.2.1. Let {a1, . . . , an} be an instance of
Equal Sum Subsets. Informally speaking, we “blow up” the instance of
Min Partial Digest Superset used in the proof of Theorem 4.2.1 (cf.
Figure 4.4): First, we have n distances in a set A′, each corresponding to
one of the ai’s. Then we add a set B of q “essential” distances (for some
value q that we specify later) such that any solution for our instance must
use exactly q + 1 points to cover the distances in B, and no two of these
points can be used to cover any distances from A′. Finally, we add a suitable
set C ′ of O(q2) “inessential” distances to fill up the number of distances in
our instance. Each distance in C ′ is the sum of some distances from B, and
all the distances in C ′ can be covered “for free” by the points used for the
distances in B (i.e., no additional points are necessary). Our instance D for
t–Partial Digest Superset is the union of the distance sets A′, B and
C ′. We will choose the size of set C ′ such that t = f(|D|) = n + q holds.
Moreover, we will show that either n + q points are sufficient to cover all
distances in our instance, or that we need at least n+q +1 points, and that
there is a solution for the Equal Sum Subsets instance if and only if n+q
points are sufficient.

We postpone the choice of q and show first how the distance sets are
defined. All distances are numbers with base Z = q2 +

∑n
i=1 ai (recall that

we represent large numbers as vectors; see Section 2.2). Let a′
i = 〈ai〉 ◦ 0q
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and A′ = {a′
i | 1 ≤ i ≤ n}. For 1 ≤ j ≤ q, let bj = 〈0〉 ◦ ∆q(j), and

B = {bj | 1 ≤ j ≤ q}. For 1 ≤ u < v ≤ q, let cu,v =
∑v

`=u b`, and
C = {cu,v | 1 ≤ u < v ≤ q}. Obviously, no distances from A′ sum up to a
distance in B or C, and vice versa.

The instance of t–Partial Digest Superset is defined by D = A′∪B∪
C ′, where C ′ is a subset of C of appropriate size. Clearly, |D| = n+q+ |C ′|.
We want to choose the size of |C ′| such that f(|D|) = (n+q+|C ′|) 1

2
+ε = n+q

is satisfied. To this end, it suffices to take any C ′ ⊆ C with cardinality

|C ′| = (n + q)
2

1+2ε − (n + q). [If the latter number is not an integer, the

proof can be easily adjusted by considering |C ′| = b(n + q)
2

1+2ε c − (n + q),
and choosing q appropriately; this is possible for sufficiently large n.] In

order to make this possible, we need to have |C| ≥ (n + q)
2

1+2ε − (n + q).
Since C contains

(

q
2

)

distances, we have to choose q sufficiently large to

make the inequality
(

q
2

)

≥ (n + q)
2

1+2ε − (n + q) hold. This inequality holds

if we choose q ≥ max{6
1
ε , n}, which is shown as follows.

q ≥ 6
1
ε (by assumption)

⇒ q
1
2 ≥ 6

1
2ε

⇒ q − 2 ≥ 6
1
2ε (since q − 2 > q

1
2 for q ≥ 6

1
ε > 6)

⇒ (q − 2)2ε ≥ 6

⇒ (q − 2)2ε ≥ q

q − 2
· 4 (since

3

2
>

q

q − 2
for q > 6)

⇒ (q − 2)2ε ≥ q

q − 2
· 2

3+2ε
2 (since 4 > 2

3+2ε
2 for ε <

1

2
)
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⇒ (q − 2)1+2ε ≥ 2q ·
√

2
1+2ε

⇒
(

q − 2√
2

)1+2ε

≥ n + q (since q ≥ n)

⇒ (q − 2)2

2
≥ (n + q)

2
1+2ε

⇒
(

q

2

)

≥ (n + q)
2

1+2ε

We claim that there are two subsets of A of equal sum if and only if there
is a set P of at most t = n + q points such that D ⊆ ∆(P ). The proof
of this equivalence is based on the fact that, by construction, no subset of
distances from B ∪ C ′ can have the same length as a subset of distances
from A′. Therefore, we need q + 1 points to cover all distances from B∪C ′.
The remaining set A′ behaves as in the proof of Theorem 4.2.1: By reusing
one of the q + 1 points, we need at most n further points to cover A′; as in
the proof of Theorem 4.2.1, less than n points are sufficient if and only if
there exists a solution for the Equal Sum Subsets instance.

2

4.3 Approximability of Max Partial Digest

Subset

In this section, we show that Max Partial Digest Subset is as hard to
approximate as Max Clique (see Definition 2.4.3), and we give a trivial
approximation algorithm that achieves a matching approximation ratio.

In the following, we construct a gap-preserving reduction from Max

Clique to Max Partial Digest Subset. The problem Max Clique

cannot be approximated by any polynomial–time algorithm to within factor
n1−ε for any constant ε > 0, where n is the number of vertices of the input
graph, unless NP = ZPP [44, 62]. Our reduction is gap–preserving, thus the
inapproximability of Max Clique is transferred to Max Partial Digest

Subset.

Theorem 4.3.1. Max Partial Digest Subset cannot be approximated
to within factor |D| 12−ε, for any constant ε > 0, where |D| is the number of
input distances, unless NP = ZPP.
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Proof: Let G = (V, E) be an instance of Max Clique with vertex set
V = {v1, . . . , vn} and edge set E ⊆ V × V . We construct an instance D of
Max Partial Digest Subset by creating a number di,j = 0i ◦1j−i ◦0n−j

with base Z = n2 + 1 for each (vi, vj) ∈ E, j > i.
Let OPT be the size of a maximum clique in G (i.e., the number of

vertices in a maximum clique), let OPT ′ be the maximum number of points
that can be placed on a line such that all pairwise distances appear in D,
let k > 0 be an integer, and let ε > 0. We now prove the following two
implications.

1. If OPT ≥ kn1−ε, then OPT ′ ≥ kn1−ε.

2. If OPT < k, then OPT ′ < k.

To see the first implication, assume we are given a clique in graph G of
size kn1−ε. We construct a solution for the corresponding Max Partial

Digest Subset instance D by positioning a point at position v′
i = 1i ◦0n−i

for each vertex vi in the clique. This yields a feasible solution for D, since
for j > i each distance v′

j − v′i = 0i ◦ 1j−i ◦ 0n−j = di,j between two points
v′j and v′i corresponds to an edge in G and is therefore encoded as distance
di,j in D.

We now show the second implication by proving its converse, i.e., by
showing OPT ′ ≥ k =⇒ OPT ≥ k. Suppose we are given a solution of
the Max Partial Digest Subset instance consisting of k points p1 <
. . . < pk on a line. We assume w.l.o.g. that p1 = 0n. Let dimin,jmax

=
pk − p1. Note that dimin,jmax

, and thus imin and jmax, are uniquely defined
by construction. Each of the points p2, . . . , pk−1 from the solution has the
following properties:

1. It only has zeros and ones in its digits, as the distance to point p1

would not be in D otherwise.

2. It only has zeros in the first imin digits, as the distance to point pk

would not be in D otherwise.

3. It contains at most one continuous block of ones in its digits, as the
distance to point p1 would not be in D otherwise.

The points p2, . . . , pk−1 also have the property that they are of the same
form,

either 0imin
◦ 1` ◦ 0jmax−`−imin

◦ 0n−jmax

or 0imin
◦ 0` ◦ 1jmax−`−imin

◦ 0n−jmax

where 0 ≤ ` ≤ jmax − imin. Only one of the two forms can occur in a
solution, since if both forms existed, i.e., at least one point of each form
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existed, then the distance between points of different form would not be in
D, since at least one digit would not be 0 or 1.

We now construct a vertex set V ′ that will turn out to be a clique.
Let vimin

and vjmax
be in vertex set V ′. In addition, for each point pk′ ,

2 ≤ k′ ≤ k − 1, we have one vertex in set V ′: If pk′ is of the first form, i.e.,
pk′ = 0imin

◦ 1`′ ◦ 0jmax−`′−imin
◦ 0n−jmax

for some `′ ∈ {0, . . . , jmax − imin},
then we include v`′+imin

. Analogously, if pk′ is of the second form, i.e.,
pk′ = 0imin

◦ 0`′ ◦ 1jmax−`′−imin
◦ 0n−jmax

for some `′ ∈ {0, . . . , jmax − imin},
then we include v`′+imin

.

In order to see that the vertex set V ′ is a clique, consider the difference
pk′ − pk′′ of any two points with k′ > k′′, where pk′ has led to the inclusion
of vertex v`′ into the set and pk′′ has led to the inclusion of vertex v`′′ into
the clique. This difference is exactly d`′,`′′ , and thus the edge (v`′ , v`′′) is in
E.

The promise problem of Max Clique, in which we are promised that
the size of the maximum clique in a given graph G is either at least kn1−ε,
or less than k, and we are to decide which is true, is hard to decide [44].
The two implications above show that our reduction transforms this promise
problem of Max Clique into a promise problem of Max Partial Digest

Subset, in which we are promised that in an optimum solution of D either
at least kn1−ε, or less than k points can be placed on a line. This promise
problem of Max Partial Digest Subset is hard to decide as well, since
a polynomial–time algorithm for it could be used to decide the promise
problem of Max Clique. Thus, unless NP = ZPP, Max Partial Digest

Subset cannot be approximated with an approximation ratio of

kn1−ε

k
= n1−ε ≥ |D| 12−ε,

where |D| is the number of distances in instance D. This yields the claim.

2

A trivial approximation algorithm for Max Partial Digest Subset

works as follows: Given an instance D = {d1, . . . , d|D|}, it simply places
two points at distance d1 from each other. This approximation algorithm
achieves an approximation ratio of O(|D| 12 ), since any optimal solution has

at most 1
2 +

√

1
4 + 2|D| points. This matches our lower bound up to lower

order terms.
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4.4 Strong NP-completeness of Partial Digest

With Errors

In this section, we prove that Partial Digest With Errors is strongly
NP-complete by giving a reduction from 3–Partition (see Definition 2.4.1).

The idea of the reduction is as follows. Given an instance q1, . . . , q3n

and h of 3–Partition, we define a multiset of distances D and an error
ε = h

4 that form an instance of Partial Digest With Errors. Our
construction is based on the following observation: If there is a solution for
the 3–Partition instance, then we can arrange the qi’s such that triples
of adjacent qi’s sum up to h. If we sum up, say, 25 adjacent qi, then we
sum over at least 7 complete triples (that have sum h), plus some few (up
to four) additional qi’s at the beginning and the end. In the special and
trivial case that all qi’s have exactly value h

3 , we can easily determine the
exact sum of the 25 values. However, in a given instance of 3–Partition

typically not all qi’s will have value h
3 . However, they have “approximately”

value h
3 , since they satisfy h

4 < qi < h
2 by definition. In the proof of the

following theorem, we will use error ε to “close the gap” between h
3 and the

true values of the qi’s.

Theorem 4.4.1. Partial Digest With Errors is strongly NP-complete.

Proof: The problem Partial Digest With Errors is obviously in
NP. To prove strong NP-hardness, we give a reduction from 3–Partition.
Given an instance of 3–Partition, i.e., integers q1, . . . , q3n and integer h,
we define a distance multiset D and an error ε that are an instance of
Partial Digest With Errors. There will be a solution for this instance
if and only if there is a solution for the 3–Partition instance. Parallel
to the definition of D, we show already the “if” direction of the previous
statement: To this end, we assume that the 3–Partition can be solved,
i.e., there are n triples T1, . . . , Tn of qi’s that each sum up to h, and we
show how to construct a point set P that is a solution for the Partial

Digest With Errors instance, i.e., P matches D up to error ε. The
opposite direction (“only if”) is shown in a second step. We want to stress
at this point that although the definition of D and the construction of P
are presented simultaneously, the definition of D itself does not rely on the
fact that there exists a solution for the 3–Partition instance.

We assume that h
12 is integer. [Otherwise, we can achieve this by simply

multiplying all values qi and h by 12.] Moreover, we assume w.l.o.g. that
the values q1, . . . , q3n are ordered such that the three qi’s that belong to the
same triple Tj are adjacent, i.e., T1 = (q1, q2, q3), T2 = (q4, q5, q6), and so
on. Finally, we assume that the elements in each Ti are sorted in ascending



56 Partial Digestion

order, i.e., q1 ≤ q2 ≤ q3, q4 ≤ q5 ≤ q6, and so on. This ordering allows
us to derive a set of inequalities for the q′is. Let (q3k+1, q3k+2, q3k+3) be a
triple that sums up to h, for 0 ≤ k ≤ n − 1. Then q3k+1 ≤ h

3 , since q3k+1

is the smallest of the three elements in the triple, and not all of them can
be greater than h

3 . Similarly, h
3 ≤ q3k+3. With q3k+1 + q3k+2 = h − q3k+3,

we have q3k+1 + q3k+2 ≤ h − h
3 = 2h

3 . In combination with the restriction
h
4 < qi < h

2 (from the definition of 3–Partition), this yields the following
inequalities:

h

4
< q3k+1 ≤ h

3
h

4
< q3k+2 <

h

2
h

3
≤ q3k+3 <

h

2
(4.1)

h

2
< q3k+1 + q3k+2 ≤ 2h

3
2h

3
≤ q3k+2 + q3k+3 < h

h = q3k+1 + q3k+2 + q3k+3

Equivalently, we can express these inequalities using H := h
12 :

3H < q3k+1 ≤ 4H

3H < q3k+2 < 6H

4H ≤ q3k+3 < 6H (4.2)

6H < q3k+1 + q3k+2 ≤ 8H

8H ≤ q3k+2 + q3k+3 < 12H

12H = q3k+1 + q3k+2 + q3k+3

We will use these inequalities later to derive upper and lower bounds for
the error that we need to apply to our distances in order to guarantee the
existence of a solution for the Partial Digest With Errors instance.

Before we define our distances, we need to introduce the level of a dis-
tance: For a point set P , we say that a distance d between two points has
level ` if it spans `− 1 further points, and we say that distance d is an atom
if it has level 1 (see Figure 4.5).

We now define our instance of Partial Digest With Errors and
show at the same time how to construct a solution for this instance. Let
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atom

level 3

level 4

atom

PSfrag replacements

p1 p2 p3 p4 p5

Figure 4.5: Distances of different level.

c = n2 · h2. Moreover, define error ε := 3H . The distances are expressed
as numbers with base Z = 10nc, and each distance consists of three digits.
The first digit will denote the level of a distance (the meaning of the other
two digits will become clear soon).

First we define 4n − 1 distances that will turn out to be atoms in our
solution:

zi = 〈1, 0, qi〉 − ε for 1 ≤ i ≤ 3n, and

ci = 〈1, c, 0〉 − ε for 1 ≤ i ≤ n − 1.

Observe that the operation “−ε” only affects the last digit (and in fact,
we could have defined zi by 〈1, 0, qi − ε〉 instead), since we choose base Z
sufficiently large.

Using these distances, we can already define a “solution” P for dis-
tance multiset D (although we did not finish yet to define D; in fact,
we will construct D in the following such that it matches point set P
up to error ε): Let ẑi = zi + ε for 1 ≤ i ≤ 3n, and ĉi = ci + ε for
1 ≤ i ≤ n − 1. Observe that each ẑi has exactly value qi in its third digit.
We call these values z–pseudoatoms or c–pseudoatoms, respectively, and use
them to define a point set P = {p1, . . . , p4n} by specifying the pairwise dis-
tances between the points: Starting in 0, the points have distances ẑ1, ẑ2, ẑ3,
ĉ1, ẑ4, ẑ5, ẑ6, ĉ2, . . . , ĉn−1, ẑ3n−2, ẑ3n−1, ẑ3n, i.e., we alternate blocks of three
z–pseudoatoms and one c–pseudoatom, starting and ending with a block of
three z–pseudoatoms (see Figure 4.6).

We now show level by level how the distances in D are defined, and that
error ε (which is 3H) is sufficient to make all distances from D match some
distance between points in P .
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sum in third digit: q7sum in third digit: h

sum in third digit: q2 + q3 + h

Figure 4.6: Atoms and distances in multiset D.

By construction of P , the distances of level 1 are the pseudoatoms, and
they match the corresponding zi’s and ci’s up to error ε.

To denote the distances of higher levels we use notation d [`, j, k], for
appropriate parameters `, j and k. These names already indicate the values
of the three digits of a distance: Distance d [`, j, k] will have value ` in the
first digit, which will be the level of the distance in our point set P . The
second digit of the distance has value j · c, which denotes that this distance
will be used to span j c–pseudoatoms (and ` − j z–pseudoatoms) in our
point set P . For instance, in Figure 4.6 distance d[7, 2, 1] spans the two
pseudoatoms ĉ1 and ĉ2 (and five ẑi’s). Finally, the third digit of distance
d [`, j, k] has value k · h plus some “small offset”, which will be a multiple
of H . Here, k specifies how many complete blocks of three adjacent z–
pseudoatoms the distance spans in P (recall that such a block corresponds
to three qi’s that sum up to exactly h). In the following, we show how to
choose these offsets in the third digit such that our point set P matches
distance multiset D up to error ε.

First consider distances of level 2 in P , i.e., two points pi, pi+2 ∈ P
with one point pi+1 in between. There are four possibilities for the two
pseudoatoms between these two points, for some 0 ≤ k ≤ n − 1:

�
Case 1: ẑ3k+1 and ẑ3k+2;

�
Case 2: ẑ3k+2 and ẑ3k+3;

�
Case 3: ẑ3k+3 and ĉk; or

�
Case 4: ĉk and ẑ3k+1.

For the first case, the two pseudoatoms sum up to 2 in the first and to
0 in the second digit. For the third digit of the sum, recall that ẑ3k+1
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has value q3k+1 in its third digit, and ẑ3k+2 has value q3k+2 in its third
digit. Hence, inequalities (4.2) yield that the third digit of ẑ3k+1 + ẑ3k+2

is bounded below by 6H and bounded above by 8H . We define a distance
d [2, 0, 0] := 〈2, 0, 9H〉. Obviously, we can span the two pseudoatoms by this
distance if we apply at most error ε (recall that ε = 3H). Observe that we
could have chosen other values for the third digit of d [2, 0, 0], namely any
value between 5H and 9H (which still allows to match the bounds using
error ε). Here, we chose value 9H , since we will use that same distance to
cover the two pseudoatoms in Case 2 as well (see below).

Case 1 occurs exactly n times in our point set P , once for each block
of three z–pseudoatoms. Hence, we let distance d [2, 0, 0] be n times in our
distance multiset D.

Case 2 is similar to Case 1: The third digit of ẑ3k+2 + ẑ3k+3 is bounded
below by 8H and bounded above by 12H , using again inequalities (4.2).
Like before, this case occurs n times, and we can use n additional distances
d [2, 0, 0] in D to span such two pseudoatoms up to error ε. Thus, in total
we have 2n distances d [2, 0, 0] in D that arise from the first two cases.

For the remaining two cases of two pseudoatoms, the last digit of the
two pseudoatoms is at least 4H and at most 6H in Case 3, and at least 3H
and at most 4H in Case 4. Moreover, in both cases the first digit of the
sum is 2 and the second digit is c, and both cases occur exactly n−1 times.
Hence, we can define distance d [2, 1, 0] := 〈2, c, 4H〉 and include it 2(n− 1)
times in D, in order to cover these pairs of pseudoatoms, again up to error
ε.

Before we specify the distances of higher level, we introduce a graphical
representation of pseudoatoms: Each z–pseudoatom is represented by a
•, and each c–pseudoatom by a |. This allows us to depict sequences of
pseudoatoms without referring to their exact names. E.g. pseudoatoms
ẑ3ĉ1ẑ4ẑ5ẑ6ĉ2 yield •| • • • |, and the four cases of two adjacent pseudoatoms
above can be represented by ••, ••, •| and |•.

We now define the distances of higher level. Analogously to distances of
level 2, we can compute for each level the corresponding upper and lower
bounds for the third digit and define appropriate distances in D. Figure
4.7 shows the distances and multiplicities for level 2 to 7. This table is
organized as follows. The first column specifies the level of the distance,
and the second column gives the graphical representation of the combina-
tions of pseudoatoms that can occur. The next column specifies how often
each combination occurs, and the following two columns show lower and
upper bounds for the third digit of the sum of the pseudoatoms. Finally,
the last two columns specify the distance name that is used to cover the
pseudoatoms, and the value of the distance. Distance values are only intro-
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level pseudo- multi- lower upper distance distance
` atoms plicity bound bound name value

2 • • n 6H 8H d [2, 0, 0] 〈2, 0, 9H〉
• • n 8H 12H d [2, 0, 0]
• | n − 1 4H 6H d [2, 1, 0] 〈2, c, 4H〉
| • n − 1 3H 4H d [2, 1, 0]

3 • • • n 12H 12H d [3, 0, 1] 〈3, 0, 12H〉 + ε
| • • n − 1 6H 8H d [3, 1, 0] 〈3, c, 9H〉
• | • n − 1 7H 10H d [3, 1, 0]
• • | n − 1 8H 12H d [3, 1, 0]

4 • • | • n − 1 11H 16H d [4, 1, 0] 〈4, c, 13H〉
• | • • n − 1 10H 14H d [4, 1, 0]
• • • | n − 1 12H 12H d [4, 1, 1] 〈4, c, 12H〉
| • • • n − 1 12H 12H d [4, 1, 1]

5 • • | • • n − 1 14H 20H d [5, 1, 0] 〈5, c, 17H〉
• • • | • n − 1 15H 16H d [5, 1, 1] 〈5, c, 16H〉
• | • • • n − 1 16H 18H d [5, 1, 1]
| • • • | n − 2 12H 12H d [5, 2, 1] 〈5, 2c, 12H〉

6 • • • | • • n − 1 18H 20H d [6, 1, 1] 〈6, c, 21H〉
• • | • • • n − 1 20H 24H d [6, 1, 1]
• | • • • | n − 2 16H 18H d [6, 2, 1] 〈6, 2c, 16H〉
| • • • | • n − 2 15H 16H d [6, 2, 1]

7 • • • | • • • n − 1 24H 24H d [7, 1, 2] 〈7, c, 24H〉
• • | • • • | n − 2 20H 24H d [7, 2, 1] 〈7, 2c, 21H〉
• | • • • | • n − 2 19H 22H d [7, 2, 1]
| • • • | • • n − 2 18H 20H d [7, 2, 1]

Figure 4.7: Distances up to level 7.

duced once, and the lines are sorted such that those cases that use the same
distance stand together.

Observe that d [2, 0, 0] and d [6, 1, 1] are in a sense “equivalent”, since
they are used for cases that differ only in one complete block of three z–
pseudoatoms and one c–pseudoatom. Hence, we could replace the definition
by d [6, 1, 1] = d [2, 0, 0] + 〈4, c, h〉. Moreover, d [6, 2, 1] = d [2, 1, 0] + 〈4, c, h〉
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level pseudo- multi- distance distance
` atoms plicity name value

4k + 4 • • | . . . | • n − k − 1 d [4 + 4k, 1 + k, 0 + k] d [4, 1, 0] + k · β
• | . . . | • • n − k − 1 d [4 + 4k, 1 + k, 0 + k]
• • • | . . . | n − k − 1 d [4 + 4k, 1 + k, 1 + k] d [4, 1, 1] + k · β
| . . . | • • • n − k − 1 d [4 + 4k, 1 + k, 1 + k]

5 + 4k • • | . . . | • • n − k − 1 d [5 + 4k, 1 + k, 0 + k] d [5, 1, 0] + k · β
• • • | . . . | • n − k − 1 d [5 + 4k, 1 + k, 1 + k] d [5, 1, 1] + k · β
• | . . . | • • • n − k − 1 d [5 + 4k, 1 + k, 1 + k]
| . . . | • • • | n − k − 2 d [5 + 4k, 2 + k, 1 + k] d [5, 2, 1] + k · β

6 + 4k • • • | . . . | • • n − k − 1 d [6 + 4k, 1 + k, 1 + k] d [6, 1, 1] + k · β
• • | . . . | • • • n − k − 1 d [6 + 4k, 1 + k, 1 + k]
• | . . . | • • • | n − k − 2 d [6 + 4k, 2 + k, 1 + k] d [6, 2, 1] + k · β
| . . . | • • • | • n − k − 2 d [6 + 4k, 2 + k, 1 + k]

7 + 4k • • • | . . . | • • • n − k − 1 d [7 + 4k, 1 + k, 2 + k] d [7, 1, 2] + k · β
• • | . . . | • • • | n − k − 2 d [7 + 4k, 2 + k, 1 + k] d [7, 2, 1] + k · β
• | . . . | • • • | • n − k − 2 d [7 + 4k, 2 + k, 1 + k]
| . . . | • • • | • • n − k − 2 d [7 + 4k, 2 + k, 1 + k]

Figure 4.8: Distances with level 8 to 4n − 5. Value k varies between 1 and
n − 3.

and d [7, 2, 1] = d [3, 1, 0]+ 〈4, c, h〉. Similarly, distances of level greater than
7 can be decomposed into a distance of low level (4 to 7) and an appropriate
number of blocks of three z–pseudoatoms and one c–pseudoatom. We set
β := 〈4, c, h〉 and define in Figure 4.8 the distances of level 8 to 4n − 5. In
the table, the number of blocks k varies from 1 to n − 3. Finally, in Figure
4.9 the distances that have level 4n − 4 to 4n − 1 are shown. Observe that
as before they are derived from distances of level 4 to 7, for k = n − 2.
However, not all combinations are necessary for these distances.

Our distance multiset D consists of all atoms zi and ci, and all distances
specified in Figures 4.7, 4.8 and 4.9, with the corresponding multiplicities.
There are 4n − 1 levels, and for each level ` there are 4n − ` distances in
D. In total, this yields

∑4n−1
`=1 (4n− `) =

(

4n
2

)

distances. The cardinality of
D is polynomially bounded in n, and each distance in D is polynomial in
h. Hence, multiset D can be constructed in polynomial time from a given
instance of 3–Partition.
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level lower upper distance distance
` bound bound name value

4n − 4 (n − 2)h + 11H (n − 2)h + 16H d [4n − 4, n − 1, n − 2] d [4, 1, 0] + (n − 2) · β
(n − 2)h + 10H (n − 2)h + 14H d [4n − 4, n − 1, n − 2]
(n − 1)h (n − 1)h d [4n − 4, n − 1, n − 1] d [4, 1, 1] + (n − 2) · β
(n − 1)h (n − 1)h d [4n − 4, n − 1, n − 1]

4n − 3 (n − 1)h + 3H (n − 1)h + 4H d [4n − 3, n − 1, n − 1] d [5, 1, 1] + (n − 2) · β
(n − 1)h + 4H (n − 1)h + 6H d [4n − 3, n − 1, n − 1]
(n − 2)h + 14H (n − 2)h + 20H d [4n − 3, n − 1, n − 2] d [5, 1, 0] + (n − 2) · β

4n − 2 (n − 1)h + 6H (n − 1)h + 8H d [4n − 2, n − 1, n − 1] d [6, 1, 1] + (n − 2) · β
(n − 1)h + 8H (n − 1)h + 12H d [4n − 2, n − 1, n − 1]

4n − 1 nh nh d [4n − 1, n − 1, n] 〈4n − 1, (n − 1)c, nh〉 + ε

Figure 4.9: Distances with level 4n − 4 to 4n − 1. Each case occurs once.

Observe that the construction of D is possible for any instance of 3–

Partition, and does not rely on the fact that there is a solution for the
3–Partition instance, nor on a particular ordering of the qi’s. In our
argumentation above, we used these two properties of the instance only
to construct simultaneously a point set P that matches D up to error ε.
Hence, we have constructed an instance D and ε of Partial Digest With

Errors from the given instance of 3–Partition, and we have shown al-
ready that a solution for the 3–Partition instance yields a solution for the
Partial Digest With Errors instance.

In the following, we show the opposite direction, i.e., we show that a
solution for the Partial Digest With Errors instance yields a solution
for the 3–Partition instance.

Let R = {r1, . . . , r4n} be any set of 4n points on a line that is a solution
for the Partial Digest With Errors instance, i.e., multiset D is the
multiset of pairwise distances of R, up to error ε for each distance. We
assume w.l.o.g. that the points are ordered from left to right, i.e., r1 < r2 <
. . . < r4n. We will show that R is basically identical to P , the point set
that we constructed above.

Obviously, error ε can affect only the last digit of each distance, since
base Z is sufficiently large. Thus, exactly those distances with value 1 in
the first digit are atoms, since all other distances have value greater than
1 in the first digit, and since there must be exactly 4n − 1 atoms. This
implies immediately that the first digit of each distance denotes the level of
the distance in any solution.

We now show that error +ε has to be applied to each single atom to
make it fit to the distances between adjacent points in R. To see this, first
observe that the atoms sum up to



4.4 Strong NP-completeness of Partial Digest With Errors 63

3n
∑

i=1

zi +

n−1
∑

i=1

ci

=

3n
∑

i=1

(〈1, 0, qi〉 − ε) +

n−1
∑

i=1

(〈1, c, 0〉 − ε)

= 〈3n, 0, nh〉 − 3nε + 〈n − 1, (n − 1)c, 0〉 − (n − 1)ε

= 〈4n − 1, (n − 1)c, nh〉 − (4n − 1)ε.

On the other hand, the largest distance in multiset D is d [4n− 1, n − 1, n] =
〈4n − 1, (n − 1)c, nh〉 + ε. Each atom is the distance between two adjacent
points in R, up to error ε, while d [4n − 1, n− 1, n] is the distance between
the first and the last point in R, again up to error ε. Hence, the atoms
must sum up to the length of the largest distance. This is only possible if
we apply error +ε to each atom, yielding sum 〈4n − 1, (n − 1)c, nh〉, and
if we apply error −ε to the largest distance, yielding 〈4n − 1, (n − 1)c, nh〉
as well. Knowing this, we can again define pseudoatoms ẑi = zi + ε and
ĉi = ci + ε, which represent exactly the distances of adjacent points in
R (without error). Observe that if we represented the distances between
adjacent points in R in our number representation, then pseudoatom ẑi

would have exactly value qi in its last digit, for all 1 ≤ i ≤ 3n.
We now show that the ordering of the pseudoatoms arising from R is

such that there are n blocks of three pseudoatoms ẑi, and each two blocks are
separated by one pseudoatom ĉi. Again, we call the pseudoatoms with value
c in the second digit c–pseudoatoms, and those with value 0 in the second
digit are called z–pseudoatoms. Between any two adjacent c–pseudoatoms
there must be exactly three z–pseudoatoms: Since there are no distances
of level 4 with value 2c in the second digit, no combination || or | • | or
| • •| is possible, and there are at least three z–pseudoatoms in between two
c–pseudoatoms; moreover, since there are n − 2 distances of level 5 with
value 2c in the second digit, there must be at least n − 1 c–pseudoatoms
such that there are always at most 3 z–pseudoatoms in between. Hence, the
points in R are such that blocks of three z–pseudoatoms alternate with one
c–pseudoatom, starting and ending with a block of three z–pseudoatoms.

Finally, we show that the third digits of each three adjacent z–pseudo-
atoms sum up to h: Consider those distances of level 3 that have a zero in
the second digit. There are n such distances, and their third digits sum up
to nh+nε. Each of these distances must span exactly one of the n blocks of
three z–pseudoatoms. The total sum of the last digit of all z–pseudoatoms
is exactly

∑3n
i=1 qi = nh. Since the distances of level 3 that span these
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blocks do not overlap, they have to sum up to the same total. Hence, the
error for each such distance of level 3 must be −ε. This implies that each
three qi’s that correspond to one block sum up to exactly h (since we have
applied error +ε to each atom to define the z–pseudoatoms). Thus, these
triples yield a solution for the 3–Partition instance.

2

4.5 Conclusion

We have shown that the minimization problem Min Partial Digest Su-

perset is NP-hard, and that the maximization problem Max Partial Di-

gest Subset is hard to approximate. This answers open problem 12.116
left open in the book by Pevzner [71]. Moreover, we have shown that Par-

tial Digest is strongly NP-complete if all measurements are prone to the
same additive error. However, in the realm of Partial Digest, many
questions are still open:

� Since our optimization variations model different error types that (al-
ways) occur in real–life data, our hardness results suggest that real–life
Partial Digest problems are in fact instances of NP-hard problems.
However, the backtracking algorithm from [55] performs well in ex-
periments [100]. How can this be explained?

� What is the best approximation ratio for Min Partial Digest Su-

perset?

� In our NP-hardness proof for Partial Digest With Errors, we
used non–constant error ε = h

4 . Is Partial Digest still NP-complete
if we restrict the error to some (small) constant? What if we allow only
one–sided errors, i.e., if the lengths of the distances are for instance
always underestimated? And what is the complexity of Partial Di-

gest if we have a (fixed) relative error, i.e., if the error is some fixed
percentage of the distance length?

� Using gel electrophoresis, it is very hard to determine the correct mul-
tiplicity of a distance. This yields the following variation of Partial

Digest: We are given a set of distances, and for each distance a mul-
tiplicity, and we ask for points on a line such that the multiplicities
of the corresponding distance set do not differ “too much” from the
given multiplicities. What is the computational complexity of this
problem?
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� Is there a polynomial–time algorithm for the Partial Digest prob-
lem if we restrict the input to be a set of distances (instead of a
multiset), i.e., if we know in advance that each two distances in the
input are pairwise distinct?

Finally and obviously, the main open problem is of course the computational
complexity of Partial Digest itself.
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Chapter 5

Equal Sum Subsets

5.1 Introduction

In this chapter, we study the complexity of variations of Equal Sum Sub-

sets. We recapitulate the definition (cf. Definition 1.4.2):

Definition. Given a set A of n positive integers, are there two disjoint
non–empty subsets X, Y ⊆ A such that sum (X) = sum (Y )?

In the previous chapter, we used a reduction from Equal Sum Subsets

to show NP-hardness of Min Partial Digest Superset (cf. Theorem
4.2.1). The problem Equal Sum Subsets is a relaxation of Partition in
the sense that we do not require the two subsets to cover all input numbers.
The problem can be also seen as a variation of Bin Packing with fixed
number of bins, where we require that all bins should be filled to the same
level, while it is not necessary to use all the elements. While Equal Sum

Subsets, Partition, Bin Packing and their variations have numerous
applications in production planning and scheduling (see for instance the
book by Martello and Toth for a survey [60]), our interest in Equal Sum

Subsets comes from its relation to Partial Digest, since studying the
computational complexity of Equal Sum Subsets and its variations might
yield new insight into the complexity of Partial Digest as well. For this
reason, we study the complexity of Equal Sum Subsets variations here,
although they are only loosely connected to bioinformatics.

Only little is known about Equal Sum Subsets: It is NP-complete
[93], and there exists an FPTAS for the optimization version of Equal

Sum Subsets in which the ratio of the sums of the two subsets is to be
minimized [7]. Obviously, if the sum of the n given numbers is at most
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2n − 1, then at least two of the 2n possible subsets of the numbers must
have equal sum, hence the decision version of Equal Sum Subsets becomes
trivial. In this case, the problem has been studied in the context of function
problems [65]. In order to better understand Equal Sum Subsets as a
combinatorial problem, we extensively study different variations of Equal

Sum Subsets.

In the first set of Equal Sum Subsets variations that we study, we ask
for two subsets such that the ratio of their sums is exactly r, for some fixed
rational r > 0. We call this problem Factor–r Sum Subsets and define
it as follows.

Definition 5.1.1 (Factor–r Sum Subsets). Given a set A of n posi-
tive integers, are there two disjoint non–empty subsets X, Y ⊆ A such that
sum (X) = r · sum (Y )?

This problem is very closely related to the minimization version of
Equal Sum Subsets studied in [7]. In Section 5.2, we show that Factor–

r Sum Subsets is NP-complete for any rational factor r > 0 by giving two
reductions from Exact 3–Satisfiability, one that works for all r > 0
with r 6∈ {1, 2, 1

2}, and one that works for the cases r = 2 and r = 1
2 . The

case r = 1 is just Equal Sum Subsets.

The second generalization of Equal Sum Subsets that we study is
the problem k Equal Sum Subsets, in which we need to find k (disjoint)
subsets of equal sum from a given set of numbers, for given k ≥ 2:

Definition 5.1.2 (k Equal Sum Subsets). Given a multiset of n pos-
itive integers A = {a1, . . . , an}, are there k disjoint non–empty subsets
S1, . . . , Sk ⊆ {a1, . . . , an} such that sum (S1) = . . . = sum (Sk)?

Observe that we allow multisets here, in contrast to Equal Sum Sub-

sets, which becomes trivial if any number occurs more than once. Obvi-
ously, if k = 2 and the input is a set instead of a multiset, then k Equal

Sum Subsets is just Equal Sum Subsets. If we require that our subsets
yield a full partition of the given numbers, our problem would turn into a
variation of Partition with k sets instead of 2.

We first show in Section 5.3.1 that k Equal Sum Subsets is NP-
complete for any integer k ≥ 3 by giving a reduction from Alternating

Partition, which is an NP-complete variation of Partition [40].
Then we study the influence of parameter k on the complexity of k

Equal Sum Subsets in more depth. We have introduced parameter k
for the number of equal size subsets as a fixed constant that is part of the
problem definition. An interesting variation is to allow k to be a (fixed)
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function of the number of input elements n, e.g. k = n
q

for some constant
q. In the sequel, we will always consider k as a function of n; whenever
k is a constant we simply write k = O(1). In Section 5.3.2, we present a
dynamic programming algorithm for k Equal Sum Subsets with running

time O( nSk

kk−1 ), where n is the cardinality of the input set and S is the sum of
all numbers in the input set; the algorithm runs in pseudo–polynomial time
for k = O(1). On the other hand, we show that k Equal Sum Subsets

is strongly NP-complete for k = Ω(n). We obtain this result by giving a
reduction from 3–Partition.

The definition of k Equal Sum Subsets corresponds to the situation
in which it is allowed to form subsets that do not have the same number of
elements. In some cases, this makes sense; however, we may also wish to
have the same number of elements in each subset. Such problems occur for
instance when we are given a set of, say, soccer players, together with their
strength, and we want to compose teams of equal strength and size to play
a tournament. In Section 5.3.3, we study three variations of k Equal Sum

Subsets with equal cardinalities, where either we specify the cardinality of
the subsets in the input, or the cardinality is a fixed constant (part of the
problem definition), or we only ask for subsets of equal cardinality, but do
not specify their cardinality at all. The corresponding problems are defined
as follows.

Definition 5.1.3 (kESS Of Cardinality c). Given a multiset A of n
positive integers, are there k disjoint non–empty subsets S1, . . . , Sk ⊆ A
with sum(S1) = . . . = sum(Sk) such that each Si has cardinality c?

Definition 5.1.4 (kESS Of Specified Cardinality). Given a multiset
A of n positive integers and a cardinality c, are there k disjoint non–empty
subsets S1, . . . , Sk ⊆ A with sum(S1) = . . . = sum(Sk) such that each Si

has cardinality c?

Definition 5.1.5 (kESS Of Equal Cardinality). Given a multiset A
of n positive integers, are there k disjoint non–empty subsets S1, . . . , Sk ⊆ A
with sum(S1) = . . . = sum(Sk) such that all Si’s have the same cardinality?

In Section 5.3.3, we first present a polynomial time algorithm for kESS

Of Cardinality c. The algorithm uses exhaustive search and runs in time
O(nkc), which is polynomial in n as the two parameters k and c are fixed
constants. On the other hand, we show that kESS Of Specified Car-

dinality is NP-complete. To establish this result, we present a reduction
from Alternating Partition. A similar reduction can be used to prove
NP-completeness for kESS Of Equal Cardinality. However, we show
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that none of these two problems is strongly NP-complete by presenting an
algorithm that can solve them in pseudo–polynomial time.

After that we come back to the case where we ask for only two equal sum
subsets. In many settings, it is required that the two equal sum subsets fulfill
additional requirements. One such requirement is that the subsets have to
respect a given set of exclusions, for instance if we want to find groups of
people for medical experiments that fulfill some restrictions. This yields the
following problem.

Definition 5.1.6 (ESS With Exclusions). Given a set A of n positive
integers and an exclusion graph Gex = (A, Eex) with vertices A and edges
Eex ⊆ A × A. Are there two disjoint non–empty subsets X, Y ⊆ A with
sum (X) = sum (Y ) such that each of the two sets is an independent set in
Gex, i.e., there is no edge between any two vertices in X or any two vertices
in Y ?

This problem is in a sense a generalization of the Party Invitation

problem, where we are given a tree (the hierarchical structure of a company)
and for each node a value (a conviviality rating of an employee), and we
want to find a set of nodes (people to be invited) of maximum sum such
that there is no node and its parent node in the set (no employee and its
supervisor). This is a standard example for dynamic programming and can
be solved in polynomial time [27].

The problem ESS With Exclusions is obviously NP-complete, since
it is just Equal Sum Subsets if the exclusion graph is empty. We give a
pseudo–polynomial time algorithm for this problem in Section 5.4.1. If we
want to model preferences, we can

If we do not want to exclude elements, but on the contrary we want to
ensure that some numbers of the input occur in the subsets, then this yields
the following two problems: In ESS With Enforced Element we enforce
one element, say the last, of the input numbers to be in one of the subsets;
in Alternating Equal Sum Subsets we have for each input number a
“partner”, and if a number occurs in one set, then its partner has to be
in the other set. This problem is the “partial” equivalent of Alternating

Partition. More formally, the two problems are defined as follows.

Definition 5.1.7 (ESS With Enforced Element). Given a set A =
{a1, . . . , an} of n positive integers, are there two disjoint subsets X, Y ⊆ A
with sum (X) = sum (Y ) such that an ∈ X?

Definition 5.1.8 (Alternating Equal Sum Subsets). Given n pairs of
positive integers (u1, v1), . . . , (un, vn), are there two disjoint nonempty sets
of indices I and J such that

∑

i∈I ui +
∑

j∈J vj =
∑

i∈I vi +
∑

j∈J uj?
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We show in Section 5.4.1 that both problems above are NP-complete, by
reducing Alternating Partition to the former and Equal Sum Subsets

to latter, respectively.

We then study variations of Equal Sum Subsets where we restrict the
cardinality of the equal sum subsets. If we ask for equal cardinalities, then
the corresponding results for k Equal Sum Subsets apply. On the other
hand, if we want the cardinalities to be different, this yields the following
problem definition.

Definition 5.1.9 (ESS Of Different Cardinality). Given a set A of
n positive integers, are there two disjoint subsets X, Y ⊆ A with sum (X) =
sum (Y ) such that |X | 6= |Y |?

We show that ESS Of Different Cardinality is NP-complete, and
that it remains hard to solve even if we specify the difference of the two set
cardinalities.

Finally, we turn to the variation Equal Sum Subsets where we are
given two sets of numbers and we ask for two equal sum subsets, one from
each set. The corresponding problem ESS From Two Sets is defined as
follows.

Definition 5.1.10 (ESS From Two Sets). Given two sets A and B of
positive integers, are there two nonempty subsets U ⊆ A and V ⊆ B such
that sum (U) = sum (V )?

We first show in Section 5.4.3 that the problem ESS From Two Sets

is NP-complete. Then we study the following four variations of the problem
where we restrict the choice of elements in the subsets:

Definition 5.1.11. Given two sets of positive integers A = {a1, . . . , an}
and B = {b1, . . . , bm}, are there two nonempty indices sets I, J ⊆ {1, . . . , n}
such that

∑

i∈I ai =
∑

j∈J bj , and that comply with the following additional
condition:

ESS Of Equal Cardinality From Two Sets: |I | = |J |
ESS With Disjoint Indices From Two Sets: I ∩ J = ∅
ESS With Disjoint Covering Indices From Two Sets: I ∩J = ∅

and I ∪ J = {1, . . . , n}
ESS With Identical Indices From Two Sets: I = J

We show in Section 5.4.3 that each of these problem variations is NP-
complete.

Part of the results in this chapter have been published previously [18, 19].
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5.2 NP-Completeness of Factor–r Sum Sub-

sets

In this section, we study the Factor–r Sum Subsets problem. For r = 1,
the problem is Equal Sum Subsets and therefore NP-complete [93]. We
show that Factor–r Sum Subsets is actually NP-complete for any fixed
rational r > 0. The proof of NP-hardness consists of two different reductions
from Exact 3–Satisfiability (see Definition 2.4.4), where the second
reduction is just for the cases r = 2 and r = 1

2 .

Lemma 5.2.1. Factor–r Sum Subsets is NP-hard for any rational r > 0
with r 6∈ {1, 2, 1

2}.
Proof: We present a reduction from Exact 3–Satisfiability. Let r =
p/q, where p and q are positive integers with no common divisor except 1
(coprimes) and p < q. [The case p > q is equivalent by interchanging sets X
and Y in the problem definition.] We distinguish several cases, depending
on the values of p and q. We only give a detailed proof for the first case; for
the other cases the proof is quite similar, so we just mention the construction
of the necessary numbers.

Case 1: p > 3. Consider an instance of Exact 3–Satisfiability with a
set of n variables V = {v1, . . . , vn} and a set of m clauses C = {c1, . . . , cm}.
An instance of Factor–r Sum Subsets is constructed as follows. For
each variable vi a number ai =

∑

vi∈cj
∆m(j) is defined. Value ai has m

digits, and its non–zero digits correspond to clauses where vi appears. Two
additional numbers an+1 and an+2 are constructed which are multiples of
1m: an+1 = (p − 1) · 1m and an+2 = q · 1m. For all numbers we use base
Z = q(p + q + 2) + 1. This way we will avoid carry–overs from one digit
to the next when adding ai’s. Let A = {a1, . . . , an+2}. In the following,
we show that there is a solution for the Exact 3–Satisfiability instance
if and only if there are two disjoint nonempty subsets X, Y ⊆ A such that
sum (X) = r · sum (Y ).

“only if”: Assume that there exists an exact satisfying assignment for
the clauses in C. This implies that there exists a subset R ⊆ {a1, . . . , an}
such that sum (R) = 1m, since for each clause cj there is exactly one of the
three variables in cj set to TRUE, say vk, and the corresponding ak has a
1 in the j–th digit. We define a set R to contain exactly these ai’s; then
sum (R) = 1m. Hence, by setting X = R ∪ {an+1} and Y = {an+2}, we
have sum (X) = p · 1m = r · q · 1m = r · sum (Y ), thus X and Y yield a
solution for the Factor–r Sum Subsets instance.

“if”: For the opposite direction, assume that non–empty sets X, Y exist
such that sum (X) = r · sum (Y ); equivalently, q · sum (X) = p · sum (Y ).
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Observe that summing the i’th digit of all numbers in the input set A yields
p + q + 2. Moreover, even when multiplying each number in A by q we get
only total q(p + q + 2) in the i’th digit, and no carry–overs occur, since we
choose base Z sufficiently large. Since q · sum (X) = p · sum (Y ), we have
qxi = pyi, where xi and yi are the i’th digit of sum (X) resp. sum (Y ), for
1 ≤ i ≤ n. This implies that for each digit i either xi = yi = 0, or q divides
yi and p divides xi (since p and q are coprime). Observe that not all digits
can be 0, since we have assumed that X and Y are non–empty.

We now show that xj = p and yj = q for every non–zero digit j: Since
p divides xj and q divides yj , there exist two positive integers k and ` such
that xj = k · p and yj = ` · q. Then qxj = pyj implies that k = `. Moreover,
we have p + q + 2 ≥ xj + yj = k(p + q), hence 2 ≥ (k − 1)(p + q), and this
inequality can only hold for k = 1, since q > p > 3 and k is positive. Thus,
xj = p and yj = q.

Since only five numbers in A have non–zero value in the j’th digit, and
the corresponding values are 1, 1, 1, p− 1 and q,we can only achieve xj = p
if X = {an+1} ∪ R, where R is a subset of A such that sum (R) has a 1 in
the j’th digit. Thus, the only way to get yj = q is to have Y = {an+2}.
Since an+1 has value p − 1 in every digit, no digits in sum (X) can be 0,
hence also in sum (Y ). Thus, the variables corresponding to numbers in R
form an exact satisfying assignment for the given clauses.

We now sketch the proof for the remaining combinations of values of p
and q:

Case 2: p = 3, q > 4. Numbers a1, . . . , an are constructed as in Case 1,
an+1 = 3 · 1m, and an+2 = (q − 1) · 1m.

Case 3: p = 3, q = 4. Numbers a1, . . . , an are constructed as in Case 1,
an+1 = 3 · 1m, and an+2 = 2 · 1m.

Case 4: p = 2, q > 3. Numbers a1, . . . , an are constructed as in Case 1,
and only one additional number an+1 = (q − 1) · 1m is used.

Case 5: p = 2, q = 3. For each variable vi let ai =
∑

vi∈cj
3 · ∆m(j), i.e.,

ai has a digit 3 in each position that corresponds to a clause that contains
vi. We also set an+1 = 1m. Note that sum (A) = 10 · 1m. Like in Case
1, the direction “only if” is easy: any exact satisfying assignment for the
clauses in C corresponds to numbers ai that add up to 3·1m, which together
with an+1 constitute X . For the “if” direction, we observe that the only
way to have the required ratio is by having two sets X and Y such that
sum (X) = 4 ·1m and sum (Y ) = 6 ·1m; this implies an+1 ∈ X , and for each
j ∈ {1, . . . , m} there is exactly one further number ai ∈ X that has non–
zero digit j. Hence, the variables corresponding to X − {an+1} constitute
an exact satisfying assignment.
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Case 6: p = 1, q > 2. Numbers a1, . . . , an are constructed as in Case 1,
and there is only one additional number an+1 = q · 1m.

2

Lemma 5.2.2. Factor–r Sum Subsets is NP-hard for r = 2.

Proof: We use a restricted, but still NP-hard version of Exact 3–

Satisfiability for a reduction to Factor–r Sum Subsets for the case r =
2. In the following, let always r = 2. Given an Exact 3–Satisfiability

instance with variables v1, . . . , vn and clauses c1, . . . , cm with only posi-
tive literals, let G = (V, E) be the graph with vertices V = {v1, . . . , vn}
(i.e., each variable corresponds to a vertex) and, for i, j ∈ {1, . . . , n}, edges
(vi, vj) ∈ E if and only if vi and vj both occur in a clause ck, for some
k ∈ {1, . . . , m}. The Exact 3–Satisfiability variation in which the cor-
responding graph G is connected is still NP-hard, because we could use a
polynomial algorithm for this variation to solve the unrestricted Exact 3–

Satisfiability problem by applying the algorithm to each component of
the corresponding graph.

We reduce the restricted variant of Exact 3–Satisfiability with con-
nected graphs to Factor–r Sum Subsets as follows. We construct an
instance A of Factor–r Sum Subsets by defining one number ai for each
variable vi by ai :=

∑

vi∈cj
∆n(j), where we set the j–th digit to 1 if vi

appears as a literal in clause cj . We let the base Z of these numbers be 7.
Observe that among all ai’s there are exactly three ones in each digit.

Assume that we are given an exact satisfying assignment for the variables
of the Exact 3–Satisfiability instance. We then construct sets X, Y ⊆
A, where Y contains all numbers ai for which the corresponding variable
vi has been set to TRUE, and X contains all remaining numbers. Thus,
sum (Y ) = 〈1, 1, . . . , 1〉 and sum (X) = 〈2, 2, . . . , 2〉, and therefore, X and
Y yield a solution for the Factor–r Sum Subsets instance.

For the opposite direction, assume that we are given a solution X and
Y for the Factor–r Sum Subsets instance with sum (X) = 2 · sum (Y ).
Since each digit is set to 1 in exactly three of the numbers ai, and since
no carry–overs can occur when summing up the ai’s because base Z is
sufficiently large, sum (Y ) must contain only ones and zeros in its digits,
and sum (X) contains only twos and zeros. Since the sets are not empty, at
least one digit must be set to 1. We assign the value TRUE to a variable vi

with corresponding number ai if ai ∈ Y , and we assign the value FALSE,
if ai ∈ X . Thus, if a clause cj = (vf , vg, vh) exists, then either one of the
three numbers af , ag, or ah is in Y and the other two numbers are in X ,
or neither X nor Y contain af , ag, or ah. In the latter case, we know that
sum (X) and sum (Y ) would contain a 0 at position j.
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However, the numbers sum (X) and sum (Y ) cannot contain any zero
digits because of the connectedness of graph G. In order to see this, assume
for the sake of contradiction that sum (Y ) contains some digits that are
0. Then sum (X) must have digits with value 0 at the same positions.
Consider the set S of all variables that occur in clauses which correspond
to zero digits in sum (X) and sum (Y ). Then the subgraph of G with only
the vertices corresponding to variables from set S must be a component in
the graph G without any edges to other vertices: If such an edge existed, it
would imply that the corresponding digit is not set to 0 in either sum (X)
or sum (Y ). To see this, consider an edge e = (vf , vg) arising from clause
cj = (vf , vg , vh) with vf ∈ S and vg /∈ S. Then ag ∈ X ∪ Y , but af (and
ah) must be in X ∪ Y as well, in order to achieve the factor 2 in the j–th
digit.

Thus, there can be no zeroes in any digit in sum (X) or sum (Y ), and
our assignment is a solution for the Exact 3–Satisfiability instance.

2

Since Factor–r Sum Subsets is obviously in NP, Lemmas 5.2.1 and
5.2.2 and the NP-completeness of Equal Sum Subsets yield the following.

Theorem 5.2.3. Factor–r Sum Subsets is NP-complete for any rational
r > 0.

5.3 Complexity of k Equal Sum Subsets

5.3.1 NP-completeness of k Equal Sum Subsets

We now study the problem k Equal Sum Subsets, where we ask for k sub-
sets of equal sum (note that Equal Sum Subsets is the special case where
k = 2). We first show its NP-hardness by reduction from Alternating

Partition (see Definition 2.4.7).

Theorem 5.3.1. k Equal Sum Subsets is NP-complete for any k ≥ 2.

Proof: The problem is obviously in NP. NP-hardness for the case k =
2 follows immediately from the fact that Equal Sum Subsets is NP-
complete. To show NP-hardness for k > 2, we reduce Alternating Parti-

tion to it. We transform a given Alternating Partition instance with
pairs (u1, v1), . . . , (un, vn) into a k Equal Sum Subsets instance as fol-
lows. For each pair (ui, vi) we construct two numbers u′

i = 〈ui〉 ◦∆n(i) and
v′i = 〈vi〉◦∆n(i). In addition, we construct k−2 (equal) numbers c1, . . . , ck−2

with ci = 〈 1
2

∑

i(ui + vi)〉 ◦ 1n. We set base Z = (n + 1) · k · ∑i(ui + vi),



76 Equal Sum Subsets

which is chosen sufficiently large to ensure that no carry–overs from one
digit to the next occur in any of the following additions.

Assume that we are given a solution of the Alternating Partition

instance, i.e., two index sets I and J such that
∑

i∈I ui +
∑

j∈J vj =
∑

i∈I vi +
∑

j∈J uj . We construct k equal sum subsets S1, . . . , Sk as fol-
lows. For k = 1, . . . , k − 2, we have Si = {ci}; for the remaining two
subsets, we let u′

i ∈ Sk−1, if i ∈ I , and v′i ∈ Sk−1, if i ∈ J , and we let
u′

i ∈ Sk, if i ∈ J , and v′i ∈ Sk, if vi ∈ I . Obviously, all Si sum up to the
same sum 〈 1

2

∑

i(ui + vi)〉 ◦ 1n, thus we have a solution for the k Equal

Sum Subsets instance.
For the opposite direction, assume that we are given a solution of the k

Equal Sum Subsets instance, i.e., k equal sum subsets S1, . . . , Sk. Since
each of the n right–most digits is set to 1 in exactly k numbers, we can
assume w.l.o.g. that Si = {ci} for i = 1, . . . , k − 2. The remaining two
subsets naturally form an alternating partition, as u′

i and v′i can never be
in the same subset for any i = 1, . . . , n, and all numbers u′

i and v′i must
occur in one of the remaining two subsets in order to match the ones in the
n right–most digits of the other subsets.

2

5.3.2 k Equal Sum Subsets for k = O(1) and k = Ω(n)

We now study the impact of the size of parameter k on the complexity
of k Equal Sum Subsets. In particular, we show that the problem can
be solved in pseudo–polynomial time if k is a constant, while it becomes
strongly NP-hard if k is linear in n.

Theorem 5.3.2. The problem k Equal Sum Subsets with input A =

{a1, . . . , an} can be solved in time O( n·Sk

kk−1 ), where S = sum (A). For k =
O(1), this time is pseudo–polynomial.

Proof: We present a dynamic programming algorithm for k Equal Sum

Subsets that uses basic ideas of well–known dynamic programming algo-
rithms for Bin Packing with fixed number of bins [40].

For an instance A = {a1, . . . , an} of k Equal Sum Subsets, let S =
sum (A). We define Boolean variables F (i, s1, . . . , sk), where i ∈ {1, . . . , n}
and sj ∈ {0, . . . , bS

k
c}, for 1 ≤ j ≤ k. Variable F (i, s1, . . . , sk) will be TRUE

if there are k disjoint subsets X1, . . . , Xk ⊆ {a1, . . . , ai} with sum (Xj) = sj ,
for 1 ≤ j ≤ k. Given this, there is a solution for the k Equal Sum

Subsets instance if and only if there exists a value s ∈ {1, . . . , bS
k
c} such

that F (n, s, . . . , s) = TRUE.
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Clearly, F (1, s1, . . . , sk) is TRUE if and only if either si = 0, for 1 ≤ i ≤
k, or there exists index j such that sj = a1 and si = 0, for all 1 ≤ i ≤ k, i 6=
j. For i ∈ {2, . . . , n} and sj ∈ {0, . . . , bS

k
c}, variable F (i, s1, . . . , sk) can be

expressed recursively as

F (i, s1, . . . , sk) = F (i − 1, s1, . . . , sk) ∨
∨

1≤j≤k
sj−ai≥0

F (i − 1, s1, . . . , sj−1, sj − ai, sj+1, . . . , sk).

The Boolean value of all variables can be determined in time O( nSk

kk−1 ), since

there are nbS
k
ck variables, and computing each variable takes at most time

O(k). This yields the claim.
2

The previous theorem shows that there is a pseudo–polynomial time
algorithm for k Equal Sum Subsets if k is a constant. We will now show
that this is unlikely if k is a fixed function of the cardinality n of the input
set. In fact, we prove that k Equal Sum Subsets is strongly NP-complete
if k = Ω(n), by reduction from 3–Partition (see Definition 2.4.1). For this
purpose, let k = n

p
, for any arbitrary but fixed integer p ≥ 2.

Theorem 5.3.3. k Equal Sum Subsets is NP-complete in the strong
sense for k = n

p
, for any fixed integer p ≥ 2.

Proof: The problem k Equal Sum Subsets is obviously in NP. To prove
strong NP-hardness, we reduce 3–Partition to it. Let Q = {q1, . . . , q3n}
and h be an instance of 3–Partition. If all elements in Q are equal, then
there is a trivial solution. Otherwise, let r = 3 · (p − 2) + 1 and

ai = 〈qi〉 ◦ 0r, for 1 ≤ i ≤ 3n,

bj = 〈h〉 ◦ 0r, for 1 ≤ j ≤ 2n, and

d`,m = 〈0〉 ◦ ∆r(`), for 1 ≤ ` ≤ r, 1 ≤ m ≤ n.

Here, we use base Z = 6nh for all numbers. Let A be the multiset that
contains all numbers ai, bj and d`,m. Multiset A is an instance of k Equal

Sum Subsets. The cardinality of A is n′ = 3n + 2n + r · n = 5n + (3 ·
(p − 2) + 1) · n = 3pn. Since r is a constant, the numbers ai and bj are
polynomial in h, and numbers d`,m are bounded by a constant. We now
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prove that there is a solution for the 3–Partition instance if and only if
there are k = n′

p
= 3n disjoint subsets of A with equal sum.

“only if”: Assume that there is a solution for the 3–Partition instance,
i.e., n triples T1, . . . , Tn that each sum up to h. This induces n subsets of A
with sum 〈h〉◦0r, namely Sk = {ai | qi ∈ Tk}. Together with the 2n subsets
that contain exactly one of the bj ’s each, we have 3n subsets of equal sum
〈h〉 ◦ 0r.

“if”: Assume that there is a solution S1, . . . , S3n for the k Equal Sum

Subsets instance. Recall that for our instance k = 3n. Let Sj be any set
in this solution. Then sum (Sj) has a zero in the r right–most digits, since
for each of these digits there are only n numbers in A for which this digit
is non–zero, which are not enough to have one of them in each of the 3n
sets Sj . Thus, only numbers ai and bj can occur in the solution; moreover,
we only need to consider the first digit of these numbers, as the other are
zeros.

Since not all numbers ai are equal, and the solution consists of n′

q
= 3n

disjoint sets, there must be at least one bj in one of the subsets in the
solution. Thus, for 1 ≤ j ≤ 3n, we have sum (Sj) ≥ h. On the other hand,
the sum of all ai’s and of all bj ’s is exactly 3n · h, therefore sum (Sj) = h,
for all 1 ≤ j ≤ 3n, which means that all ai’s and all bj ’s must appear in the
solution. More specifically, there must be 2n sets in the solution such that
each of them contains exactly one of the bj ’s, and each of the remaining n
sets in the solution consists only of ai’s, such that the corresponding qi’s
add up to h. Thus, the latter sets immediately yield a solution for the
3–Partition instance.

2

5.3.3 k Equal Sum Subsets with Equal Cardinalities

In this section, we study k Equal Sum Subsets in the setting where we do
not only require the subsets to be of equal sum, but to be of equal cardinality
as well. We show that the problem can be solved in polynomial time if the
cardinality is part of the problem definition (hence, a constant), while it is
NP-complete if the cardinality is part of the input, or not specified at all.

We first observe that the problem kESS Of Cardinality c, where we
ask for k subsets of equal sum that have cardinality c, can be solved in
polynomial time using exhaustive search: We simply compute all N =

(

n
c

)

subsets of the input set A that have cardinality c; then we consider all
(

N
k

)

possible combinations of k subsets, and for each one we check if it consists
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of disjoint subsets of equal sum. This algorithm needs time O(nck), which
is polynomial in n, as c and k are constants. This yields the following.

Theorem 5.3.4. The problem kESS Of Cardinality c can be solved in
time O(nck).

On the other hand, if the size of the subsets is not fixed, but given as part
of the input, then we have the problem kESS Of Specified Cardinality.
We now show that this problem is NP-complete, by modifying the reduction
from Alternating Partition used in the proof of Theorem 5.3.1 to show
NP-completeness of k Equal Sum Subsets.

Theorem 5.3.5. kESS Of Specified Cardinality is NP-complete for
any k ≥ 2.

Proof: The problem kESS Of Specified Cardinality is obviously in
NP. To show NP-hardness, we transform a given Alternating Partition

instance (u1, v1), . . . , (un, vn) into a kESS Of Specified Cardinality

instance as follows. Let S =
∑n

i=1(ui + vi). For each pair (ui, vi) we
construct two numbers u′

i = 〈ui〉 ◦∆n(i) and v′i = 〈vi〉 ◦∆n(i). In addition,
we construct k − 2 (equal) numbers b1, . . . , bk−2 with bi = 〈S

2 〉 ◦ ∆n(n).
Finally, for each bi we construct n − 1 numbers di,j = 〈0〉 ◦ ∆n(j), for
1 ≤ j ≤ n − 1. We set the base of the numbers to (n + 1) · k · S in
order to ensure that no carry–overs from one digit to the next occur in any
additions in the following proof. The set A that contains all u′

i’s, v′i’s, bi’s,
and dij ’s, together with chosen cardinality c := n, is our instance of kESS

Of Specified Cardinality.
Assume first that we are given a solution for the Alternating Parti-

tion instance, i.e., two index sets I and J . We construct k equal sum subsets
S1, . . . , Sk as follows. For i = 1, . . . , k − 2, we set Si = {bi, di,1, . . . , di,n−1};
for the remaining two subsets, we let u′

i ∈ Sk−1, if i ∈ I , and v′j ∈ Sk−1, if
j ∈ J , and we let u′

j ∈ Sk, if j ∈ J , and v′i ∈ Sk, if i ∈ I . Clearly, all these

sets have n elements, and their sum is 〈S
2 〉 ◦ 1n. Hence, the sets Si yield a

solution for the kESS Of Specified Cardinality instance.
For the opposite direction, assume that we are given a solution for the

kESS Of Specified Cardinality instance, i.e., k equal sum subsets
S1, . . . , Sk of cardinality n. In this case, all numbers participate in the
sets Si, since there are exactly k · n numbers in the input A. The elements
in each set Si sum up to 〈S

2 〉 ◦ 1n by definition. Since the first digit of each

bi equals S
2 , we may assume w.l.o.g. that for each i ∈ {1, . . . , k − 2}, set

Si contains bi and does not contain any number with non–zero first digit,
i.e., it does not contain any u′

j or any v′
j . Then all u′

i’s and v′i’s, and only
these numbers, are in the remaining two subsets. This yields immediately
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a solution for the Alternating Partition instance, as the two subsets
yield the same sum 〈S

2 〉 ◦ 1n, and since u′
i and v′i can never be in the same

subset, as both have the (i + 1)–th digit non–zero.

2

Note that the above reduction works in a similar fashion for the problem
kESS Of Equal Cardinality. This requires to employ a method where
additional extra digits are used in order to force the equal sum subsets to
include all augmented numbers that correspond to numbers in the Alter-

nating Partition instance; a similar method has been used by Woeginger
and Yu to establish the NP-completeness of Equal Sum Subsets (called
Equal–Subset–Sum there) [93].

However, the problems kESS Of Specified Cardinality and kESS

Of Equal Cardinality are not strongly NP-complete for fixed constant
k, since we will now describe a dynamic programming algorithm for these
two problems.

Theorem 5.3.6. The problems kESS Of Specified Cardinality and
kESS Of Equal Cardinality with input A = {a1, . . . , an} can be solved

in time O(Sk ·nk+1

k2k−1 ), where S = sum (A). For k = O(1), this time is pseudo–
polynomial.

Proof: The algorithm is similar–in–spirit to the dynamic programming
algorithm from Theorem 5.3.2. In fact, it suffices to add to our variables
k more dimensions corresponding to cardinalities of the subsets. More
precisely, we define Boolean variables F (i, s1, . . . , sk, c1, . . . , ck), where i ∈
{1, . . . , n}, sj ∈ {0, . . . , bS

k
c}, for 1 ≤ j ≤ k, and cj ∈ {0, . . . , bn

k
c}, for

1 ≤ j ≤ k. Variable F (i, s1, . . . , sk, c1, . . . , ck) will be TRUE if there are k
disjoint subsets X1, . . . , Xk ⊆ {a1, . . . , ai} with sum (Xj) = sj , such that
the cardinality of Xj is cj , for 1 ≤ j ≤ k. There are k subsets of equal sum
and equal cardinality c if and only if there exists a value s ∈ {1, . . . , bS

k
c}

such that F (n, s, . . . , s, c, . . . , c) = TRUE. Moreover, there are k subsets
of equal sum and equal (non–specified) cardinality if and only if there
exists a value s ∈ {1, . . . , bS

k
c} and a value d ∈ {1, . . . , bn

k
c} such that

F (n, s, . . . , s, d, . . . , d) = TRUE.

Clearly, F (1, s1, . . . , sk, c1, . . . , ck) = TRUE if and only if either si = 0
and ci = 0, for 1 ≤ i ≤ k, or there exists an index j such that sj = a1, cj = 1,
and si = 0 and ci = 0 for all 1 ≤ i ≤ k, i 6= j.

For i ∈ {2, . . . , n}, sj ∈ {0, . . . , bS
k
c}, and cj ∈ {0, . . . , bn

k
c}, variable

F (i, s1, . . . , sk, c1, . . . , ck) can be expressed recursively as
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F (i, s1, . . . , sk, c1, . . . , ck) = F (i − 1, s1, . . . , sk, c1, . . . , ck) ∨
∨

1≤j≤k
sj−ai≥0

cj>0

F (i − 1, s1, . . . , sj − ai, . . . , sk, c1, . . . , cj − 1, . . . , ck).

The Boolean value of all variables can be determined in time O( Sk ·nk+1

k2k−1 ),

since there are n · bS
k
ck · bn

k
ck variables, and computing each variable takes

at most time O(k). This yields the claim.
2

5.4 Equal Sum Subsets with Additional Re-

quirements

5.4.1 Equal Sum Subsets with Selection Conditions

We now come back to the case of two subsets of equal sum (instead of k),
and study variations of Equal Sum Subsets where we add specific require-
ments that a solution must fulfill. We start with variations where the two
subsets take into account some exclusions or enforcements of specific ele-
ments of the input. Afterwards we will consider variations with constraints
on the cardinalities of the two subsets.

We first study the problem ESS With Exclusions, where we are ad-
ditionally given an exclusion graph (or its complement: a preference graph)
and ask for two subsets of equal sum that take this graph into account. Obvi-
ously, ESS With Exclusions is NP-complete, since Equal Sum Subsets

is the special case where the exclusion graph is empty (Eex = ∅). Here, we
present a pseudo–polynomial algorithm for the problem, using a dynamic
programming approach similar–in–spirit to the one used for finding two
equal sum subsets (without exclusions) [7].

Theorem 5.4.1. ESS With Exclusions can be solved in pseudo–polyno-
mial time O(n2 · S), where S = sum (A).

Proof: Let A = {a1, . . . , an} and Gex = (A, Eex) be an instance of ESS

With Exclusions. We assume w.l.o.g. that the input values are ordered
by size, i.e., a1 ≤ . . . ≤ an. Let S =

∑n
i=1 ai.

We define Boolean variables F (k, t) for k ∈ {1, . . . , n} and t ∈ {1, . . . , S}.
Variable F (k, t) will be TRUE if there exists a set X ⊆ A such that X ⊆
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{a1, . . . , ak}, ak ∈ X , sum (X) = t, and X is independent in Gex. For a
TRUE entry F (k, t), we store a corresponding set X in a second variable
X(k, t).

We compute the value of all variables F (k, t) by iterating over t and
k. The algorithm runs until it finds the smallest t ∈ {1, . . . , S} for which
there are indices k, ` ∈ {1, . . . , n} such that F (k, t) = F (`, t) = TRUE;
in this case, sets X(k, t) and X(`, t) constitute a solution sum (X(k, t)) =
sum (X(`, t)) = t, both sets are disjoint due to minimality of t, and both
sets are independent in Gex.

We initialize the variables as follows. For all 1 ≤ k ≤ n, we set F (k, t) =

FALSE, for 1 ≤ t < ak and for
∑k

i=1 ai < t ≤ S; moreover, we set F (k, ak) =
TRUE and X(k, ak) = {ak}. Observe that these equations already define
F (1, t), for 1 ≤ t ≤ S, and F (k, 1), for 1 ≤ k ≤ n.

After initialization, the table entries for k > 1 and ak < t ≤ ∑k
i=1 ai

can be computed recursively: F (k, t) is TRUE if there exists an index ` ∈
{1, . . . , k − 1} such that F (`, t − ak) is TRUE, and such that the subset
X(`, t − ak) remains independent in Gex when adding ak. The recursive
computation is

F (k, t) =
k−1
∨

`=1

[ F (`, t − ak) ∧ ∀a ∈ X(`, t− ak), (a, ak) 6∈ Eex ].

If F (k, t) is set to TRUE due to F (`, t− ak), then we set X(k, t) = X(`, t−
ak) ∪ {ak}. The key observation for showing correctness is that for each
F (k, t) considered by the algorithm there is at most one F (`, t− ak) that is
TRUE, for 1 ≤ ` ≤ k−1; if there were two, say `1, `2, then X(`1, t−ak) and
X(`2, t−ak) would be a solution to the problem instance, and the algorithm
would have stopped earlier – a contradiction. This means that all subsets
considered are constructed in a unique way, and therefore, no information
can be lost.

In order to determine the value F (k, t), the algorithm considers k − 1
table entries. As shown above, only one of them may be TRUE; for such an
entry, say F (`, t−ak), the (at most `) elements of X(`, t−ak) are checked to
see if they exclude ak. Hence, the computation of F (k, t) takes time O(n),
and the total time complexity of the algorithm is O(n2 · S).

2

If we do not want to exclude elements, but on the contrary, we want to
ensure that a specific element of the input occurs in one of the two equal
sum subsets, then this is the ESS With Enforced Element problem.



5.4 Equal Sum Subsets with Additional Requirements 83

We show that this problem is NP-complete by giving a reduction from Al-

ternating Partition.

Theorem 5.4.2. ESS With Enforced Element is NP-complete.

Proof: The problem ESS With Enforced Element is obviously in
NP. For the proof of NP-hardness, let (u1, v1), . . . , (un, vn) be an instance
of Alternating Partition. Let S =

∑n
i=1(ui + vi), ai = 〈ui〉 ◦∆n(i) and

bi = 〈vi〉 ◦∆n(i), for all 1 ≤ i ≤ n, and let c = 〈S
2 〉 ◦ 1n. For these numbers,

we use base Z = 2 · S · n, which is large enough such that no carry–overs
from one digit to the next occur in the following additions.

The ai’s, bi’s, and c are an instance of ESS With Enforced Element

such that c, which is the last element of the input, is the enforced element.
We now show that there exists a solution for the Alternating Partition

instance if and only if there exists a solution for the ESS With Enforced

Element instance.
Assume that index sets I and J are a solution for the Alternating

Partition instance. Then
∑

i∈I ui +
∑

j∈J vj =
∑

i∈I vi +
∑

j∈J uj = S
2 .

Let X = {c} and Y = {ai | i ∈ I} ∪ {bj | j ∈ J}. Then

sum (Y ) =
∑

i∈I

ai +
∑

j∈J

bj

=
∑

i∈I

(〈ui〉 ◦ ∆n(i)) +
∑

j∈J

(〈vj〉 ◦ ∆n(j))

= 〈
∑

i∈I

ui +
∑

j∈J

vj〉 ◦ (
∑

i∈I

∆n(i) +
∑

j∈J

∆n(j))

= 〈S
2
〉 ◦

n
∑

i=1

∆n(i)

= 〈S
2
〉 ◦ 1n

= sum (X),

thus X and Y are a solution for the ESS With Enforced Element

instance.
For the opposite direction, let X and Y be a solution for the ESS With

Enforced Element instance with c ∈ X . All numbers in the input have
n + 1 digits. For each index i ∈ {2, . . . , n + 1}, only three numbers, namely
c, ai and bi, have a 1 in the i’th digit, all other numbers in the input have
a 0 in the i’th digit. For each digit the sum over all elements in X and
in Y yields the same result. Therefore, since c ∈ X , exactly one of ai or



84 Equal Sum Subsets

bi can be in Y for each 1 ≤ i ≤ n, and X = {c}, since any other element
would add a second 1 in some digit i, which then could not be equalized
by elements in Y . Summing up the first digit of all elements in Y yields
exactly the first digit of c, which is S

2 . Thus, I = {i ∈ {1, . . . , n} | ai ∈ Y }
and J = {j ∈ {1, . . . , n} | bj ∈ Y } yields a solution for the Alternating

Partition instance.
2

We now turn to the problem Alternating Equal Sum Subsets,
which is the “partial” equivalent of Alternating Partition that we used
in the previous proof. In Alternating Equal Sum Subsets, we are
given pairs of numbers, and we require for each element that we use in one
set that its partner will be in the other set. We show that the problem is
NP-complete by reduction from Equal Sum Subsets.

Theorem 5.4.3. Alternating Equal Sum Subsets is NP-complete.

Proof: The problem is obviously in NP. Given an instance of Equal

Sum Subsets, i.e., a set of numbers A = {a1, . . . , an}, we reduce it to an
instance of Alternating Equal Sum Subsets by setting B = 2 ·∑n

i=1 ai

and mapping each number ai to a pair (ui, vi), with ui = B+ai and vi = B.
Note that we use offset B since all input numbers for Alternating Equal

Sum Subsets are required to be positive. Clearly, if there are disjoint sets
X, Y ⊆ A such that sum (X) = sum (Y ), then I := {i | ai ∈ X} and
J := {j | aj ∈ Y } are disjoint index sets such that

∑

i∈I ui +
∑

j∈J vj =
∑

i∈I vi +
∑

j∈J uj . Conversely, if there is a solution for the Alternating

Equal Sum Subsets instance, i.e., appropriate sets of indices I and J ,
then the sets X = {ai | i ∈ I} and Y = {aj | j ∈ J} form obviously a
solution for the Equal Sum Subsets instance.

2

5.4.2 Equal Sum Subsets with Cardinality Constraints

As a further class of variations of Equal Sum Subsets, we study prob-
lems with constraints on the cardinalities of the two subsets of equal sum.
Obviously, if we ask for two subsets of equal sum that both have cardinality
c, where c is a constant, then Theorem 5.3.4 applies to the case of k = 2
subsets, and we have a polynomial time algorithm for this problem. On the
other hand, if c is part of the input, or if we do not specify it at all, then the
problem becomes NP-complete due to Theorem 5.3.5. We will now show
that the problem ESS Of Different Cardinality, where we ask for two
equal sum subsets of different cardinality, is NP-complete as well.
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Theorem 5.4.4. ESS Of Different Cardinality is NP-complete.

Proof: The problem is obviously in NP. The proof of NP-hardness follows
directly from the reduction used in the proof of Theorem 5.4.2: If c is not
in one of the two sets X or Y , then the two sets will have equal cardinality,
since each ai in one set enforces the corresponding bi to be in the other set.
Since we require sets of different cardinality, c has to be in one of the two
sets, say in X , and in Y exactly one of the two numbers ai or bi occurs, for
1 ≤ i ≤ n. Hence, set X has one element and Y has n elements.

2

Observe that we can even guarantee any specified difference d < n in the
cardinality of the two subsets, by “blowing up” the instance we construct:
Given an instance of Alternating Partition, let M = n · d · 2n+2, let
ai = 〈ui〉 ◦∆n(i)◦ 〈M

n
〉 and bi = 〈vi〉 ◦∆n(i)◦ 〈M

n
〉, for all 1 ≤ i ≤ n, and let

c = 〈S
2 〉 ◦1n ◦ 〈M − (2n−d−1 − 1)〉. For 1 ≤ k ≤ n−d−1, we define dummy

elements dk = 〈0〉 ◦ 0n ◦ 〈2k−1〉. Like in the previous proof, any solution
with only ai’s and bi’s will have equal cardinality. Thus, c has to be in one
of the sets, say X , and n of the ai’s and bi’s will be in the other set Y to
achieve equal sums in the first n + 1 digits of the elements in X and Y . To
achieve an equal sum in the last digit as well, dk must be in set X , for all
1 ≤ k ≤ n − d − 1. Hence, |X | = n − d and |Y | = n.

5.4.3 Finding Equal Sum Subsets from Two Sets

As a last class of variations of Equal Sum Subsets, we now study the
complexity of ESS From Two Sets, in which we ask for two equal sum
subsets of two different sets. Obviously, ESS From Two Sets and Al-

ternating Equal Sum Subsets are very closely related. We first show
that ESS From Two Sets is NP-complete, by reducing Subset Sum to it
(see Definition 2.4.6); then we show that the problem remains hard to solve
even if we further restrict the set of possible solutions.

Theorem 5.4.5. ESS From Two Sets is NP-complete.

Proof: The problem is obviously in NP. For the NP-hardness proof, let
{p1, . . . , pn} and S be an instance of Subset Sum. Let A = {p1, . . . , pn} and
B = {b1}, with b1 = S. Then A and B are an instance of ESS From Two

Sets. Obviously, any solution for this instance must sum up to S, since
S is the only element in B. Thus, solutions for the Subset Sum instance
transform straightforwardly into solutions for the ESS From Two Sets

instance, and vice versa.
2
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We now study variations of the problem where we introduce additional
constraints on the indices used in a solution. These results show that NP-
hardness of ESS From Two Sets is stable under decreasing the size of the
solution space. In fact, we show NP-completeness for our four variations of
ESS From Two Sets where we restrict the choice of indices in different
ways.

Theorem 5.4.6. The following problems are NP-complete:

ESS Of Equal Cardinality From Two Sets,

ESS With Disjoint Indices From Two Sets,

ESS With Disjoint Covering Indices From Two Sets, and

ESS With Identical Indices From Two Sets.

Proof: Obviously, each of the problems is in NP. We show NP-hardness
individually for each problem variation.

To prove NP-hardness of ESS Of Equal Cardinality From Two

Sets, we give a reduction from Subset Sum. Given an instance {p1, . . . , pn}
and S of Subset Sum, we construct an instance A, B of ESS Of Equal

Cardinality From Two Sets as follows. Let ai = 〈pi, i, 0〉, for 1 ≤ i ≤ n,
and an+1 = 〈0, 0, 1〉. Let bi = 〈0, i, 0〉, for 1 ≤ i ≤ n, and bn+1 = 〈S, 0, 1〉.
Set A consists of all ai’s, and set B of all bi’s. We now show that a solution
for the Subset Sum instance yields a solution for the instance A, B of ESS

Of Equal Cardinality From Two Sets, and vice versa.

If there is a set X ⊆ {p1, . . . , pn} such that sum (X) = S, then we set
I = {i | xi ∈ X}∪{n+1}. This yields

∑

i∈I ai =
∑

j∈I bj = 〈S, k, 1〉, where
k =

∑

xi∈X i, thus the two subsets defined by indices I and J have equal
sum and equal cardinality.

For the opposite direction, assume that two non–empty sets I, J ⊆
{1, . . . , n} exist such that |I | = |J | and

∑

i∈I ai =
∑

j∈J bj . Then n + 1 ∈ J
is necessary to have equal sums in the first digit, and moreover, we must
have

∑

i∈I pi = S. Thus, the corresponding pi’s yield a solution for the
Subset Sum instance.

To prove NP-hardness of ESS With Disjoint Indices From Two

Sets, we give a reduction from ESS From Two Sets. Given an instance
A = {a1, . . . , an} and B = {b1, . . . , bn} of ESS From Two Sets, we can
construct an instance of ESS With Disjoint Indices From Two Sets

as follows. Let a′
i = 〈ai〉 ◦ 0n ◦ 0n and a′

n+i = 〈0〉 ◦ 0n ◦ ∆n(i), for all
1 ≤ i ≤ n, and let b′i = 〈0〉 ◦ ∆n(i) ◦ 0n and b′n+i = 〈bi〉 ◦ 0n ◦ 0n, for
1 ≤ i ≤ n. Set A′ consists of all ai’s, and B′ consists of all bi’s. It is easy
to see that there are two equal sum subsets of A and B if and only if there
are equal sum subsets of A′ and B′ with disjoint indices, since only subsets
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of the first n numbers in A′ and the last n numbers in B′ can yield equal
sums.

To prove NP-hardness of ESS With Disjoint Covering Indices

From Two Sets, we give a reduction from Partition (cf. Definition 2.4.5).
Given an instance A = {a1, . . . , an} of Partition, we construct an instance
of ESS With Disjoint Covering Indices From Two Sets by setting
A′ = B′ = A. If A can be partitioned into subsets X and Y , then choosing
the corresponding elements in A′ and B′, respectively, gives us a solution for
the ESS With Disjoint Covering Indices From Two Sets instance,
and vice versa.

Finally, we prove NP-hardness of ESS With Identical Indices From

Two Sets, by using the same reduction as for ESS Of Equal Cardi-

nality From Two Sets (see above): It suffices to observe that any two
equal sum subsets U ⊆ A and V ⊆ B either have identical indices, or there
is always V ′ ⊆ B such that sum (V ) = sum (V ′) = sum (U), and such that
V ′ has identical indices with U .

2

5.5 Conclusion

We studied several variations of the Equal Sum Subsets problem: We
proved NP-completeness for the variation where we specify a rational factor
between the sum of the two subsets (Factor–r Sum Subsets). If we ask
for more than two equal sum subsets (k Equal Sum Subsets), then the
problem becomes strongly NP-hard, if the number of subsets is linear in n
(the size of the input), while it can be solved in pseudo–polynomial time if
we ask for only a constant number of subsets. If we require the k subsets
to be of equal cardinality, then the problem is polynomial–time solvable if
the cardinality is constant, while it is NP-hard otherwise. Furthermore, we
proved NP-hardness for several variations of Equal Sum Subsets where
the two subsets have to fulfill additional requirements, namely for ESS

With Exclusions, ESS With Enforced Element, and Alternating

Equal Sum Subsets. Finally, we introduced the problem where we ask
for two equal sum subsets from two sets, and showed that this problem is
NP-hard, even if we restrict the choices of the elements.

Although our interest in the Equal Sum Subsets problem was moti-
vated from its connection to the Partial Digest problem, our results did
not yield any new insights in the complexity of Partial Digest. However,
our studies call forth several questions in the realm of Equal Sum Subsets

itself that are still open:
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� The problem k Equal Sum Subsets is solvable in pseudo–polynomial
time for constant k, while it is strongly NP-complete for k linear in
n. What is the exact borderline between pseudo–polynomial time
solvability and strong NP-hardness?

� The dynamic programming algorithm for kESS Of Specified Car-

dinality runs in pseudo–polynomial time. However, its running time
is highly exponential in k; are there faster algorithms for this problem?

� We have only studied variations where the subsets need to have exactly
the same sum. What about approximation versions related to the
above problems, for instance if we ask for k subsets of A with sums
that are “as similar as possible”? For k = 2, the problem has been
studied by Bazgan et al. [7] and Woeginger and Yu [93].



Chapter 6

Mass Finding in Weighted

Strings

6.1 Introduction

The Mass Finding problem, where we search a weighted string for a specific
submass, arises when we want to identify a protein using its mass fingerprint.
We recapitulate the definition from the introduction (cf. Definition 1.3.1):

Definition. Given an alphabet A, a mass function µ : A → N, and a string
σ over A, find a data structure and a query algorithm which, for a given
positive integer M , decides whether σ has a substring of mass M , where the
mass of a string is the sum of the masses of its letters.

Due to its importance in proteomics, protein identification by mass fin-
gerprints has been extensively studied in the literature, e.g. in [33, 35, 45,
50, 66, 99, 97]. Many papers deal with specific aspects and modifications
of the problem, e.g. the minimum number of matches needed to identify a
protein [66], combinatorial or probabilistic models for scoring the differences
of two mass spectra [4, 72], or approaches for a correct identification even in
the presence of post–translational modifications of the protein [59, 73, 98].
There are several software tools for automated database search, for instance
Sequest [33, 112], Mascot [69, 108], or Sonar [37].

In this chapter, we study the algorithmic complexity of the Mass Find-

ing problem. The Mass Finding problem differs from traditional string
searching problems in one important aspect: While the latter look for sub-
structures of strings (substrings, non–contiguous subsequences, particular
types of substrings such as repeats, palindromes etc.), we are interested
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only in masses respectively weights of substrings. This means that, on
the one hand, we lose a lot of the structure of strings: for instance, the
weight of a string is invariant under permutation of letters; on the other,
we gain the additional structure of the weight function, such as its addi-
tivity. For instance, using suffix trees, which can be applied to efficiently
solve a large number of complex string problems, do not seem to help for
the Mass Finding problem. Furthermore, the longest common substring
problem [43], although at first sight related, has very different character-
istics. A problem that may also appear to be close to the present one is
maximum segment sum [9]; however, it appears that it does not lead to
good solutions, either. In fact, we are not aware of any results related to
efficient algorithms for the Mass Finding problem.

In Section 6.2, we first fix some notation, and then we present simple
algorithms that solve the Mass Finding problem. We first show that we
can answer queries in linear time even without using any additional data
structure, where time (and space) complexity is measured in the length of
the input string. On the other hand, if we allow preprocessing, then we can
use a hash table or a sorted array to store all submasses that occur in the
string (recall that a submass is the mass of a contiguous substring). This
yields constant respectively logarithmic query times. The space required
by both data structures depends on the number of different submasses of
the string, and can be up to quadratic. In the special case that we know
in advance that we will always search for short masses, i.e., for masses
that arise from only few amino acids, we can reduce the amount of data
stored in the hash table respectively binary array and obtain a smaller data
structure. However, in the general case we may need quadratic space for
the data structures.

We then consider the generalization where we want to search for mass
M in not only one string, but in many strings simultaneously. This problem
is defined as follows.

Definition 6.1.1 (Multiple–String Mass Finding). Given an alphabet
A, a mass function µ : A → N, and k strings σ1, . . . , σk over A, find a data
structure and a query algorithm which, for a given mass M ∈ N, returns a
list i1, . . . , ir of those strings σij

that have M as a submass.

Obviously, we can run an algorithm for the Mass Finding problem
individually for each string. We show in Section 6.2.3 that we can use
a kind of “binary search technique” to search many strings simultaneously,
thus allowing to solve the Multiple–String Mass Finding problem more
efficiently.

We then come back to the case of only one string. Motivated by the
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simple algorithms for the Mass Finding problem, we ask for algorithms
for the problem that allow for sublinear query times and that use only sub-
quadratic additional storage space. We design in Section 6.3 an algorithm
called Lookup that meets these efficiency requirements, as it needs only
linear additional storage space and has sublinear query time. However,
the algorithm requires unreasonably large inputs to become efficient; hence,
our result is primarily of theoretical impact, as it proves that both sublinear
time and subquadratic space can be achieved at the same time.

Observe that any algorithm of practical value, in addition to being time
and space efficient, also needs to be highly fault tolerant. In fact, in real life
all MS/MS data are prone to error, and for practical applications the Mass

Finding problem should be relaxed to finding a submass that matches the
given mass M up to some error ε. However, we do not address this relaxation
here.

The results in this chapter have been published previously [24, 25, 26].

6.2 Simple Solutions

6.2.1 Notation

Fix an alphabet A of size |A| = s and a mass function µ : A → N. Let
σ = σ(1) . . . σ(n) be a string over A of length |σ| = n ≥ 1. We denote by
σ(i, j), for i, j with 1 ≤ i ≤ j ≤ n, the substring of σ starting at position i
and ending at position j, i.e., σ(i, j) = σ(i) . . . σ(j). A non–empty string τ
is a substring of σ if there are 1 ≤ i ≤ j ≤ n such that τ = σ(i, j). Note
that we do not consider the empty string to be a substring. The mass (or
weight) of σ is defined as the sum of the individual masses of its letters:
µ(σ) :=

∑n
i=1 µ(σ(i)). For a mass M ∈ N, we say that M is a submass of σ

if σ has a substring of mass M .

6.2.2 Simple Algorithms for Mass Finding

In this section, we present several simple algorithms that solve the Mass

Finding problem.
A first algorithm is Linsearch, which performs a linear search through

the string. This algorithm can be visualized as shifting two pointers ` and
r through the string, where ` points to the beginning of a substring and
r to its end. Linsearch works as follows. For given σ and M , start at
position σ(1) and add up masses until reaching the first position j such
that µ(σ(1, j)) ≥ M . If the mass of the substring σ(1, j) equals M , then we
have found M , thus we output yes and stop; otherwise, start subtracting
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masses from the beginning of the string until the smallest index i such that
µ(σ(i, j)) ≤ M is reached. Repeat this until finding a pair of indices (i, j)
such that µ(σ(i, j)) = M , or until reaching the end of the string, i.e., until
the current substring is σ(i, n), for some i, and µ(σ(i, n)) < M . Linsearch

takes O(n) time, since it looks at each position of σ at most twice. If we do
not allow any preprocessing, this is asymptotically optimal, since it may be
necessary to look at each position of σ at least once.

On the other hand, if preprocessing of σ is allowed, then there is another
simple algorithm for the Mass Finding problem, which uses binary search:
In a preprocessing step, it calculates the set of all possible submasses of σ,
i.e., µ(σ(i, j)), for all 1 ≤ i ≤ j ≤ n, and stores them in a sorted array.
Given a query mass M , it performs binary search for M in this array. We
will refer to this algorithm as Binsearch. The space required to store the
sorted array is proportional to the number of different submasses in σ, which
is bounded by O(n2). The time for answering a query is thus O(log n).

Since our submasses are integers, we can use a hash table instead of a
sorted array to store all submasses of σ. In fact, there exist hashing schemes
that require storage space linear in the number of elements to be stored,
and which allow membership queries in constant time [38]. For the Mass

Finding problem, this yields an algorithm that we refer to as Hashing with
space proportional to the number of different submasses in σ, and constant
query time.

Observe that the problem becomes easier if we assume that all masses
we are looking for will be “short masses”: For a mass M we define its length
as λ(M) := max({|τ | | τ ∈ A∗, µ(τ) = M} ∪ {−1}). Here, λ(M) = −1
means that there exists no string with mass M . Suppose that we know in
advance that all query masses will be short in comparison to n, i.e., that
there is a function f(n) = o(n) such that λ(M) ≤ f(n) for all queries M .
Then we can improve the space required by Binsearch as follows: In the
preprocessing, we store only submasses of σ of length ` ≤ f(n) in the sorted
array. This requires storage space O(n · f(n)), since for each position i in
σ, at most f(n) substrings of length ` ≤ f(n) start in i. For a query, we do
binary search in this array. This takes still time O(log n), while the storage
space required by the array is subquadratic. Observe that we can improve
Hashing in a similar fashion. Moreover, we can use this approach as a first
phase of any algorithm to make it run faster on short masses.

Another simple algorithm for the Mass Finding problem, which we
will refer to as BooleanArray, works as follows. In the preprocessing
phase, define W := max{µ(a) | a ∈ A}, and let B be a Boolean array of
length µ(σ). Set B[k] to TRUE if and only if k is a submass of σ. Given
a query mass M , we simply output B[M ]. This algorithm has query time



6.2 Simple Solutions 93

O(1), while the data structure B requires µ(σ) ≤ n · W bits. Thus, the
algorithm is very efficient if W = o(n). However, this does not solve the
Mass Finding problem in general, since we do not want to restrict the size
of W .

In the following, we assume that the alphabet A is of constant size and
we do not restrict the maximum letter weight W . We assume a machine
model with word size S := Ω(log n + log W ) in which arithmetic operations
on numbers with S bits can be executed in constant time; storage space
is measured in terms of the number of machine words used. Without this
assumption, we would get an extra factor S in the query time and in the
storage space. Since the alphabet is of constant size, an input string σ of
length n could be stored in O( n

S
) machine words. However, we will assume

that the input string occupies n machine words.

6.2.3 Algorithms for Multiple–String Mass Finding

We now study how we can search several strings simultaneously. Obviously,
any algorithm Ψ for the Mass Finding problem can be extended to an
algorithm for the Multiple–String Mass Finding problem by running Ψ
on each string σi one by one. Required storage space and query time simply
sum up. Alternatively, we can adapt an approach from group testing [32]:
We define a new string σ := σ1ωσ2ω . . . ωσk, where ω is a new letter with
mass µ(ω) := max{µ(σi) | 1 ≤ i ≤ k} + 1, i.e., the mass of ω is larger
that any submass of the given strings. Before applying Ψ to σ, we check
whether M ≥ µ(ω). If so, then M cannot be a submass of any of the
strings, and we are done. Otherwise, we know that whenever Ψ finds mass
M in σ, then M is a submass of at least one σi, for some index i, as the
corresponding substring of σ cannot contain letter ω. If algorithm Ψ can
output all positions of M in σ, this solves the Multiple–String Mass

Finding problem. If Ψ only decides whether M is a submass of σ, i.e.,
it outputs only yes or no, then we employ algorithm BinTreeSearch,
which uses a kind of “binary tree search” to find all σi with submass M as
follows. First, we run Ψ on σ as described above. If it outputs no, then no
string σi has submass M , and we are done. Otherwise, we divide σ into two
new strings σl := σ1ω . . . ωσb k

2
c and σr := σb k

2
c+1ω . . . ωσk, and run Ψ on

both strings separately. We repeat the division step until the new strings
cover exactly one σi, in which case the answer of Ψ determines whether
σi has a substring of mass M . The analysis of BinTreeSearch depends
heavily on storage space and query time required by Ψ. For instance, if
algorithm Ψ requires storage space linear in the length of the string, then
the storage space of BinTreeSearch is O((log k) · ∑k

i=1 |σi|). Query time
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of BinTreeSearch depends on the number of strings with submass M ,
i.e., it is output sensitive, in contrast to the simple idea of applying Ψ to
each string separately, which depends on the total number of strings.

Given a specific algorithm for the Mass Finding problem, there can
be even better ways to extend it to the Multiple–String Mass Finding

problem: For instance, for algorithm Binsearch we can use one sorted
array to store all submasses of all strings. For each submass x we store the
set of indices Ix of all those strings that have a submass x. Given mass M ,
we perform binary search in the array and output all indices stored in IM .
Required storage space remains unchanged, but the running time becomes
O(log(

∑k
i=1 |σi|) + |IM |), where |IM | ≤ k is the size of the output.

6.2.4 Efficiency Measurements

An algorithm for the Mass Finding problem can be divided into three
components: A preprocessing phase, a data structure in which the result
of the preprocessing is stored, and a query method. For a string σ, the
preprocessing will be done only once, for instance, when the protein enters
the database, while the query step will typically be repeated many times.
For this reason, we are interested in algorithms with fast query methods,
whereas we ignore time and space required for the preprocessing step (as
long as they are within reasonable bounds). Space efficiency is measured in
storage space required by the data structure.

The two algorithms Binsearch and Hashing are very efficient in query
time; however, they both can require up to quadratic storage space, which
can be immense for long strings σ. In the other extreme, Linsearch re-
quires no additional storage space, but its query time is only linear in the
string length, which is slow for large databases. For this reason, we are
looking for algorithms that have query time better than Linsearch, i.e.,
that require query time o(n), to allow for fast database search, while they
only require little additional storage space, i.e., only storage space o(n2) for
the data structure.

6.3 Algorithm Lookup

We now present an algorithm called Lookup that solves the Mass Finding

problem with storage space O(n) and query time O( n
log n

). The idea is as
follows. Similar to the simple linear search algorithm Linsearch that we
introduced in Section 6.2, Lookup shifts two pointers along the sequence
which point to the potential beginning and end of a substring with mass M .
However, c(n) steps of the simple algorithm are bundled into one step here.
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a b b c a b c c a a b b

ccacab

a b b c a b c c a a b b

abbabb

PSfrag replacements
` `r r

mass = 14

Figure 6.1: Example for algorithm Lookup searching for M = 14.

This will reduce the number of steps from O(n) to O( n
c(n)), while each step

will still require only constant time. If c(n) is chosen appropriately, i.e.,
approximately log n, then the storage space required will be O(n). We will
hereby heavily exploit the fact that the alphabet has constant size.

An Example

Before we present the complete algorithm, we explain its main ideas in an
example. Let A = {a, b, c}, µ(a) = 1, µ(b) = 2 and µ(c) = 5. Assume that
we are looking for M = 14 in string σ = abbcabccaabb. Linsearch would
pass two pointers ` and r along the sequence until reaching positions 5 and
9, respectively. Here, it would stop because the substring σ(5, 9) = abcca
has weight 14. To see how Lookup works, let us assume that c(n) = 3. We
divide the sequence σ into blocks of size c(n). Now, rather than shifting
the two pointers letter by letter, we shift them by a complete block at a
time. In order to do this, for each block we store a pointer to an index I
corresponding to the substring that starts with the first letter of the block
and ends with the last. Let us assume now that ` is at the beginning of the
first block, and r is at the end of the second block, as indicated in Figure 6.1.
We are interested in the possible changes to the current submass if we shift
the two pointers at most c(n) positions to the right. Given a list of these,
we could search for M − µ(σ(`, r)). For example, the current submass in
Figure 6.1 is µ(σ(1, 6)) = 13, and we want to know whether, by moving `
and r at most 3 positions to the right, we can achieve a change of 14−13 = 1.

We can calculate these possible changes and store them in a (c(n)+1)×
(c(n) + 1) matrix whose (i, j)–entry holds the submass change when ` is
moved i − 1 positions to the right, and r is moved j − 1 positions to the
right:

T [abb, cca] :









0 5 10 11
−1 4 9 10
−3 2 7 8
−5 0 5 6
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Using this matrix, we can find out whether the difference we are looking
for is there, in this case +1. We will store the entries of the matrix in a
hash table that will allow us to make this decision in constant time. In the
present case, 1 is not in the matrix, which tells us that we have to move one
of the two pointers to the next block.

To determine which pointer to move, we consider what the linear search
algorithm Linsearch would do when searching for M and starting in the
current positions of the left and right pointer. Since M is not present within
these two blocks, at least one of the two pointers would reach the end of its
current block. Here, we want to move the pointer which would first reach
the end of its block. We can determine which pointer this is if we compare
the difference M−µ(σ(`, r)) with the matrix entry corresponding to c(n)−1
moves of both the left and the right pointer, in this case 7. If the difference
is smaller, we move the left pointer to the next block, otherwise we move
the right one. In our example, we have a difference of 1, thus we move the
left pointer to the next block.

To see that this elects the correct pointer, assume by contradiction that
in Linsearch the right pointer r would be the first to move c(n) positions.
Consider the “last” step, when the right pointer makes its c(n)’s move:
previously, r has moved exactly c(n) − 1 times, while pointer ` has moved
at most c(n)− 1 steps. Since Linsearch moves r in this configuration, the
submass between ` and r needs to be less than M . However, this cannot
be the case, since initially the submass between ` and r was 13, and the
minimum difference we can achieve by moving the right pointer exactly
c(n) − 1 positions and the left pointer at most c(n) − 1 positions is 7, the
corresponding entry in the matrix, hence, the submass before the last step
is larger than M , in contradiction to our assumption. Obviously, moving
the left pointer less than c(n) − 1 positions would make it even worse.

We come back to our example. Moving the left pointer will change the
current submass by −5, the entry at the lower left corner of the matrix,
which is in fact the minimum of the matrix as well, yielding µ(σ(4, 6)) =
13 − 5 = 8. Thus, we now look for difference M − µ(σ(4, 6)) = 14 − 8 = 6.
The matrix for this pair of positions is as follows:

T [cab, cca] :









0 5 10 11
−5 0 5 6
−6 −1 4 5
−8 −3 2 3









Value 6 is in the matrix: By looking in the matrix, we can see that a
difference of 6 can be achieved by moving the left pointer by 1 position and
the right pointer by 3 positions. The algorithm outputs positions 5 and 9,
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and then it terminates.

The Algorithm

We postpone the exact choice of the function c(n) to the analysis, but
assume for now that it is approximately log n. For simplicity, we assume
that c(n) is a divisor of n.

Preprocessing: Given σ of length n, first compute c(n). Next, build a
table T of size |A|c(n) × |A|c(n). Each row and each column of T is indexed
by a string from Ac(n). For I, J ∈ Ac(n), the table entry T [I, J ] contains
the matrix of all differences µ(prefix(J)) − µ(prefix(I)) as described above.
Furthermore, we store a hash table in entry T [I, J ] which contains the set
of all entries of the matrix. Note that the table T depends only on n and
A, and not on the string σ itself. Next, divide σ into blocks of length c(n).
For each block, store a pointer to an index I that will be used to look up
table T . Each such index I represents one string from Ac(n).

Query Algorithm: Given M , let ` = 1 and r = 0. Repeat the following
steps until M has been found or r > n:

1. Assume that ` is set to the beginning of the i’th block and r to the
end of the (j − 1)’th block. The pointer of block i resp. j points to
index I resp. J . Use the hash table stored in T [I, J ] to find whether
difference M − µ(σ(`, r)) is in the corresponding matrix, i.e., whether
the difference can be achieved by moving ` respectively r at most c(n)
positions to the right.

2. If the difference of M −µ(σ(`, r)) can be found in the hash table, then
search for an entry (k, l) in the matrix stored in T (I, J) that equals
M − µ(σ(`, r)) by exhaustive search1, and return yes, along with the
witness i′ := (i − 1) · c(n) + k and j ′ := (j − 1) · c(n) + (l − 1), since
µ(σ(i′, j′)) has mass M .

3. Otherwise, difference M − µ(σ(`, r)) is not in the matrix. If M −
µ(σ(`, r)) is less than the matrix entry at position (c(n), c(n)), then
increment ` by c(n) and set µ(σ(`, r)) := µ(σ(`, r))+min(hash table);
otherwise, increment r by c(n) and set µ(σ(`, r)) := µ(σ(`, r)) +
max(hash table).

Analysis: First we derive formulas for space and time, and then we show
how to choose c(n). To store one entry of table T , we have to store a matrix
with (c(n) + 1)2 differences, and the corresponding hash table. We use a

1Alternatively, we could have stored (k, l) during the preprocessing, too.
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hashing scheme which requires space O(c(n)2) and which allows membership
queries in constant time. Such hashing schemes exist for a finite universe U
of integers, see e.g. [38].

The space needed for storing the entire table T is

(number of entries in T ) · O(c(n)2)

= |A|2c(n) · O(c(n)2)

= O(|A|2c(n) · c(n)2).

The space needed for storing the pointer at each block is

number of blocks · log(number of elements in Ac(n))

=
n

c(n)
· log(|A|c(n)) = O(n).

For the last equality, recall that A is of constant size. For the query time,
observe that after each iteration, consisting of Steps 1 to 3, either ` or r is
advanced to the next block. As each of the pointers can advance at most

n
c(n) times, there can be at most 2 n

c(n) iterations. Each iteration except the

last one takes constant time. The last iteration may take time O(c(n)2).
In total, the algorithm requires storage space O(n + |A|2c(n) · c(n)2) and

time O( n
c(n) + c(n)2). Now, if we choose c(n) =

log|A| n

4 , then we obtain

|A|c(n) = n
1
4 . This yields a storage space of O(n + n

1
2 · log2 n) = O(n) and

query time O( n
log n

). Other choices of c(n) do not asymptotically improve
time and space at the same time.

Theorem 6.3.1. Algorithm Lookup solves the Mass Finding problem
with storage space O(n) and query time O( n

log n
).

In principle, algorithm Lookup can be modified to work on real weights
rather than on integers. Here, instead of storing the distances in hash
tables, we can use sorted arrays. Each membership query to a hash table is
replaced by binary search in the corresponding array. Since each array has
size O(c(n)2), this results in an additional factor O(log c(n)) in the query
time. With c(n) chosen as above, this yields storage space O(n) and query
time O( n

log n
log log n).

Asymptotically, Lookup beats both the query time of Linsearch and
the storage space of Binsearch. However, its primary purpose is to prove
that such algorithms exist, since it is only efficient for very long strings: In
order to obtain a block size of, say, c(n) = 10, the input string would need
to have length n = |A|40.
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6.4 Conclusion

With Lookup, we presented an algorithm for the Mass Finding problem
that is efficient in theory, as it requires only linear additional storage space to
allow for queries in sublinear time O( n

log n
). This proves that it is asymptot-

ically possible to beat both Linsearch and Binsearch at the same time.
However, Lookup requires unreasonably large inputs to perform well. This
raises the question whether there are more practical algorithms that are
efficient. In the long run, it would be interesting to explore the tradeoff
between query time and storage space for the Mass Finding problem. Do
algorithms exist that can be parameterized to allow for an adjustment of
this tradeoff?
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Chapter 7

De Novo Peptide

Sequencing

7.1 Introduction

De novo peptide sequencing, where we want to determine the amino acid
sequence of a protein fragment from a tandem mass spectrum, is one of the
most challenging problems in proteomics, and reliable techniques for auto-
matic peptide identification are required. Several (more or less efficient)
algorithms have been proposed to generate the set of matching peptide
sequences for a given MS/MS spectrum; for instance, it is possible to trans-
form a spectrum into a graph in which every connected path represents
a possible sequence. Then different techniques can be used to select well
matching sequences among the large number of possible paths [29, 36, 89].
Moreover, several different scoring schemes have been proposed that com-
pare a peptide sequence to an MS/MS spectrum [53, 72, 89]. There are sev-
eral software packages that implement de novo sequencing algorithms, such
as Lutefisk [88, 107], BioAnalyst [103], and others [104, 105, 109]. However,
the development of software tools that can generate a correct sequence for
any input spectrum of reasonable quality remains an open challenge.

Recently, Chen et al. introduced a de novo sequencing algorithm that
uses dynamic programming to efficiently generate all sequence candidates
for a given spectrum [14]. This algorithm first transforms the given MS/MS
spectrum into a graph, and then searches for a path of maximum length
in this graph. Chen et al. prove that this algorithm has running time at
most quadratic in the number of peaks in the given spectrum. Furthermore,
they present a modification of their algorithm that allows for edge scoring
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functions, and that finds a maximum score path. This algorithm has cubic
running time. While this approach can handle some kinds of additional
peaks in the data, like single water losses, it does not work in its pure
form for real–life spectra, since here the amount of noise peaks, that do not
correspond to peptide ions, can be tremendeous. In fact, in typical spectra
there are 100 – 400 peaks, while the corresponding peptides consist typically
of only 8 – 20 amino acids, thus only a very small fraction of all peaks
correspond directly1 to b–ions (prefixes) and y–ions (suffixes). Noise peaks
are also called grass peaks, since these peaks have often small abundance,
hence they look like grass in the graphical representation of a spectrum (see
Figure 1.7), while peaks that correspond to a peptide ion are referred to as
true peaks.

We can use several criteria to determine how likely it is that a peak p
in a spectrum corresponds indeed to a peptide ion. For instance, we can
search for isotope patterns: The isotopes of an atom differ in the num-
ber of neutrons they have in the nucleus, and they occur in nature with
different probabilities. E.g. carbon has either 6 neutrons, with probability
98.892%, or 7 neutrons, with probability 1.108%. If a peak p corresponds to
a monoisotopic ion, then we can expect to find peak p + 1, and sometimes
even p + 2, in the spectrum as well. A second criterion for a true peak can
be its abundance: If p is a true peak, then p is typically one of the highest
peaks in its close environment. Therefore, if the abundance of p is rather
low in comparison to its surroundings, then it is unlikely that p is a true
peak, although it is of course possible.

In the following, we present and discuss the prototype of a de novo
sequencing tool that is based on grass mowing and the algorithm by Chen et
al. This prototype is called Audens, an acronym for AUtomatic DE Novo
Sequencing, and works as follows. The input for Audens is a .dta–file,
which is an ASCII–formatted file that is generated from mass spectrometer
raw files, for instance by Sequest [33, 112]. This .dta–file specifies the parent
mass of the peptide, i.e., the total mass of the peptide in use, its charge state,
and all peaks that occur in the spectum, i.e., masses and their corresponding
abundance. An example of a .dta file is shown in Figure 1.5 on page 11,
and Figure 1.6 shows the corresponding graphical representation.

In a first step, Audens applies a set of grass mowers to the input data,
assigning to each input peak i a relevance value r(i), with the default being
r(i) = 1. We will describe the mowers in Section 7.2. Each single mower
outputs values between 0 and 1, and thus, their output can be weighted
against each other by using appropriate factors that can be set by the user.

1Some peaks in a spectrum can correspond indirectly to peptide ions, for instance if
an ion loses a water or ammonia molecule.
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The relevance of a peak is then the weighted sum of the values assigned by
each mower. Moreover, the relevance of a solution, i.e., a peptide sequence
that is supposed to match the spectrum, is the sum of the relevances of the
peaks corresponding to the sequence.

In a second step, Audens applies a modification of the sequencing algo-
rithm by Chen et al. This algorithm, that we call Dynamic, generates a
table that – implicitly – contains all sequences that match the given spec-
trum. We describe Dynamic in Section 7.3.

Finally, Audens outputs a list of multi–sequences that match the in-
put spectrum, where a multi–sequence represents a finite set of sequences
that cannot be distinguished from the spectrum data. E.g. multi–sequence
V(N|GG)GYSE(I|L)ER is short for the set {VNGYSEIER, VNGYSELER, VGGGY-

SEIER, VGGGYSELER}. The multi–sequences are ranked according to their
relevances, starting with the multi–sequence that has maximum relevance.
Hereby, the minimum relevance of a solution in the output can be specified
by a threshold that is relative to the relevance rmax of a best solution; e.g.
only sequences with relevance greater than 95% of rmax are shown. This
restricts the size of the output and the running time, as described in Sec-
tion 7.3.

Audens comes with a graphical user interface that allows the user to
select the input spectrum, set the parameters of the mowers, display the
spectrum and the sequencing result in text form or in a graphical represen-
tation, and to compare the results against the output of other sequencing
tools like Sequest. A screenshot is shown in Figure 7.1. We refrain from
presenting the details of the implementation of Audens, since it only serves
as a tool to evaluate the potential of grass mowing in de novo sequencing
applications.

We have measured the performance of Audens on a test set of MS/MS
spectra for which the correct peptide sequences are known. This test set,
which was generated by Grossmann during his diploma thesis [42], contains
266 spectra, and Audens lists the correct peptide sequence for 79 of these
spectra among its first three candidates. We discuss these results in Section
7.4, and conclude in Section 7.5 with an outlook on future developments of
Audens.

Part of the results in this chapter have been published previously [6].

7.2 Grass Mowers

In this section, we present the mowers that we apply in Audens to determine
the relevances of the spectrum peaks.
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Figure 7.1: Screenshot of Audens.

Percentage Mower

The percentage mower increases the relevances of all peaks that have abun-
dance greater than a given threshold t. Rather than taking an absolute
threshold, we specify threshold t relative to the maximum abundance in
the spectrum, e.g. 0.03% of the maximum. By this, the threshold is robust
towards different intensities of measurements in different spectra.

Isotope Mower

Typically, single peptide ions give rise to more than one peak in an MS/MS
spectrum due to isotopes. Thus, peaks without corresponding isotope peaks
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are rather unlikely to be caused by ions, and the number of isotope peaks
of a single peak can be used to adjust its relevance. The isotope mower
has a parameter k, which is the number of isotopes required to increase the
relevance of a peak. Typical values for k are 1 or 2.

Water and Ammonia Mower

It can happen that a peptide ion loses a single water molecule. Thus, if p
is a true peak in a spectrum, we can expect a peak at p − 18 as well, as
18 is the molecular mass of a water molecule. The water mower makes use
of this fact and increases the relevance for those peaks for whom a peak at
offset −18 is present as well.

The ammonia mower is analogous to the water mower with offset −17,
as ions can lose ammonia molecules as well.

Window Mower

The window mower has two parameters: The size of a window w and a
number k of peaks per window. It is based on the observation that, typically,
high peaks are more likely to be caused by peptide ions than low peaks (this
observation is used in the percentage mower as well). The window mower
“slides” a window of width w over the spectrum, and for each position
of the window it increases the relevances of the k peaks with the highest
abundances within the window. The rationale for the window mower is
twofold: First, within any window of size less than 57Da, the approximate
size of the smallest amino acid mass, there can be at most two true peaks,
namely one from a b–ion and one from a y–ion. Second, in many spectra
contiguous regions of masses can be found such that the abundance of the
peaks within one region do not differ very much, while they do differ between
different regions2

Complement Mower

If p is a peak in the spectrum that arose from a b–ion (a prefix of the se-
quence), then we expect the corresponding y–ion (the corresponding suffix)
to be present in the spectrum as well, and vice versa. The two masses of
the two complementary peaks, plus offset +1 for the additional charge of
the doubly charged parent ion, add up to the parent mass of the peptide.
Therefore, the complement mower increases the relevance of a peak p if

2When manually sequencing, such regions are scaled with different factors in order
to level the height of the peaks, and then peaks that are high within their region are
considered for the sequencing process [86].



106 De Novo Peptide Sequencing

the complementary peak is present in the spectrum as well. This mower is
very closely related to the sequencing algorithm we use, since this algorithm
heavily relies on pairs of complementary peaks (see Section 7.3).

Second Level Mowers

For each of the mowers described above we introduce a second level variation
of the mower that does not only increase the relevance of a peak p, but
also the relevance of the complementary peak w.r.t. the parent mass of the
peptide. These variants are referred to as Mowername2, where Mowername
is any of the mowers above. This combination of a peak with its complement
is – like the complement mower itself – motivated by the fact that our
sequencing algorithm Dynamic is based on complementing pairs.

Egsit Mower

Using the mowers above we expect to assign high relevances to the true
peaks in a spectrum, while grass peaks should have rather low relevance.
In a final step of the preprocessing, the egsit mower reduces the size of
the spectrum, and thus its complexity, by eliminating all peaks that are
not among the x peaks with high relevances, for some parameter x. In
our setting, value x is between 30 and 60, as typical peptide lengths’ vary
between 8 – 20 amino acids, thus yielding at most 16 – 40 true peaks in a
spectrum.

7.3 Algorithm Dynamic

The sequencing algorithm Dynamic that we use in Audens is based on the
algorithm introduced by Chen et al. [14]. The original algorithm maximizes
the sum of weights of peak pairs (edges), while our algorithm maximizes the
sum of the relevances assigned to the peaks. While our algorithm differs
only slightly from the algorithm in [14], we present it here in order to make
this thesis self–contained.

The idea of Dynamic is to generate a directed vertex–labeled graph
G = (V, E) with two special vertices x0 and y0, such that any directed path
from x0 to y0 that satisfies an additional constraint will correspond to a
solution, i.e., a matching sequence. For each peak i there are two vertices
xi, yi ∈ V , whose masses are the smaller and the larger value, respectively, of
the mass of peak i and its complement w.r.t. the parent mass. The relevance
r(v) of a vertex v is the relevance of the corresponding peak assigned by
the mowers. The reason for generating pairs (xi, yi) of vertices is that if a
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peak is a true peak, then it is either a prefix (a b–ion) or a suffix (a y–ion).
Moreover, if the spectrum was perfect, it would also contain its complement.

We use a mass tolerance ε, and if two vertices have the same mass within
the mass tolerance ε, then we merge them, and assign the new vertex the
maximum relevance value among the merged vertices. The vertices are
sorted such that m(x0) < m(x1) < . . . < m(xn) < m(yn) < . . . < m(y1) <
m(y0)3 . Hereby, x0 and y0 are two new vertices with masses m(x0) = 1
and m(y0) = parent mass − 18, and both relevance 1. At this point, for
each pair (xi, yi), for 1 ≤ i ≤ n, we know that it either constitutes noise, or
one is a prefix of the peptide and the other a suffix—but we do not know
which is which.

G contains a directed edge (u, v) if m(v) − m(u) can be written as the
sum of amino acid masses, within the mass tolerance. We say that a directed
path P in G is k–compatible if P contains at most one vertex of each pair
(xi, yi), for 1 ≤ i ≤ k. Any n–compatible directed path P in G from x0 to
y0 corresponds to a solution for the input spectrum, because it represents a
partial list of prefixes.

We now show how to fill in a table Q of size (n + 1) × (n + 1) that will
be used to compute paths from x0 to y0. Define w(P ), the pathweight of a
directed path P in G, as w(P ) :=

∑

v∈P r(v). Set

Q(i, j) := max{w(L) + w(R) | L directed path from x0 to xi,

R directed path from yj to y0,

and L ∪ R is max(i, j)–compatible}.

We set Q(i, j) = 0 if no appropriate paths exist. The table Q has the
property that Q(i, j) > 0 if and only if there is a path L from x0 to xi and a
path R from yj to y0 such that L∪R is max(i, j)–compatible. The table can
be filled in using the crucial observation that the maximum path for a given
pair (xi, yj), for i < j, can be computed using all maximum paths for pairs
(xi, yk), for k < j. Since j > i, value yj can be added to any such pair L∪R
without violating the compatibility condition. The situation is analogous
for the case where i > j. Thus, Q(i, j) can be computed as follows.

Q(i, j) =











max0≤k<j{Q(i, k) | (yj , yk) ∈ E, Q(i, k) > 0} + r(yj) , if i < j;

0 , if i = j;

max0≤k<i{Q(k, j) | (xk, xi) ∈ E, Q(k, j) > 0} + r(xi) , if i > j.

3Because of the merging of vertices, the new value of n may have decreased. Here, we
assume that n denotes the correct number of vertices.
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The value of a maximum path is now rmax = max{Q(i, j) | (xi, yj) ∈ E}.
Note that rmax = 0 means that there is no feasible solution to the input, i.e.,
the parent mass cannot be written as a sum of amino acid masses within
the given error tolerance ε.

Entry Q(i, j) contains the maximum weight of any compatible path from
x0 to xi and from yj to y0. Thus, the table Q can be used in a backtracking
algorithm to recursively enumerate all paths from x0 to y0. Moreover, if
we use a threshold t we can restrict their enumeration to all paths whose
weights are above t. The use of such a threshold allows for pruning the tree
of computation generated by the backtracking process in early stages. This
makes the time spent in the recursion proportional, not to the total number
of possible paths, but to the number of paths that are of interest, i.e., whose
weights are above the threshold.

When generating graph G, we have inserted an edge between two vertices
if the difference of their masses could be written as the sum of amino acid
masses (see above). Hence, we need an efficient way to decide whether a
given mass M can be represented by a sum of amino acid masses, and we
need to compute all such amino acid sequences. We will study this problem
as a combinatorial problem in Chapter 8. Here, it suffices to construct an
array of Boolean variables b0, . . . , bN such that variable bi represents masses
m ∈ [i ·δ, (i+1) ·δ), with δ some small range. Let mi = i ·δ+ δ

2 be the center
mass of the interval represented by bi. The maximum index N depends on
the maximum mass Mmax considered, and is computed as N = dMmax

δ
e.

Typically, we use δ = 0.01Da and Mmax = 1000Da.

The variables bi are initialized as follows. If the mass interval represented
by bi contains the mass of any single amino acid, then bi is set to TRUE,
otherwise bi is set to false. This can be done in 20 + N = O(N) time, as
there are 20 amino acids. In a second phase, we run from b0 to bN and
set bi to TRUE if there is an amino acid mass a such that the variable bj

containing mass mi−a is set to TRUE. The second pass takes 20N = O(N)
steps.

To answer the question whether a mass M measured with error ε can
be represented by a sum amino acid masses, we check all variables bi that
represent part of the interval (M − ε, M + ε). If one of them is true, the
answer is YES, if all are false, then the answer is NO. Typically, we use
ε = 0.5Da.

Finally, if we want to enumerate all amino acid sequences that yield
mass M up to error ε, we proceed as follows. For all true bi’s that represent
part of the interval (M − ε, M + ε), and for all amino acid masses a, we
test whether the variable bj containing mi − a is true. If so, we store the
letter of amino acid a and recursively enumerate all sequences for mass
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mj . This algorithm, however, enumerates all permutations of all possible
sequences. To avoid this, in recursion depth d we only consider amino acids
whose letters are lexicographically larger or equal to the amino acid letter
chosen in depth d − 1. This way, only distinct sequences with respect to
permutation are output.

7.4 Experimental Results

We ran Audens on a test set of 266 MS/MS spectra for which the cor-
rect peptide sequence is known. This test set was generated by Gross-
mann during his diploma thesis [42]. The spectra were created from the
proteins Bovine Serum Albumin, Polyribonucleotide nucleotidyltransferase,
Cytochrome C and the WD–40 repeat protein MSI1 fused to Glutathione
S–transferase. For each of these spectra the software tool Sequest outputs a
“good” sequence, i.e., the sequence match is of high quality, indicated by X–
Corr ≥ 2.5 and DeltaCn ≥ 0.1, and the proposed peptide sequence occurs in
the sequence of the corresponding protein in use. This gives strong evidence
that the proposed sequences are correct. Details can be found in [42].

We ran Audens for each of these 266 spectra with the same parameter
setting. Figure 7.2 shows the values of the most important parameters in
our test run. With this parameter setting, Audens outputs the correct se-
quence, i.e., a matching multi–sequence for 118 out of the 266 given spectra.
Moreover, for 79 of these spectra, Audens lists the matching multi–sequence
among the first three multi–sequences in its ranked output. For compari-
son, we ran the de novo sequencing tool Lutefisk [89, 88, 107] on our test
spectra as well. Lutefisk output the correct sequence for only 68 of the
spectra among its first three candidates. In Chapter A in the Appendix we
show for each input spectrum the correct sequence and the best rank for
a matching sequence generated by Audens and Lutefisk, respectively. The
running time of Audens for a single spectrum was usually below 2 seconds
on a common PC with 700MHz and 256 MB RAM.

7.5 Conclusion

The purpose of Audens was to explore the potential of preprocessing MS/MS
spectra using different grass mowing heuristics that are derived from chem-
ical properties of amino acids and peptides. To this end, our experimental
results show that this approach is very promising. In fact, for approxi-
mately 30% of the input spectra the correct sequence was among the first
three candidates generated by Audens. However, in its current form Audens
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Approx2Mono.useIt=yes

ammoniaMower2.massTolerance=0.2

ammoniaMower2.massToleranceComp=0.5

ammoniaMower2.relevanceFactor=20

ammoniaMower2.relevanceFactorComp=30

ammoniaMower2.useIt=yes

complementMower.massTolerance=0.5

complementMower.relevanceFactor=20

complementMower.useIt=no

EgsitMower.EgsitX=40

EgsitMower.relevanceFactor=1

EgsitMower.useIt=yes

intersectionMower.peakTolerance=0.1

intersectionMower.relevanceFactor=20

intersectionMower.useIt=no

isotopeMower.massTolerance=0.1

isotopeMower.numIsotopes=2

isotopeMower.relevanceFactor=30

isotopeMower.useIt=yes

isotopeMower2.massTolerance=0.1

isotopeMower2.massToleranceComp=0.5

isotopeMower2.numIsotopes=1

isotopeMower2.relevanceFactor=20

isotopeMower2.relevanceFactorComp=30

isotopeMower2.useIt=yes

offsetMower.offset=14

offsetMower.parentMassTolerance=0.5

offsetMower.peakTolerance=0.1

offsetMower.relevanceFactor=10.0

offsetMower.useIt=no

PercentageMower.percentage=0.03

PercentageMower.relevanceFactor=50

PercentageMower.useIt=yes

PercentageMower2.massToleranceComp=0.5

PercentageMower2.percentage=0.008

PercentageMower2.relevanceFactor=10

PercentageMower2.relevanceFactorComp=30

PercentageMower2.useIt=yes

sequencer.relativeWeightMin=0.95

thresholdMower.relevanceFactor=20

thresholdMower.threshold=500000.0

thresholdMower.useIt=no

thresholdMower2.massToleranceComp=0.5

thresholdMower2.relevanceFactor=20

thresholdMower2.relevanceFactorComp=20

thresholdMower2.threshold=5000.0

thresholdMower2.useIt=no

waterMower.massTolerance=0.1

waterMower.numIsotopes=1

waterMower.relevanceFactor=40

waterMower.useIt=no

waterMower2.massTolerance=0.2

waterMower2.massToleranceComp=0.5

waterMower2.relevanceFactor=10

waterMower2.relevanceFactorComp=30

waterMower2.useIt=yes

windowMower.massWindow=130.0

windowMower.numPeaks=2

windowMower.relevanceFactor=30.0

windowMower.useIt=yes

windowMower2.massToleranceComp=0.5

windowMower2.massWindow=100.0

windowMower2.numPeaks=4

windowMower2.relevanceFactor=10.0

windowMower2.relevanceFactorComp=30

windowMower2.useIt=yes

Figure 7.2: Main parameters of Audens for the test set.

only serves as a “proof of concept”, and there are several ways to improve
it:

� The parameter setting we used was found by “trial and error”, i.e., we
modified each parameter by hand until we found a good setting. We
are sure that more elaborate techniques to find good parameters, like
neuronal networks or other machine learning algorithms, will further
improve the performance of Audens.

� There are many other mowers that might help in the sequencing pro-
cess; for instance, an intersection mower can be used to virtually
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merge many spectra that belong to the same peptide. In fact, in our
test set there are several spectra for one single peptide, and we can
find such spectra using for instance the parent mass or other match-
ing techniques (e.g. as proposed in [87]). Such a merging step might
reduce the amount of noise, since – typically – true peaks are more
likely to occur in many, or even all, of these spectra, while grass peaks
occur in a more randomly distributed way.

� In the current version of Audens, no postprocessing is applied, and
the ranking of the multi–sequences in the output is exclusively based
on the relevances of the corresponding peaks. Of course, additional
ranking schemes can be used to determine the quality of the multi–
sequences in the output of Audens (see for instance [53, 72]), thus
allowing to exclude “bad” candidates.

� In order to get more reliable sequencing results, additional experi-
ments can be performed, such as methyl ester derivatisation of the
peptides, where each y–ion is shifted by 14Da. Similar to the inter-
section mower sketched above, an offset mower can be implemented
that makes use of such peak shifts. First experiments have already
been performed in [42].

In fact, based on our results an interdisciplinary project with biologists and
computer scientists was launched at ETH Zurich that aims at the develop-
ment of a de novo peptide sequencing tool.
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Chapter 8

Mass Decomposition

8.1 Introduction

In this chapter, we study the computational complexity of Decomposition,
where we are given a mass M and we ask whether it can be decomposed into
amino acid masses. We recapitulate the definition from the introduction (cf.
Definition 1.4.3):

Definition. Given n positive integers c1, . . . , cn and a positive integer M ,
are there non–negative integers λ1, . . . , λn such that

∑n
i=1 λi · ci = M?

This problem occurs – in a restricted variant – in the de novo sequencing
algorithm that we applied in Section 7.3. There we used a simple dynamic
programming algorithm to compute all masses M , up to a certain upper
bound, that can be decomposed. The question whether a mass can be de-
composed into amino acids occurs in the Mass Finding problem as well:
Obviously, we can find mass M as submass in a protein only if it can be
decomposed at all. Thus, if we know in advance that M cannot be decom-
posed, then we do not need to search the databases for M .

Apart from its application in computational biology, the Decomposi-

tion problem is highly motivated from a theoretical point of view, since it
is a variation of Subset Sum respectively Knapsack where we are allowed
to use items more than once. This problem is known as Integer Knap-

sack problem [40]. The problem has many real world applications, e.g. in
electronic cash systems or cargo loading. In fact, Decomposition is also
known as Coin Change problem, where we are given a coin system and
a total price, and we ask whether it is possible to pay the price using only
these coins (assuming that the amount of coins in the wallet is not limited).
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The decision problem Coin Change is NP-complete [57] and can be solved
in pseudo–polynomial time using dynamic programming [94]. Apart from
that, only little is known about the decision problem. In fact, most liter-
ature deals with the minimization variation of the problem, assuming that
there is a coin of denomination 1 (this makes the decision problem triv-
ial), and asking for a representation of the price with a minimum number of
coins. This minimization problem can again be solved in pseudo–polynomial
time using dynamic programming [94]. Other algorithmic approaches use
for instance branch and bound techniques or a greedy strategy that always
takes the largest coin still possible [60]. There exist coin systems where
the greedy algorithm always outputs a minimal solution, e.g. for US coins
1, 5, 10, 25, 50, 100, but in general, it can be arbitrarily far away from op-
timum [60]. Deciding whether the greedy algorithm outputs an optimal
solution for every price is possible in time polynomial in the number of
coins [68], while it is coNP-hard to decide for a specific total x whether
the greedy algorithm produces a minimal result [54]. For the k–payment

problem, where we have to find a minimal set of coins such that k exact pay-
ments, not known in advance, can be performed, lower and upper bounds
and an efficient algorithm are known [67]. Recently, optimal coin systems
– that allow to minimize the average number of coins needed for a set of
payments – have been proposed [80]. For a survey we refer the reader to
the book by Martello and Toth that devotes an entire chapter to the Coin

Change problem [60].

In the first part of this chapter, we study how the computational com-
plexity of Decomposition is related to the size of the input. Here, the
size of the input is measured in the number of amino acid masses n and the
logarithm of the total mass M . We first observe in Section 8.2 that Decom-

position can be solved in polynomial time if the number of amino acids
is constant. In particular, this is the case if we restrict Decomposition

to the 20 most common amino acids. However, there exists a huge set of
post–translational modifications, such as phosphorylation or glycosylation,
that can virtually change the masses of amino acids, which increases the
number of different masses to be considered [5, 51]. Hence, it is natural
to consider n to be non–constant. Moreover, the “algorithm” that solves
Decomposition for constant n has worst case running time highly expo-
nential in n; in fact, it can be more than 2(n−1)2 , which yields unreasonable
running times even for small values of n.

In Section 8.3, we study how the size of the amino acid masses in the
input affects the complexity of Decomposition. The monoisotopic amino
acid masses are known very precisely. However, accuracy of mass spec-
trometry measurements in typical experimental settings can typically vary
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between zero and five post decimal digits. We can assume that the amino
acid masses are given in the corresponding precision as well. If we multiply
all masses by an appropriate power of 10, in order to obtain integer inputs,
then values we use for different experiments can vary between 102 for low
precision experiments, and 107 for experiments with high precision. This
motivates to distinguish between “small” and “large” numbers in the input
of Decomposition.

We first study the case where most of the input numbers are small, i.e.,
bounded by a polynomial in n. If the total mass M itself is small, then
obviously all relevant amino acid masses are small as well (otherwise, the
corresponding amino acids do not fit and can be ignored), and the pseudo–
polynomial time algorithm by Wright [94] yields immediately a polynomial
time algorithm for such restricted input. In the opposite case, if all amino
acid masses are small, then this does not immediately imply that the total
mass M has to be small as well. This is different for instance for Partition,
where small input numbers imply immediately that each partition has small
total as well. We give an algorithm that solves Decomposition in polyno-
mial time for small amino acid masses and arbitrarily large total mass M .
For the algorithm, we first observe that if M is not a multiple of the greatest
common divisor of the amino acid masses, then it cannot be decomposed.
Otherwise, M can be decomposed if it is sufficiently large. Our algorithm
uses this fact to either output the result immediately for large masses, or
to apply a pseudo–polynomial time subroutine for small masses.

Then we extend this algorithm and show that the Decomposition prob-
lem can even be solved in polynomial time in the presence of few large amino
acids, i.e., if there is only a constant number of amino acid masses that are
super–polynomial in n.

In the second part of this chapter, we turn to the search problem of
Decomposition, where we are not only asked whether mass M can be
decomposed, but to output a solution λ1, . . . , λn, if any. In the context
of database search, such a solution can be helpful in the development of
fast protein identification algorithms. If there are many decompositions for
one mass, then we can ask for a decomposition with specific requirements.
Two very natural requirements are decompositions with a minimum or a
maximum number of amino acids, yielding a lower respectively upper bound
on the number of amino acids in which the mass can be decomposed. These
two optimization problems are referred to as Min Decomposition and
Max Decomposition and defined as follows.

Definition 8.1.1 (Min Decomposition). Given a positive integer M
and positive integers c1, . . . , cn, find non–negative integers λ1, . . . , λn with
∑n

i=1 λi · ci = M such that
∑n

i=1 λi is minimum.
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Definition 8.1.2 (Max Decomposition). Given a positive integer M
and positive integers c1, . . . , cn, find non–negative integers λ1, . . . , λn with
∑n

i=1 λi · ci = M such that
∑n

i=1 λi is maximum.

The variation of Decomposition where we ask for a maximum mass
that is less than a given upper bound B and that can be decomposed is a
special case of Integer Knapsack. For this problem pseudo–polynomial
time algorithms and approximation algorithms are known [13]. However,
we are not aware of any approximability results for Min Decomposition,
and of no results at all for Max Decomposition. For this reason we study
the approximability of Min Decomposition and Max Decomposition

in Section 8.4. We present for both problems a gap–producing reduction
from Partition that shows that no polynomial time algorithm can exist
that has any constant approximation ratio, unless P = NP.

8.2 Decomposition with Few Amino Acids

For two amino acids, the problem Decomposition can be solved using the
extended version of Euclid’s algorithm. The following lemma shows that
integer linear programming can be used to solve the problem in polynomial
time even if the number of amino acids is any constant.

Lemma 8.2.1. Decomposition, Min Decomposition and Max De-

composition can be solved in polynomial time if the number of amino acids
is constant.

Proof: For all three problems there is a straightforward formulation as
an integer linear program (ILP). E.g. for Min Decomposition, this is

min

n
∑

i=1

λi,

subject to
n

∑

i=1

λici = M

λi ≥ 0 for 1 ≤ i ≤ n

λi integer for 1 ≤ i ≤ n

The claim follows immediately from the fact that integer linear programs
are solvable in polynomial time if the number of variables (in this case, n)
in the program is constant [77].
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2

Observe that the running time to solve integer linear programs with n
variables can be more than 2(n−1)2 [77].

8.3 Decomposition with Small Amino Acids

In this section, we study how the size of the amino acid masses affects the
complexity of Decomposition. We say that an amino acid mass is large
if it is super–polynomial in the number n of amino acids in the input, and
the mass is small if it is polynomially bounded in n. We present an algo-
rithm that solves the Decomposition problem in polynomial time if the
number of large amino acid is at most constant. This algorithm combines
the pseudo–polynomial algorithm from the book by Martello and Toth [60]
with the following result by Brauer [12].

Fact 8.3.1. [12] Given n positive integers a1, . . . , an with a1 ≤ . . . ≤ an and
gcd(a1, . . . , an) = 1, and a positive integer f ≥ a1 · an. Then the equation
∑n

i=1 µiai = f has a solution with non–negative integers µi, for 1 ≤ i ≤ n.

Observe that
∑n

i=1 µiai = f cannot have an integer solution if f is not a
multiple of g = gcd(a1, . . . , an), since the left hand side is obviously divisible
by g.

We now present our algorithm for the Decomposition problem. Given
amino acid masses c1, . . . , cn and total mass M , let g = gcd(c1, . . . , cn). We
assume w.l.o.g. that c1 < . . . < cn. If g = 1, then let b = c1 · cn. If M > b,
then mass M can be decomposed, due to Fact 8.3.1. If M ≤ b, then we use
the pseudo–polynomial algorithm from the book by Martello and Toth [60]
to solve the problem explicitly. In order to make this work self–contained,
we present a simplified version of this algorithm here:

Let F be a Boolean array of length M + 1. We set F (m) to
TRUE, for 0 ≤ m ≤ M , if mass m can be decomposed into amino
acids. Then F (0) = TRUE, and F (m) = TRUE if and only if
F (m−ci) is TRUE for at least one i ∈ {1, . . . , n}. Obviously, the
total mass M can be decomposed if and only if F (M) is TRUE.
This algorithm has pseudo–polynomial running time O(n · M).

Since all ci are polynomially bounded in n, we have M ≤ b = c1 · cn =
O(poly(n)), hence, for this case our algorithm runs in polynomial time.

If g > 1, then every mass M that is not a multiple of g cannot be
represented. On the other hand, if g is a divisor of M , then M =

∑n
i=1 λi ·ci
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is equivalent to M ′ =
∑n

i=1 λi · c′i, with c′i = ci

g
and M ′ = M

g
. Since

gcd(c′1, . . . , c
′
n) = 1, the last equation can be decided using one recursive

call of our algorithm. This yields the following lemma.

Lemma 8.3.2. The Decomposition problem can be solved in polynomial
time if the size of all amino acid masses is polynomially bounded in the
number n of amino acid masses.

We now show how to solve the Decomposition problem if exactly one
amino acid mass is large. Subsequently, we will generalize this to any con-
stant number of large amino acids.

Lemma 8.3.3. Given n + 1 amino acid masses c1, . . . , cn, h with ci =
O(poly (n)), for 1 ≤ i ≤ n, and h = ω(poly (n)), and a total mass M . Then
the Decomposition problem can be solved in time O(poly (n)).

Proof:
Let g = gcd(c1, . . . , cn) and b = c1 · cn. Then b < h. If gcd(c1, . . . , cn, h)

does not divide M , then the total mass cannot be decomposed. On the
other hand, if g divides M , then Fact 8.3.1 applies, and the mass can be
decomposed using only the small amino acid masses. Otherwise, we use the
following case distinction to prove the claim:

� If M < h, then mass h cannot be used in any decomposition of M ;
hence, Lemma 8.3.2 immediately yields the claim.

� If M = h, then the problem is trivial.

� If M ≤ 2gh, then we can construct 2g new instances of Decomposi-

tion as follows. Amino acid masses are c1, . . . , cn, and the total mass
is Mk := M −k ·h, for k ∈ {0, . . . , 2g}. Then we have M = k ·h+Mk,
and M can be decomposed if and only if any of these Decomposition

instances yields a decomposition of mass Mk.

� If M > 2gh, then gcd(g, h) divides M , since we have gcd(g, h) =
gcd(gcd(c1, . . . , cn), h) = gcd(c1, . . . , cn, h). Since M > gh, there exist
non–negative integers α and β such that M = α·h+β·g (by Fact 8.3.1).
Moreover, by “shifting” multiples of g (replace α by α − g and β by
β + h), we can achieve that α ≤ g. Then β = M−α·h

g
≥ 2gh−gh

g
= h >

b. Hence, there exist λ1, . . . , λn such that β · g =
∑n

i=1 λi · ci.

2

In the following theorem, we extend the previous algorithm to any num-
ber of large amino acid masses. This increases the running time drastically;
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however, if the number of large amino acid masses is only constant, then
this still yields an algorithm polynomial in n.

Theorem 8.3.4. Given are n + k amino acid masses c1, . . . , cn, h1, . . . , hk

and a total M , such that c1 < . . . cn, cn = O(poly (n)), and h1 < . . . ≤ hk,
h1 = ω(poly (n)). Then the Decomposition problem can be solved in time
O((c1 + 1)k−1poly (n)).

Proof: If M < hj for some j ∈ {1, . . . , k}, then mass hj cannot be used in
any decomposition of M ; moreover, the problem becomes trivial if M = hj .
Hence, we can assume w.l.o.g. that M > hk.

We use an inductive argument over k to prove this lemma. Obviously,
Lemma 8.3.3 yields the claim for k = 1. For k ≥ 2, we do the following: If
gcd(c1, . . . , cn, h1, . . . , hk) does not divide M , then the total mass M can-
not be decomposed. Hence, we can assume that gcd(c1, . . . , cn, h1, . . . , hk)
divides M . Let b = c1 · hk.

If M > b, then Fact 8.3.1 applies, and M can be decomposed. Otherwise,
we have M ≤ b = c1 · hk. Hence, if M can be decomposed, then mass hk

can occur at most c1 times. Thus, for all βk ∈ {0, . . . , c1}, we can check
recursively whether M ′ := M − βk · hk can be decomposed into the amino
acid masses c1, . . . , cn, h1, . . . , hk−1. If so, then this immediately yields a
decomposition of M . Otherwise, there is no solution for any of the βk’s,
and M cannot be decomposed.

For the running time, let T (`) be the time required to solve the Decom-

position problem with only the first ` large amino acid masses h1, . . . , h`.
Then T (1) = O(poly (n)), due to Lemma 8.3.3. Moreover, we have the
recursive equation T (k) ≤ (c1 + 1) · T (k − 1). This yields T (k) ≤ (c1 +
1)k−1 · T (1), which proves the claim.

2

Observe that the previous algorithm achieves running time polynomial
in n if the number of large amino acids is constant. Moreover, we can
solve the corresponding search problem of Decomposition as well, since
we can modify the pseudo–polynomial algorithm such that it outputs an
appropriate solution, if any.

8.4 Inapproximability of Min Decomposition

and Max Decomposition

In this section, we show that the minimization and the maximization vari-
ation of Decomposition cannot be approximated to within any constant
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factor, unless P = NP. To establish this result we present gap–producing
reductions from Alternating Partition (see Definition 2.4.7).

Theorem 8.4.1. Min Decomposition cannot be approximated to within
any constant factor, unless P = NP.

Proof: Let (u1, v1), . . . , (un, vn) be an instance of Alternating Parti-

tion. Let s =
∑n

i=1(ui + vi), and ω be any positive integer. Moreover, we
define a total mass M = 〈 s

2 , s
2 〉 ◦ 1n ◦ 〈ω〉 and amino acid masses

ai = 〈ui, vi〉 ◦ ∆n(i) ◦ 〈0〉 for 1 ≤ i ≤ n

bi = 〈vi, ui〉 ◦ ∆n(i) ◦ 〈0〉 for 1 ≤ i ≤ n

c = 〈0, 0〉 ◦ 0n ◦ 〈ω〉
d = 〈0, 0〉 ◦ 0n ◦ 〈1〉
e = 〈s

2
,
s

2
〉 ◦ 1n ◦ 〈1〉

For these numbers we use base Z = 2 · (n + 1) · (s + ω + 1) to avoid any
carry–overs from one digit to the next in the following additions. The amino
acid masses ai, bi, c, d and e and the total mass M are an instance of Min

Decomposition. Observe that M = e + ω · c. We now show the following
properties:

1. If there is a solution for the Alternating Partition instance, then
total mass M can be decomposed with n + 1 amino acids.

2. If there is no solution for the Alternating Partition instance, then
total mass M cannot be decomposed with less than ω amino acids.

For the first implication, let I and J be a solution for the Alternating

Partition instance. Then the amino acid masses ai with i ∈ I and the
amino acid masses bj with j ∈ J together sum up to s

2 in the first digit,
and the same holds for the second digit. Hence, adding amino acid mass c
to these amino acids yields total mass M , using n + 1 amino acids.

To prove the second implication, assume that there is no solution for
the Alternating Partition instance. In any solution for the Min De-

composition instance, we can use at most one of the amino acids ai and
bi, since both have a 1 in the (i + 2)’nd digit, and this digit is set to 1 in
total mass M . Since no selection of amino acids ai and bi can yield sum
s
2 (otherwise, this would yield a solution for the Alternating Partition



8.4 Min Decomposition and Max Decomposition 121

instance), we must use amino acid e in any solution for the Min Decom-

position instance. This implies immediately that ω− 1 amino acid masses
d need to be used to obtain total mass M . Hence, we need at least ω amino
acids in total (and this bound is tight).

Our two implications show that no polynomial time algorithm can exist
with an approximation ratio of less than ω

n+1 , unless P = NP. Choosing
appropriate ω proves the claim.

2

We now give a similar reduction that proves that Max Decomposition

is hard to approximate as well.

Theorem 8.4.2. Max Decomposition cannot be approximated to within
any constant factor, unless P = NP.

Proof: Let (u1, v1), . . . , (un, vn) be an instance of Alternating Parti-

tion. Let s =
∑n

i=1(ui + vi), and ω be any positive integer. Moreover, we
define a total mass M = 〈n, ω, s

2 , s
2 〉 ◦ 1n and amino acid masses

ai = 〈1, 0, ui, vi〉 ◦ ∆n(i) for 1 ≤ i ≤ n

bi = 〈1, 0, vi, ui〉 ◦ ∆n(i) for 1 ≤ i ≤ n

c = 〈0, 1, 0, 0〉 ◦ 0n

d = 〈n, ω,
s

2
,
s

2
〉 ◦ 1n

We use base Z = 2 · (n + 1) · (s + ω + 1) for these numbers to avoid any
carry–overs from one digit to the next in the following additions. Observe
that d = M . The amino acid masses ai, bi, c, and d, and the total mass M
build an instance of Max Decomposition with the following properties:

1. If there is a solution for the Alternating Partition instance, then
total mass M can be decomposed with n + ω amino acids.

2. If there is no solution for the Alternating Partition instance, then
total mass M cannot be decomposed with more than one amino acid.

For the first claim, let I and J be a solution for the Alternating Parti-

tion instance. Then the amino acid masses ai with i ∈ I and the amino
acid masses bj with j ∈ J together sum up to s

2 in the third digit, and the
same holds for the fourth digit. Hence, adding amino acid c to these amino
acids ω times yields total mass M , using n + ω amino acids.
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For the second implication, assume that there is no solution for the
Alternating Partition instance. In any solution for the Max Decom-

position instance, we can use at most n of each of the masses ai and bi,
since otherwise the first digit becomes greater than n. Since our base in
each digit is sufficiently large, we cannot have any carry–overs in the last
n + 2 digits in any solutions. A solution can use at most one of the amino
acids ai and bi, since both have a 1 in the (i + 4)’th digit, and this digit is
set to 1 in total mass M . Since no selection of amino acids ai and bi can
yield sum s

2 (otherwise this would yield a solution for the Alternating

Partition instance), we must use amino acid d in any solution for the Max

Decomposition instance; but this yields already the total mass M . Hence,
only one amino acid can be used in a solution, namely d.

Thus, no polynomial time algorithm can exist that achieves an approx-
imation ratio of less than n+ω

1 , unless P = NP.
2

8.5 Conclusion

We have shown that Decomposition can be solved in polynomial time if
the number of amino acid masses is constant, or if all amino acid masses ex-
cept a constant number are polynomially bounded in n, the number of amino
acids. On the other hand, the optimization variations Min Decomposi-

tion and Max Decomposition, where we ask for solutions of minimum
respectively maximum cardinality, cannot be approximated by any constant
ratio, unless P = NP, even if M always has at least one decomposition. Our
results evoke different directions of future research:

� In how many different ways can a certain mass be decomposed if we
use the true amino acid masses? Is there an upper bound on this
number if we assume a certain precision?

� Our algorithm for the case of a constant number of amino acid masses
is asymptotically rather inefficient; in fact, its worst case running time
is highly exponential in the number of amino acids. How does this al-
gorithm perform in practice? Are there more efficient (combinatorial)
algorithms for this problem variation?

� Are there other interesting optimization variations of Decomposi-

tion (of theoretical or practical impact) that can be at least approx-
imated?



Chapter 9

Summary and Conclusion

9.1 Results

In this thesis, we have given efficient algorithms, NP-hardness proofs, and
inapproximability results for several problems that arise in the realm of
restriction site experiments; furthermore, we have presented Audens, the
prototype of a software tool for de novo peptide sequencing. In the follow-
ing, we summarize our results and draw final conclusions. Unless stated
otherwise, our inapproximability results hold if P 6= NP.

We first studied how to reconstruct the ordering of fragments of a DNA
molecule, given data from double or partial digestion experiments. We intro-
duced variations of the Double Digest problem and the Partial Digest

problem that model different types of errors, in particular additions, omis-
sions or measurement errors. Our results are summarized in the following
two tables, where |D| denotes the cardinality of a distance multiset D, and
ε > 0 a constant. To prove these results, we have shown in addition that
Disjoint Ordering is NP-complete.
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Double Digestion

Problem: Hardness Re-
sult:

Algorithm:

Double Digest strongly NP-
hard

NP

Disjoint Double Digest strongly NP-
hard

NP

Min Absolute Error Dou-

ble Digest

no finite ap-
proximation
ratio

Min Relative Error Dou-

ble Digest

no approxima-
tion ratio 877

876

approximation
ratio 2

Min Point Number Dou-

ble Digest

no approxima-
tion ratio 392

391

approximation
ratio 3

any optimization variation of
Disjoint Double Digest

no finite ap-
proximation
ratio

Partial Digestion

Problem: Hardness Re-
sult:

Algorithm:

Min Partial Digest Su-

perset

NP-hard

t–Partial Digest Super-

set

NP-hard
for any
t = Ω(|D| 12+ε)

Max Partial Digest Sub-

set

no approxi-
mation ratio
|D| 12−ε, unless
NP = ZPP

approximation
ratio O(|D| 12 )

Partial Digest With Er-

rors

strongly NP-
hard

NP

To prove NP-hardness of Min Partial Digest Superset, we used
a reduction from Equal Sum Subsets. Motivated by this link between
the two problems, we introduced and studied several natural variations of
Equal Sum Subsets. Our results are shown in the following table, where
S denotes the sum of all elements in the input set A.
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Equal Sum Subsets

Problem: Hardness Re-
sult:

Algorithm:

Factor–r Sum Subsets NP-hard for
any rational
r > 0

NP

k Equal Sum Subsets NP-hard for
any k ≥ 2

O( nSk

kk−1 )

k Equal Sum Subsets strongly
NP-hard for
k = Ω(n)

NP

kESS Of Cardinality c O(nkc)

kESS Of Specified Cardi-

nality

NP-hard O(Sk ·nk+1

k2k−1 )

kESS Of Equal Cardinal-

ity

NP-hard O(Sk ·nk+1

k2k−1 )

ESS Of Different Cardi-

nality

NP-hard NP

ESS With Exclusions NP-hard O(n2 · S)
ESS With Enforced Ele-

ment

NP-hard NP

Alternating Equal Sum

Subsets

NP-hard NP

ESS From Two Sets NP-hard NP

ESS Of Equal Cardinal-

ity From Two Sets

NP-hard NP

ESS With Disjoint Indices

From Two Sets

NP-hard NP

ESS With Disjoint Cov-

ering Indices From Two

Sets

NP-hard NP

ESS With Identical In-

dices From Two Sets

NP-hard NP

In the second part of this thesis, we addressed the problem of protein
identification by digestion experiments. First we studied the problem to
find a given submass in a protein, which is the Mass Finding problem.
This problem arises naturally when proteins are searched in large protein
databases using their mass fingerprint. There are two simple algorithms
that solve the Mass Finding problem: Linsearch, which has linear query
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time and does not need any additional data structure; and Hashing, which
has constant query time, but needs an additional hash table that can re-
quire quadratic storage space. We presented algorithm Lookup, which
beats these two simple algorithms in a sense, as it has sublinear query time
O( n

log n
), and it needs only linear storage space. However, Lookup has no

practical impact, as it requires unreasonably huge inputs to be efficient.

A different approach to identifying a protein is to establish its amino
acid sequence using MS/MS data. We have implemented the prototype of
a de novo peptide sequencing tool, called Audens. This tool is based on a
sequencing algorithm from the literature and uses several heuristics (grass
mowers) to distinguish between noise peaks and true peaks in a spectrum.
We applied Audens to a set of 266 test spectra, showing that the prototype
can already sequence approximately one third of the spectra.

Finally, we studied the Decomposition problem, where we want to
decompose a given mass into amino acid masses. Our results are shown in
the following table, where c1 denotes the minimum amino acid mass in the
input.

Decomposition

Problem: Hardness Re-
sult:

Algorithm:

Decomposition polynomial for
constant number
of amino acid
masses

Decomposition O((c1 + 1)k−1 ·
poly(n)) for n
small and k
large amino acid
masses

Min Decomposition no constant ap-
proximation ra-
tio

Max Decomposition no constant ap-
proximation ra-
tio
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9.2 Open Problems

We have shown results for a large set of combinatorial problems that are
more or less connected to restriction site experiments. Of course, several
questions are still open, and we have presented and discussed them already
in the corresponding chapters of this thesis. However, there are three major
challenges for future research that we would like to re–emphasize here:

Partial Digest: The Partial Digest problem has been studied exten-
sively in the literature, and a huge amount of knowledge has been
accumulated about the problem: For instance, several variations of
the problem have been shown to be NP-hard; different algorithmic
approaches have been proposed to solve the problem in practice, e.g.
backtracking algorithms and pseudo–polynomial algorithms; and, fi-
nally, the number of possible solutions for one instance has been char-
acterized. However, the status of the Partial Digest problem itself
is still open, and it is an intriguing challenge – at least from the point
of view of theoretical computer science – to determine the exact com-
putational complexity of this combinatorial problem.

Mass Finding: We have shown that it is possible to solve the Mass Find-

ing problem in sublinear time with only linear additional storage
space. However, the running time of our algorithm Lookup is only
just sublinear, and moreover, it is only of theoretical impact. There-
fore, the design of more efficient algorithms that allow for fast search
in weighted strings is an important open problem.

De Novo Sequencing: De novo protein sequencing plays an important
role in proteomics, and fast and reliable software tools are required to
allow for protein identification in high–throughput experiments. Our
prototype Audens is a first step in this direction, but new techniques –
for instance integrating additional experimental data – will be required
to develop tools that perform well in practice.

Biology easily has 500 years of exciting problems to work on...1

...and computational biology as well!

1Excerpt from an interview with Donald E. Knuth at Computer Literacy Bookshops,
December 1993.



128 Summary and Conclusion



Appendix A

Audens Results

On the following pages, we list the experimental results for our software
tool Audens. The test set consisted of 266 spectra. For each spectrum
three files were present: A .dta–file, which contains the spectrum itself in
ASCII–format; a .out–file, which contains the output of Sequest for the
spectrum; and a .lut–file, which contains the output of Lutefisk for the
spectrum. We briefly describe the contents of these files. The first line of a
.dta–file contains the parent mass and the charge state of the peptide; each
of the following lines denotes a mass/charge ratio, and the corresponding
abundance, sorted in ascending order according to the mass/charge ratio.
A .out–file contains some general information about the spectrum, and
a ranked list of sequences that match the given spectrum best, together
with the quality of the match. Finally, a .lut–file constains the sequences
generated by Lutefisk, together with their rank.

The meaning of the columns in the following table is as follows. All data
can be found on the accompanying CD–ROM.

No. An identification number for the spectrum.

Parent Mass The total peptide mass from the .out–file.

Number of Peaks The total number of peaks in the spectrum.

Sum of Abundances The total sum of the abundances of all peaks in the
spectrum.

Maximum Abundance The maximum value among the abundances of
all peaks in the spectrum.
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Correct Sequence The correct amino acid sequence that corresponds to
the spectrum. This sequence was identified by Sequest as “good”
match, i.e., the sequence match is of high quality, indicated by X–Corr
≥ 2.5 and DeltaCn ≥ 0.1, and the sequence occurs as a substring in
the sequence of the corresponding protein in use.

Lutefisk Rank The first position of a sequence in the output of Lutefisk
that matches the correct sequence for the spectrum. If Lutefisk did
not find the correct sequence at all, no rank is given.

AudensRank The first position of a multi–sequence in the ranked output
of Audens that matches the correct sequence for the spectrum. If
Audens did not find the correct sequence in the list at all, no rank is
given.

No. Parent Number Sum of Maximum Correct Lutefisk Audens

Mass of Peaks Abundances Abundance Sequence Rank Rank

1 1101.27 232 5218981 452344 AAVAGIAMGLVK 1 1

2 1101.34 400 116381336 11182139 AAVAGIAMGLVK 1

3 1100.76 330 31849716 3236658 AAVAGIAMGLVK 1 1

4 1101.12 138 1582988 161611 AAVAGIAMGLVK 1

5 1101.28 392 95618921 9689095 AAVAGIAMGLVK 1

6 1101.2 423 57441580 5370974 AAVAGIAMGLVK 1

7 1101.12 113 1177712 116762 AAVAGIAMGLVK 1 2

8 1101.05 295 10265323 977754 AAVAGIAMGLVK 1 1

9 1100.86 252 3818844 370254 AAVAGIAMGLVK 1 1

10 1100.81 185 27436912 2739349 AAVAGIAMGLVK 1 1

11 1100.8 198 2142945 175818 AAVAGIAMGLVK 2 1

12 922.95 116 2410042 665566 AEFVEVTK

13 922.82 106 1660662 459456 AEFVEVTK 1

14 922.97 90 1255463 354393 AEFVEVTK

15 1567.87 102 393439 33130 DAFLGSFLYEYSR

16 1568.41 299 17398640 930821 DAFLGSFLYEYSR 5

17 1569.43 201 2155410 177943 DAFLGSFLYEYSR

18 1568.41 256 75363669 3925059 DAFLGSFLYEYSR 2

19 1569.61 133 414618 19959 DAFLGSFLYEYSR

20 1568.31 263 12158801 782331 DAFLGSFLYEYSR 2

21 1375.33 225 4555188 248035 DAQVLDELMGER

22 1376.03 113 476398 32041 DAQVLDELMGER

23 1376.22 234 3400757 159992 DAQVLDELMGER

24 1376.02 175 881363 55542 DAQVLDELMGER

25 1376.29 170 928070 62009 DAQVLDELMGER 2

26 1377.75 101 342260 15052 DAQVLDELMGER

27 1049.31 237 2133213 204717 DDISQFAPR

28 1191.07 87 421860 68150 DGISALQMDIK 7

29 1191.05 103 433177 51239 DGISALQMDIK

30 1190.9 159 1168605 108110 DGISALQMDIK 1

31 1190.72 45 167538 37791 DGISALQMDIK 1

32 1190.93 137 802029 108534 DGISALQMDIK 1

33 1191.08 106 535853 85434 DGISALQMDIK 1

34 1191.74 183 4070280 679252 DGISALQMDIK 1 3

35 974.87 203 2840557 626960 DLGEQHFK

36 1392 199 2717962 196798 EALTLPSGDFVSR

37 1392.25 276 4118741 368829 EALTLPSGDFVSR

38 1310.48 182 2124058 340036 EGLVHISQIADK 1

39 1310.16 342 11154321 1609644 EGLVHISQIADK

40 1310.3 163 1487161 265165 EGLVHISQIADK 1

41 1310.28 257 7516873 1092320 EGLVHISQIADK 1
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No. Parent Number Sum of Maximum Correct Lutefisk Audens

Mass of Peaks Abundances Abundance Sequence Rank Rank

42 1310.37 333 12066865 1727450 EGLVHISQIADK 1

43 1310.1 324 3090101 378343 EGLVHISQIADK 20

44 1310.14 190 4920833 882079 EGLVHISQIADK 3 10

45 1311.68 218 9856783 867008 EGLVHISQIADK

46 1415.78 375 2665238 401498 EGRPSEGETLIAR

47 1415.47 223 1047195 120582 EGRPSEGETLIAR

48 1415.39 296 2015660 268176 EGRPSEGETLIAR

49 1415.22 217 1172252 231295 EGRPSEGETLIAR

50 1414.95 299 1850264 295020 EGRPSEGETLIAR

51 1415.17 269 1317707 118498 EGRPSEGETLIAR 7

52 1415.3 267 1593750 143468 EGRPSEGETLIAR

53 1245.35 197 4782192 483616 EIMQVALNQAK

54 1245.13 170 1347993 164598 EIMQVALNQAK

55 1245.17 381 25944615 3288799 EIMQVALNQAK 2

56 1244.63 127 471778 70977 EIMQVALNQAK

57 1245.02 417 17716711 1311489 EIMQVALNQAK 1

58 1245.08 147 2067667 233545 EIMQVALNQAK

59 1245.99 175 1317072 155398 EIMQVALNQAK

60 1245.22 331 41144933 4832087 EIMQVALNQAK

61 1244.74 74 351299 44528 EIMQVALNQAK 35

62 1762.21 573 5229322 448375 FEENSTNSTKSFKIK

63 1250.42 163 6787076 929365 FKDLGEEHFK 15

64 1250.05 318 3850754 566350 FKDLGEEHFK 14

65 1250.14 131 964721 151490 FKDLGEEHFK

66 1249.73 119 877671 166966 FKDLGEEHFK 1

67 1249.88 331 4510344 546886 FKDLGEEHFK

68 1250.1 221 1961746 302269 FKDLGEEHFK 7

69 1249.9 146 1027924 145179 FKDLGEEHFK 1

70 1250.08 321 5467588 510490 FKDLGEEHFK 6

71 1250.19 333 8726260 1034869 FKDLGEEHFK 2

72 1250.55 142 655749 101065 FKDLGEEHFK

73 1747.79 574 4029991 408970 FLQLAPGEYFFSSIK

74 991.77 264 6987434 682194 GDISEFAPR 1 2

75 991.89 352 45959373 3815442 GDISEFAPR 2

76 991.58 139 1816390 186254 GDISEFAPR 1 2

77 992.36 312 91759677 9010372 GDISEFAPR 1 2

78 991.66 200 10310723 1051485 GDISEFAPR 2 10

79 992.04 247 3822624 363911 GDISEFAPR 4

80 991.91 311 13347488 1312446 GDISEFAPR 2

81 991.95 234 3999622 411684 GDISEFAPR 2

82 991.67 399 60442462 6395552 GDISEFAPR 2

83 992.03 270 7777338 796881 GDISEFAPR 3 2

84 1489.44 242 3373604 170038 GETQALVTATLGTAR 2

85 1489.16 283 3108750 152708 GETQALVTATLGTAR 4

86 1489.26 196 778436 29598 GETQALVTATLGTAR 83

87 1488.69 303 6838972 259429 GETQALVTATLGTAR

88 1488.73 175 777213 58446 GETQALVTATLGTAR

89 1489.23 346 10056838 409759 GETQALVTATLGTAR 3 21

90 1489.08 234 2114110 122715 GETQALVTATLGTAR

91 1489.07 267 1936668 116878 GETQALVTATLGTAR 53

92 1488.65 129 308147 9250 GETQALVTATLGTAR

93 1490.13 614 14677280 718180 GETQALVTATLGTAR

94 1490.17 223 1022684 43262 GETQALVTATLGTAR

95 1434.56 161 1150440 142924 HKTGPNLHGLFGR

96 1306.17 362 17629203 3049876 HLVDEPQNLIK 1

97 1305.93 306 4771654 790244 HLVDEPQNLIK

98 1305.89 409 25391080 4222395 HLVDEPQNLIK 1

99 1306.22 203 78654551 13862228 HLVDEPQNLIK 23

100 1306.49 276 5708277 691444 HLVDEPQNLIK

101 1305.84 380 28835127 4313670 HLVDEPQNLIK 1 64

102 1305.86 208 2074957 274188 HLVDEPQNLIK 3

103 1307.12 371 8611892 1316697 HLVDEPQNLIK

104 1306.27 220 44641888 7829228 HLVDEPQNLIK 12

105 1306.18 347 31067179 3884365 HLVDEPQNLIK 1

106 1306.09 178 1927853 326582 HLVDEPQNLIK 1 2

107 1306.28 382 13410342 2104557 HLVDEPQNLIK 1

108 1306.27 216 34279244 5681378 HLVDEPQNLIK 4

109 1306.37 259 4656845 766234 HLVDEPQNLIK

110 1889.45 255 15903802 2888065 HPYFYAPELLYYANK
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No. Parent Number Sum of Maximum Correct Lutefisk Audens

Mass of Peaks Abundances Abundance Sequence Rank Rank

111 1889.51 296 14832815 2885945 HPYFYAPELLYYANK

112 1889.6 361 21823278 4302996 HPYFYAPELLYYANK

113 1889.5 240 1828273 530771 HPYFYAPELLYYANK

114 1890.36 205 1524748 307518 HPYFYAPELLYYANK

115 1599.43 168 804386 91023 IATDPFVGNLTFFR

116 1359.44 146 965012 88319 IEEITAEIEVGR 2

117 1340.07 219 2321082 482566 INPDKIKDVIGK

118 997.36 104 803539 54886 IPALDLLIK

119 1351.1 93 329136 26570 IVDFGAFVAIGGGK 1

120 1623.3 279 5030841 633837 KLTVDKSMVEVFVK

121 1143.18 269 2413725 207263 KQTALVELLK 2

122 1143.31 359 10656373 1123932 KQTALVELLK 4

123 1143.1 174 1381387 152748 KQTALVELLK 2 1

124 1142.93 344 7036967 615640 KQTALVELLK 1

125 1143.17 133 719341 68736 KQTALVELLK 4

126 1143.35 232 1342492 178529 KQTALVELLK 1

127 1143.59 220 12677984 1635413 KQTALVELLK 3

128 1143.58 390 37039011 3220219 KQTALVELLK 1

129 1143.2 260 54549029 5162768 KQTALVELLK

130 1143.44 201 2157879 245619 KQTALVELLK 1

131 1841.57 170 631278 32689 KTGQAPGFTYTDANKNK

132 1640.62 253 2208355 386672 KVPQVSTPTLVEVSR

133 1640.37 265 9888964 1724486 KVPQVSTPTLVEVSR

134 1640.27 195 4206954 734925 KVPQVSTPTLVEVSR

135 1640.11 193 6814348 1383960 KVPQVSTPTLVEVSR 4

136 1641.79 230 6971738 1050883 KVPQVSTPTLVEVSR

137 1640.51 312 24532260 2590299 KVPQVSTPTLVEVSR

138 1174.3 94 547283 83464 LAAITAQDSQR 8

139 1480.4 471 5946140 428190 LGEYGFQNAILVR 1 15

140 1480.21 113 396180 33003 LGEYGFQNAILVR

141 1480.25 588 20440960 1413676 LGEYGFQNALIVR 1 23

142 1480.44 493 13353268 1062111 LGEYGFQNALIVR 1 1

143 1480.07 349 32116824 2515777 LGEYGFQNALIVR 1

144 1480.39 323 27906188 1946269 LGEYGFQNALIVR 43

145 1480.53 354 143865113 12010592 LGEYGFQNALIVR 1

146 1480.23 354 241183707 18412240 LGEYGFQNALIVR 2 25

147 1480.17 350 42924707 3087914 LGEYGFQNALIVR 1

148 1480.5 326 17637399 1411367 LGEYGFQNALIVR 1 62

149 1662.56 171 1357449 58575 LHILGVMEQAINAPR 1 1

150 1662.1 134 521563 32101 LHILGVMEQAINAPR 67

151 1592.15 300 3823170 286711 LKGADPEDVIMGAFK

152 1163.6 367 15490257 3280194 LVNELTEFAK 1

153 1164.26 137 1437112 286863 LVNELTEFAK 1

154 1164.31 338 16218718 3366894 LVNELTEFAK 2

155 1164.19 369 88364995 19709252 LVNELTEFAK 2 21

156 1163.87 169 2957471 688006 LVNELTEFAK 1 7

157 1164.21 366 20262851 2767056 LVNELTEFAK 3 2

158 1164.24 273 3466539 569443 LVNELTEFAK 1

159 1164.14 318 5426201 1185362 LVNELTEFAK 1

160 1164 333 57973152 12509409 LVNELTEFAK 11

161 1164.09 363 34588743 7397680 LVNELTEFAK 2

162 1163.97 129 715583 123448 LVNELTEFAK 2

163 1163.63 285 8380758 1785486 LVNELTEFAK 1 13

164 1163.85 379 31951593 6675687 LVNELTEFAK 1 4

165 1164.7 294 3306539 781814 LVNELTEFAK

166 1164.32 309 7436405 1515348 LVNELTEFAK 2

167 1164.04 231 298761025 61313968 LVNELTEFAK 5

168 1164.07 363 589600759 58965824 LVNELTEFAK 2

169 1165.09 287 337613313 64245984 LVNELTEFAK

170 1164.7 348 194537398 35617720 LVNELTEFAK 54

171 1164.09 275 3186357 669366 LVNELTEFAK 1

172 1164.04 206 154447355 30479544 LVNELTEFAK 2

173 1164.53 216 26200329 5318261 LVNELTEFAK 2

174 1497.36 134 457164 40581 MPTLEEYGTNLTK

175 1393.23 264 4142735 305934 NAKVLFVGTTGVGK

176 1530.58 380 4201150 290018 NHLDSQKLTAFKK

177 1530.57 134 789805 95272 NHLDSQKLTAFKK

178 1812.1 277 3331231 642913 PGQDFFPLTVNYQER

179 1812.15 262 5450817 996666 PGQDFFPLTVNYQER
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No. Parent Number Sum of Maximum Correct Lutefisk Audens

Mass of Peaks Abundances Abundance Sequence Rank Rank

180 1811.45 214 1612547 347954 PGQDFFPLTVNYQER

181 1072.9 304 2653820 286593 PSEGETLIAR 1

182 1072.99 227 1471248 143060 PSEGETLIAR 1

183 1072.84 283 2532992 235373 PSEGETLIAR 1 1

184 1073.12 242 1521036 169063 PSEGETLIAR 2 1

185 1073.18 236 1472454 130014 PSEGETLIAR 1

186 1700.76 145 512737 35158 QGVVVITGASSGLGLAAAK

187 1440.34 251 1843309 147349 RHPEYAVSVLLR 75

188 1440.48 258 1419467 113842 RHPEYAVSVLLR

189 1440.7 267 85834729 6159524 RHPEYAVSVLLR 13

190 1440.7 259 25334150 2263296 RHPEYAVSVLLR 1

191 1440.85 313 4228131 282631 RHPEYAVSVLLR

192 1440.51 259 4084212 338041 RHPEYAVSVLLR 1

193 1748.4 416 2111911 213452 RIFTYNNEFKVTSK

194 1465.77 364 7623659 417421 SCGLAIGTTIVDADK

195 1050.32 171 8469265 2435044 SLDAQQIFK 1

196 1471.64 262 35698148 9928458 TGQAPGFTYTDANK

197 1471.73 121 730469 166964 TGQAPGFTYTDANK

198 1713.7 352 27118288 3299589 TGQAPGFTYTDANKNK

199 1714.46 269 1575378 128546 TGQAPGFTYTDANKNK

200 989.84 246 13338725 2898579 THGSAIFTR

201 989.87 221 10387982 1603527 THGSAIFTR

202 989.88 166 2342955 390251 THGSALFTR

203 989.62 267 23330635 4564001 THGSALFTR

204 1400.03 326 4582261 622377 TVMENFVAFVDK

205 1400.85 146 818877 120019 TVMENFVAFVDK

206 1400.12 138 897432 115188 TVMENFVAFVDK

207 1400.32 230 80018330 6951927 TVMENFVAFVDK 1 9

208 1400.06 288 70579859 5896518 TVMENFVAFVDK 1

209 1400.36 377 188904493 18778152 TVMENFVAFVDK

210 1400.26 204 3795096 313049 TVMENFVAFVDK

211 800.55 163 9789601 1605642 VAALAEAR 1 2

212 800.78 162 117092483 19746788 VAALAEAR 3

213 800.87 91 1870575 315594 VAALAEAR 2

214 800.61 167 83072235 13838918 VAALAEAR 1 1

215 800.95 162 68495616 11323035 VAALAEAR 2

216 800.65 159 5848833 955757 VAALAEAR 1 3

217 800.55 145 4783640 744761 VAALAEAR 1 1

218 800.6 159 43469517 7353214 VAALAEAR 1 1

219 800.94 165 7975553 1323211 VAALAEAR 3

220 1789.69 191 615285 33458 VISWYDNEWGYSNR

221 1514.97 192 6456923 670465 VPEVSTPTLVEVSR

222 1512.1 151 912309 96613 VPQVSTPTLVEVSR

223 1512.34 243 2856964 329296 VPQVSTPTLVEVSR

224 1512.54 134 702555 90208 VPQVSTPTLVEVSR

225 1512.21 178 1396933 150472 VPQVSTPTLVEVSR

226 1512.02 137 878806 115158 VPQVSTPTLVEVSR

227 1512.27 220 1481686 182176 VPQVSTPTLVEVSR

228 1512.61 156 687650 79163 VPQVSTPTLVEVSR

229 1512.47 217 14337669 1614714 VPQVSTPTLVEVSR

230 1512.43 237 17080750 1769950 VPQVSTPTLVEVSR

231 1608.12 141 461177 39141 VTDYLQMGQEVPVK

232 1607.43 225 2417243 237609 VTDYLQMGQEVPVK 3

233 1608.36 350 35006374 2653659 VTDYLQMGQEVPVK

234 1607.04 367 8439404 1076102 VTDYLQMGQEVPVK

235 1606.97 414 46306879 4405254 VTDYLQMGQEVPVK 2

236 1607.27 249 6695163 589292 VTDYLQMGQEVPVK

237 1607.25 312 2422989 197924 VTDYLQMGQEVPVK 19

238 1607.01 122 456669 39320 VTDYLQMGQEVPVK

239 1607.14 439 24072050 2197103 VTDYLQMGQEVPVK 4

240 1607.09 73 352563 53343 VTDYLQMGQEVPVK 2 6

241 1608.71 284 12482428 1073945 VTDYLQMGQEVPVK

242 1738.09 310 2873065 187161 VYSGVVNSGDTVLNSVK

243 1739.28 205 635047 34754 VYSGVVNSGDTVLNSVK

244 1739.27 213 939440 75588 VYSGVVNSGDTVLNSVK

245 1738.18 275 1619262 117619 VYSGVVNSGDTVLNSVK

246 1825.34 486 18041888 4178698 WDWQPEPVNEALNAR

247 1824.92 505 55161315 13979193 WDWQPEPVNEALNAR

248 1825.14 380 3847509 797632 WDWQPEPVNEALNAR
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249 1825.98 301 2277924 372668 WDWQPEPVNEALNAR

250 1826.24 190 8954519 2139014 WDWQPEPVNEALNAR

251 935.83 212 5048149 665883 YAQVDVIK 1 1

252 936.12 204 5741630 1285244 YAQVDVIK 1 3

253 936.05 198 4954870 1016352 YAQVDVIK 2

254 936.45 162 1860739 364323 YAQVDVIK

255 935.93 185 3475274 740387 YAQVDVIK 1

256 936.07 208 11512769 2622576 YAQVDVIK 1

257 936.16 200 4064426 876050 YAQVDVIK 1

258 936.28 137 1410174 248807 YAQVDVIK

259 936.08 196 2708518 568313 YAQVDVIK 1 1

260 935.65 226 6551632 1377314 YAQVDVIK 2 3

261 936.33 154 1990424 346642 YAQVDVIK 1

262 1331 187 803046 51756 YGGGANTLAAGYSK 2

263 928 112 3377608 606025 YLYEIAR 2

264 928.24 127 33910241 6877158 YLYEIAR 1 2

265 927.79 120 3593599 968364 YLYEIAR 1

266 1460.12 628 26566627 1964782 YSEIYYPTVPVK



Appendix B

CD Contents

File Description

AuDeNS The de novo sequencing tool Audens, implemented
in Java. To start Audens, change to directory Au-
DeNS, adapt (if necessary) the paths in config.txt and
StartAudens.bat, and run StartAudens.bat. The file
config.txt includes the parameter setting used in the
thesis for the test data set.

DATA The 266 spectra from the test set. For each spectrum,
there are three important files:
.dta, the spectrum itself;
.out, the Sequest output;
.lut, the Lutefisk output.

In addition, there is a .msq file, which contains tem-
porary information from Audens, and a .info file,
which was generated by our statistics tool. The file
AuDeNSOutput.txt contains the results generated by Au-
dens. For each spectrum, the highest ranked multi-
sequence that matches the correct sequence is given.
Remark: There is no .lut file for spectrum
PNP coverage2 50fmol.0835.0838.2.dta, as Lutefisk gen-
erated a divide by zero error for this spectrum.

VNGYSEIER.dta The example spectrum used in the thesis.
Results.xls A summary of the results of Sequest, Lutefiskand Audens

for each spectrum. The ordering is identical to the table
in Appendix A of the thesis.

Thesis The text of the thesis, in various file formats.
Readme.txt This text.
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Appendix C

Problem Definition Index

Problem Definition Page

3–Partition 2.4.1 25
Alternating Equal Sum Subsets 5.1.8 70
Alternating Partition 2.4.7 26
Decomposition 1.4.3 19
Disjoint Double Digest 3.1.1 28
Disjoint Ordering 1.4.1 14
Double Digest 1.2.1 4
Equal Sum Subsets 1.4.2 16
ESS From Two Sets 5.1.10 71
ESS Of Different Cardinality 5.1.9 71
ESS Of Equal Cardinality From Two Sets 5.1.11 71
ESS With Disjoint Covering Indices From Two Sets 5.1.11 71
ESS With Disjoint Indices From Two Sets 5.1.11 71
ESS With Enforced Element 5.1.7 70
ESS With Exclusions 5.1.6 70
ESS With Identical Indices From Two Sets 5.1.11 71
Exact 3–Satisfiability 2.4.4 25
Factor–r Sum Subsets 5.1.1 68
k Equal Sum Subsets 5.1.2 68
kESS Of Cardinality c 5.1.3 69
kESS Of Equal Cardinality 5.1.5 69
kESS Of Specified Cardinality 5.1.4 69
Mass Finding 1.3.1 8
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Problem Definition Page

Max 3–Dimensional Matching 2.4.2 25
Max Clique 2.4.3 25
Max Decomposition 8.1.2 116
Max Partial Digest Subset 4.1.3 45
Min Absolute Error Double Digest 3.1.2 29
Min Decomposition 8.1.1 115
Min Partial Digest Superset 4.1.1 45
Min Point Number Double Digest 3.1.4 30
Min Relative Error Double Digest 3.1.3 30
Multiple–String Mass Finding 6.1.1 90
Partial Digest 1.2.2 5
Partial Digest With Errors 4.1.4 46
Partition 2.4.5 25
Subset Sum 2.4.6 26
t–Partial Digest Superset 4.1.2 45
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of database search for identification of mutated and modified proteins
via mass spectrometry. Genome Research, 11(2):290–299, 2001.

[74] P. A. Pevzner and M. S. Waterman. Open combinatorial problems in
computational molecular biology. In Proc. of the 3rd Israel Symposium
on Theory of Computing and Systems (ISTCS 1995), pages 158–173,
1995.

[75] J. Rosenblatt and P. Seymour. The structure of homometric sets.
SIAM Journal of Algorithms and Discrete Mathematics, 3(3):343–350,
1982.

[76] W. Schmitt and M. S. Waterman. Multiple solutions of DNA restric-
tion mapping problems. Advances in Applied Mathematics, 12:412–
427, 1991.

[77] A. Schrijver. Theory of linear and integer programming. John Wiley
& Sons, 1986.



146 BIBLIOGRAPHY

[78] D. B. Searls. Formal grammars for intermolecular structure. In Proc.
of the 1st International Symposium on Intelligence in Neural and Bi-
ological Systems (INBS’95), pages 30–37, 1995.

[79] J. Setubal and J. Meidanis. Introduction to Computational Molecular
Biology. PWS Boston, 1997.

[80] J. Shallit. What this country needs is an 18
�

piece. Mathematical
Intelligencer, 25(2):20–23, 2003.

[81] S. S. Skiena, W. Smith, and P. Lemke. Reconstructing sets from
interpoint distances. In Proc. of the 6th ACM Symposium on Compu-
tational Geometry (SoCG 1990), pages 332–339, 1990.

[82] S. S. Skiena and G. Sundaram. A partial digest approach to restriction
site mapping. Bulletin of Mathematical Biology, 56:275–294, 1994.

[83] H. O. Smith and K. W. Wilcox. A restriction enzyme from hemophilus
influenza. I. purification and general properties. Journal of Molecular
Biology, 51:379–391, 1970.

[84] A. P. Snyder. Interpreting Protein Mass Spectra – A Comprehensive
Resource. Oxford University Press, 2000.

[85] G. Srinivasan, C. M. James, and J. A. Krzycki. Pyrrolysine encoded
by UAG in archaea: charging of a UAG–decoding specialized tRNA.
Science, 296:1459–1462, 2002.

[86] W. Staudenmann and P. James. Interpreting peptide tandem mass–
spectrometry fragmentation spectra. In P. James, editor, Proteome
Research: Mass Spectrometry, pages 143–165. Springer, 2001.

[87] D. L. Tabb, M. J. MacCoss, C. C. Wu, S. D. Anderson, and J. R.
Yates III. Similarity among tandem mass spectra from proteomic ex-
periments: Detection, significance, and utility. Analytical Chemistry,
75:2470–2477, 2003.

[88] J. A. Taylor and R. S. Johnson. Sequence database searches via de
novo peptide sequencing by tandem mass spectrometry. Rapid Com-
munications in Mass Spectromtry, 11:1067–1075, 1997.

[89] J. A. Taylor and R. S. Johnson. Implementation and uses of au-
tomated de novo peptide sequencing by tandem mass spectrometry.
Analytical Chemistry, 73:2594–2604, 2001.



BIBLIOGRAPHY 147

[90] P. Tuffery, P. Dessen, C. Mugnier, and S. Hazout. Restriction
map construction using a ’complete sentence compatibility’ algorithm.
Computer Applications in the Biosciences, 4(1):103–110, 1988.

[91] M. S. Waterman. Introduction to Computational Biology. Chapman
& Hall, 1995.

[92] Ingo Wegener. Komplexitätstheorie. Springer, 2003.

[93] G. J. Woeginger and Z. L. Yu. On the equal–subset–sum problem.
Information Processing Letters, 42:299–302, 1992.

[94] J. W. Wright. The change–making problem. Journal of the ACM,
22(1):125–128, 1975.

[95] L. W. Wright, J. B. Lichter, J. Reinitz, M. A. Shifman, K. K. Kidd,
and P. L. Miller. Computer–assisted restriction mapping: an inte-
grated approach to handling experimental uncertainty. Computer Ap-
plications in the Biosciences, 10(4):435–442, 1994.

[96] C. H. Wu, H. Huang, L. Arminski, J. Castro-Alvear, Y Chen, Z.-Z. Hu,
R. S. Ledley, K. C. Lewis, H.-W. Mewes, B. C. Orcutt, B. E. Suzek,
A. Tsugita, C. R. Vinayaka, L.-S. L. Yeh, J. Zhang, and W. C. Barker.
The protein information resource: an integrated public resource of
functional annotation of proteins. Nucleic Acids Research, 30:35–37,
2002.

[97] J. R. Yates III. Database searching using mass spectrometry data.
Electrophoresis, 19(6):893–900, 1998.

[98] J. R. Yates III, J. K. Eng, and A. L. McCormack. Mining genomes:
Correlating tandem mass–spectra of modified and unmodified pep-
tides to sequences in nucleotide databases. Analytical Chemistry,
67(18):3202–3210, 1995.

[99] J. R. Yates III, S. Speicher, P. R. Griffin, and T. Hunkapillar. Peptide
mass maps: A highly informative approach to protein identification.
Analytical Biochemistry, 214:397–408, 1993.

[100] Z. Zhang. An exponential example for a partial digest mapping algo-
rithm. Journal of Computational Biology, 1(3):235–239, 1994.

[101] http://us.expasy.org/tools/findmod/findmod masses.html.

[102] http://i-mass.com/guide/aamass.html.



148 BIBLIOGRAPHY

[103] http://www.appliedbiosystems.com.

[104] http://www.daltonics.bruker.com.

[105] http://www.thermo.com.

[106] http://www.nada.kth.se/∼viggo/wwwcompendium.

[107] http://www.immunex.com/researcher/lutefisk.

[108] http://www.matrixscience.com.

[109] http://www-hto.usc.edu/∼tingchen/resume.html.

[110] http://pir.georgetown.edu.

[111] http://www.promega.com/guides/re guide/toc.htm.

[112] http://fields.scripps.edu/sequest.

[113] http://www.expasy.ch/sprot.



Curriculum Vitae

Mark Cieliebak

date of birth: February 28, 1970
place of birth: Hagen, Germany
citizenship: German

Education:

1999 – 2003: PhD student at
Institute of Theoretical Computer Science
ETH Zurich, Switzerland
advisor: Prof. Dr. Peter Widmayer

academic title: Dr. sc. tech.

1990 – 1999: studies at University of Dortmund, Germany
major: Computer Science
minor: Mathematics

academic title: Diplom–Informatiker (German M. Sc.)

1980 – 1989: high school in Hagen, Germany

degree: Abitur (German high school diploma)

1976 – 1980: primary school in Hagen, Germany



150 Curriculum Vitae



Publications

� Noisy Data Make the Partial Digest Problem NP-hard, with
Stephan Eidenbenz and Paolo Penna.
In Proceedings of the 3rd Workshop on Algorithms in Bioinformatics
(WABI 2003). Springer, LNBI 2812, pp. 111–123, 2003.

� Composing Equipotent Teams, with Stephan Eidenbenz and Aris
Pagourtzis.
In Proceedings of the 14th International Symposium on Fundamentals
of Computation Theory (FCT 2003). Springer, LNCS 2751, pp. 98–
108, 2003.

� Solving the Robots Gathering Problem, with Paola Flocchini,
Giuseppe Prencipe, and Nicola Santoro.
In Proceedings of the 30th International Colloquium on Automata,
Languages and Programming (ICALP 2003). Springer, LNCS 2719,
pp. 1181–1196, 2003.

� Double Digest Revisited: Complexity and Approximability
in the Presence of Noisy Data, with Stephan Eidenbenz and Ger-
hard J. Woeginger.
In Proceedings of the 9th International Computing and Combinatorics
Conference (COCOON 2003). Springer, LNCS 2697, pp. 519–527,
2003.

� Algorithmic Complexity of Protein Identification: Combi-
natorics of Weighted Strings, with Thomas Erlebach, Zsuzsanna
Lipták, Jens Stoye, and Emo Welzl.
Accepted for special issue of Discrete Applied Mathematics (DAM)
devoted to COSSAC 2001, to appear 2003.

� Statistical Foundations of De Novo Sequencing, with Sacha
Baginsky, Jonas Grossmann, Wilhelm Gruissem, Torsten Kleffmann,



152 Publications

and Lukas K. Mathis.
In Proceedings of the Swiss Proteomics Society – 2002 Congress Ap-
plied Proteomics. Fontis Media, pp. 121 – 124, 2002.

� Algorithmic Complexity of Protein Identification: Searching
in Weighted Strings, with Thomas Erlebach, Zsuzsanna Lipták,
Jens Stoye, and Emo Welzl.
In Proceedings of the 2nd IFIP International Conference on Theoreti-
cal Computer Science (TCS 2002). Kluwer Adacemic Publishers, pp.
143–156, 2002.

� Gathering Autonomous Mobile Robots, with Giuseppe Prenci-
pe.
In Proceedings of the 9th International Colloquium on Structural In-
formation and Communication Complexity (SIROCCO 2002). Pro-
ceedings in Informatics 13, Carleton Scientific, pp. 57 – 72, 2002.

Technical Reports

� Scheduling with Release Times and Deadlines on a Minimum
Number of Machines, with Thomas Erlebach, Fabian Hennecke,
Birgitta Weber, and Peter Widmayer.
Technical Report 419, ETH Zurich, Department of Computer Science,
August 2003.

� The Weber Point can be Found in Linear Time for Points
in Biangular Configuration, with Luzi Anderegg and Giuseppe
Prencipe.
Technical Report TR–03–01, Universitá di Pisa, Dipartimento di In-
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