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Abstract

We investigate a problem from computational biology: Given a
constant—size alphabet A with a weight function g : A — RT, find
an efficient data structure and query algorithm solving the following
problem: For a weight M € Rt and a string o over A, decide whether
o contains a substring with weight M (ONE-STRING Mass FINDING
PROBLEM). If the answer is yes, then we may in addition require a
witness, i.e. indices 7 < j such that the substring beginning at posi-
tion 7 and ending at position j has weight M. We allow preprocessing
of the string, and measure efficiency in two parameters: storage space
required for the preprocessed data, and running time of the query algo-
rithm for given M. We are interested in data structures and algorithms
requiring subquadratic storage space and sublinear query time, where
we measure the input size as the length of the input string. We present
two efficient algorithms: LoOKUP solves the problem with O(n) space
and O(@ -loglog n) time; INTERVAL solves the problem for binary
alphabets with O(n) space in O(logn) time. We sketch a third al-
gorithm, CLUSTER, which can be adjusted for a space-time-tradeoff
but for which we do not yet have a resource analysis. We introduce
a function on weighted strings which is closely related to the analy-
sis of algorithms for the ONE-STRING MASs FINDING PROBLEM: The
number of different submasses of a weighted string. We present several
properties of this function, including upper and lower bounds. Finally,
we introduce two more general variants of the problem and sketch how
algorithms may be extended for these variants.
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1 Introduction

In the present paper, we introduce a combinatorial problem which originates
from computational biology: Given a string o over a weighted alphabet A,
find a data structure and an algorithm which, for a given weight M € R¥,
decides whether o has a (contiguous) substring of weight M. If the answer
is yes, we may in addition ask for a witness, i.e. two positions within o
where a substring with weight M begins and ends. The actual problem in
computational biology is to find several masses My, ..., M, in a database of
strings. We concentrate on the one—string problem because algorithms can
be extended easily to the multiple-string problem. We formally define the
other problem variants at the end of the paper and sketch how extensions
may be designed. There are two simple algorithms which will solve the
one—string problem: One uses linear time and no additional storage space,
both measured in the length of the string; the other has logarithmic running
time, but requires additional storage space which may be quadratic. We are
interested in data structures and algorithms which are better than these
two, i.e. which need subquadratic space and sublinear time.

Formulated in this way, the problem becomes a purely combinatorial and
algorithmic problem: Are there data structures and algorithms which allow
searching in weighted strings of size n with o(n?) additional storage space
and o(n) time? If so, can we find a tradeoff between space and time?

The problem differs from traditional string searching problems in one
important aspect: While those look for substructures of strings (substrings,
non—contiguous subsequences, particular types of substrings such as repeats,
palindromes etc.), we are interested only in weights of substrings. This
means that, on the one hand, we lose a lot of the structure of strings: e.g.
the weight of a string is invariant under permutation of letters; on the other
hand, we gain the additional structure of the weight function, such as its
additivity. For instance, the problem of searching in X + Y, where X and
Y are two sets of numbers, turns out to be closely related to our problem
(see [Fre75] and [HPSS75]). However, we have been able to extend negative
results which have been reached for that problem ([CDF90]) to show that
that approach using the naive solution without preprocessing cannot lead
to an efficient algorithm for our problem. The only result related to our
problem which we have found in the vast amount of literature on strings
(e.g. [AG95], [Gus9T7], [Lot97], [RS97], [CRY4]) is one which does not deal
with combinatorics, but rather with language classes (see Section 5 for more
details).

Our problem is positioned between the areas of string algorithms, search



algorithms, and algebra. We believe that it is not only relevant for com-
putational biology, but that it is also of theoretical interest to the field of
combinatorial searching. As far as we are aware, no efficient algorithms have
so far been presented for this problem.

We would like to stress at this point that, even though the source of our
problem is a biological question, the results we present here are primarily
of theoretical interest. The reason is twofold: First, none of the algorithms
we present are really efficiently applicable in their current form. LooOKuUP
requires sublinear time, but the asymptotic improvement over a linear time
algorithm is not very large (a factor of %); how superior it actually is
over a linear—time algorithm will have to be tested in experiments. Algo-
rithm INTERVAL is very efficient both in time and space, but it only works for
alphabets of size 2, a case which never occurs in the biological setting. The
second reason is that all biological data are prone to errors; in fact, there
is no such thing as error—free data. Thus, all application in computational
biology needs to be highly fault tolerant. Our algorithms as presented here
are not fault tolerant, even though they can be adapted to become tolerant
to measurement errors. However, this aspect is not included in the present

paper.

1.1 Biological Motivation

Proteomics is the field which investigates the nature and function of proteins.
As in molecular biology in general, large amounts of data are being accumu-
lated at present, which presents particular computational and mathematical
challenges.

Proteins are large molecules which play a fundamental role in all living
organisms. They are made up of smaller molecules (amino acids) which are
linked together in a certain order. The sequence of amino acids constitutes
the so—called primary structure of a protein. Protein size ranges from below
100 to several thousand amino acids, where a typical protein has length 300
to 600. Most proteins in humans are made up of the 20 most common amino
acids. For the purposes of this paper, we will view a protein as a finite string
over an alphabet of size 20.

The information about known proteins is stored in large databases, such
as SWISS-PROT (nearly 100,000 proteins) or PIR (more than 200, 000 se-
quences). When a protein is isolated, one would like to know whether it
is already known and if so, identify it. An obvious way is to establish its
primary structure: This is called de novo protein sequencing. However, pro-
tein sequencing, unlike DNA sequencing, is very expensive (both in time



and money!). E.g. identifying one amino acid with Edman Degradation,
one standard method for protein sequencing, takes about 45 minutes, which
makes this approach unfeasible in a high—throughput context.

Therefore, methods are required which test the protein against a database
without having to sequence it first. One such method—which we will in-
vestigate here—makes use of the differences in molecular weights of amino
acids: The protein is broken up into smaller pieces and these pieces are then
weighed!, using a mass spectrometer. This will yield a “fingerprint” of the
protein which can then be tested against the database: The goal is to find
a protein in the database which has substrings matching each of the input
masses.

There are two basic methods for breaking up the protein into smaller
pieces: Random fragmentation (the protein will break at non-prespecified
points), or the technique of using a cleavage agent (such as an enzyme,
e.g. trypsin), which literally cuts the protein in certain well-defined places.
The latter method is referred to by molecular biologists as digestion. Us-
ing digestion is algorithmically rather simple, since the breakup points are
known in advance; it is thus possible to preprocess the database in an
appropriate way. There is a large amount of literature on this approach
([YISGH93, HBS*93, JQCG93, PHB93, MHR93, EMYI94]), some papers
dealing with different aspects and modifications of the problem, e.g. the
minimum number of masses needed to identify a protein ([PHB93]), combi-
natoric ([PDTO00]) or probabilistic ([BE01]) models for scoring the difference
of two mass spectra, or approaches for a correct identification even in the
presence of posttranslational modifications of the protein ((MW94, YEMO5,
PMDTO01]). The review [YI98] as well as chapter 11 of the book [Pev00]
contain more detailed introductions to this topic. For an introduction to
computational biology in general, see [SM97]; for more on molecular bi-
ology, [Str88]; while [GW91] is an easy-going introduction to genetics for
non-biologists.

In this paper, we deal with algorithmic questions of the random fragmen-
tation method. Since we never make any assumptions about the probability
distribution of breaking points, any algorithm for the random fragmentation
method can be used for digested inputs, too. Testing by random weights
is algorithmically far more complex than the digestion method, because the
cutting places are not known in advance. In the long run, for the biologi-
cal application, algorithms are needed which are not only efficient, but also
fault tolerant: They need to be tolerant both to measurement errors (M +¢;

! Biologists will excuse some rough simplifications.



missing or additional masses in the spectrum), and to sequencing errors.
Most of the algorithms presented can be adapted easily for the first type
of fault tolerance, but this needs to be treated in detail; we have not dealt
with the second type of error at all so far.

1.2 Overview

The paper is organized as follows. We first introduce the problem and all
necessary definitions in Section 2, where we also present some simple ideas
which motivate our efficiency requirements. In Section 3, we design an al-
gorithm (LOOKUP) that solves the problem efficiently, with linear storage
space and sublinear running time. Section 4 contains an algorithm (INTER-
VAL) which solves the problem for alphabets of size 2 and has a very good
performance. However, we do not think that it can be generalized to larger
alphabets. Section 5 deals with combinatorics of weighted strings; we intro-
duce a function on weighted strings, the number of different submasses, and
present upper and lower bounds as well as some other results. In Section 6,
we presents two other problem variants and discuss how algorithms for the
original problem can be extended to these. Finally, in Section 7, we sketch
ongoing work. In particular, we present another algorithm (CLUSTER) which
has shown a good performance in experiments, but for which we do not yet
have a resource analysis.

A note on vocabulary: As in all work at the boundary of two disciplines,
we are unable to avoid using both sets of terms. We will thus use the terms
sequence (biology) and string (mathematics) interchangeably, as well as the
terms mass and weight.

2 Problem and Simple Solutions

Fix an alphabet A of size |A| = s and a mass function u : A — RT. The
mass (or the weight) of a string (or a sequence) o over A is defined as the
sum of the individual masses pu(o) :=>"" ; u(o (7)), where o(7) denotes the
i'th letter of o, and n = |o| is the length of o. For a mass M € R* and a
string o of length n, we say that M is a submass of ¢ if ¢ has a substring
of mass M, i.e. if there are indices 1 <7 < j < n s.t. u(o(i,j)) = M, where
o(t,7) is the substring of o starting with o(¢) and ending with o(j). For
a € A, let us denote the multiplicity of @ in o by |o|, := [{i | o (i) = a}|.
The ONE-STRING MASS FINDING PROBLEM is defined as follows:

Given a string o of length |o| = n and a mass M, is M a submass
of 07



Hereby, preprocessing of the string is allowed, because we are interested
in repeating the query for many different M’s. We are looking for data
structures and query algorithms where storage space and query time are
good, in a sense to be specified later.

There are two simple algorithms to solve the problem. The first one,
LINSEARCH, does not take advantage of data preprocessing. It simply per-
forms a linear search through the string: For given o, start at position o(1)
and add up masses until reaching the first position j s.t. u(o(1,75)) > M. If
the mass of the substring o (1, 7) equals M, then output yes and stop; else
start subtracting masses from the beginning of the string until the smallest
index ¢ s.t. u(o(7,5)) < M is reached. Repeat until finding a pair of indices
(4,7) s.t. u(o(7,j)) = M, or until reaching the end of the string (i.e. until
the current substring is o(¢, n) for some 4, and pu(o(i,n)) < M). The algo-
rithm can be visualized as shifting two pointers £ and r through the string,
where £ points to the beginning of the current substring, and r to its end.
LINSEARCH takes O(n) time, since it looks at each letter at most twice. It
requires no preprocessing, and it uses storage space O(1) in addition to the
space needed by the input sequence.

Example 1. Let A = {a,b,c},pu(a) = 1,u(b) = 2,u(c) = 5. Let 0 =
abbcabecaabb. A linear search for mass? M = 14 would first shift r up to
position 7, where the current submass first exceeds M: it now equals 18.
Then the left pointer is moved to position 4, the current submass now being
13, etc. until reaching positions 5 and 9 (see figure 1).

V4 r

| |

a b b c ab cc aabb
|

mass = 14

Figure 1: Example 1 — Linear search for M = 14

The other simple algorithm calculates and sorts all submasses of ¢ in a
preprocessing step and stores them in a sorted array. Given a query mass
M, we perform binary search for M in the array. We will refer to this
algorithm as BINSEARCH. Required storage space is proportional to the

ZNote that in general a mass can be a real number (of course, approximated by a
rational number). However, we will use only integers in our examples for reasons of
simplicity.



number of different submasses in o, which we will investigate in Section 5.
This number Klaus(o) is O(n?). The time for answering a query is O(logn).

We are looking for data structures and query algorithms for the ONE—
STRING MASs FINDING PROBLEM that are better than LINSEARCH and
BINSEARCH, i.e. require additional storage space o(n?), and query time o(n).
We will call such data structures skinny, and such query algorithms speedy.
Note that we ignore time and space required during the preprocessing step,
as long as these are in reasonable bounds. The reason is that we are able to
use large resources for obtaining the data structure to be used, because the
preprocessing will be done only once, while the query step will typically be
repeated many times. We also ignore space required by the query algorithm,
because this is bounded by the running time, which is sublinear for a speedy
algorithm.

In this context, the question naturally arises whether a given mass M
can be the weight of a string. This question can be solved with a simple
Integer Linear Program.

We define the length of a mass M as A(M) := max({|7| | 7 € A*, u(r) =
M} uU{-1}). Here, A(M) = —1 means that there is no string with mass
M. Suppose that we know in advance that all query masses are short in
comparison to m, i.e. there is a function f(n) such that A(M) < f(n) = o(n)
for all queries M. Then there are two approaches to improve BINSEARCH:
First, we store all submasses of o of length ¢ < f(n) in a sorted array. This
requires storage space O(n- f(n)), since for each position 7 in o, at most f(n)
substrings of length ¢ < f(n) start in 7. For a query, we do binary search in
this array. This takes time O(log n), which is speedy. Since f(n) = o(n), the
algorithm is skinny, too. The second approach works as follows. Since the
alphabet is of constant size, there are at most (|.4| 4+ 1)7(*) different strings
of length at most f(n). This is independent of o. We store a sorted array
of all masses of these strings and note for each mass whether it is a submass
of o. Given a mass M, we can perform binary search on this array. This
requires storage space O(|.A]/(™) and time O(log |A|/(") = O(f(n)). For
f(n) sufficiently small (e.g. f(n) = clogn, for a small constant ¢ < @),
this is both skinny and speedy.

These two approaches perform well only if f(n) is small. In the rest of
the paper we will deal with the more general problem where f(n) is not
restricted. We can combine these two approaches and use them to improve
other algorithms in the sense that they will run faster on short masses.



3 An Algorithm that is Both Skinny and Speedy

In this section, we present algorithm LoOOKUP that solves the ONE-STRING
Mass FINDING PROBLEM using space O(n) and time O (52— -loglog n). The
idea is as follows. Similar to the simple linear search algorithm LINSEARCH
introduced in Section 2, LOOKUP shifts two pointers along the sequence
which point to the potential beginning and end of a substring with mass
M. However, ¢(n) steps of the simple algorithm are bundled into one step
here. If ¢(n) is chosen appropriately, i.e. approximately log n, then this will
reduce the number of steps from O(n) to O(g2;), while each step will now
require O(loglogn) time instead of constant time. We will hereby heavily
exploit the fact that the alphabet has constant size.

3.1 An Example

Example 2. Let A = {a,b,c},p(a) =1, u(b) = 2, u(c) = 5. Let us assume
that we are looking for M = 14 in ¢ = abbcabccaabb. LINSEARCH would
shift two pointers £ and r through the sequence, until reaching positions 5
and 9 respectively, where it would stop because the substring o(5,9) = abcca
has weight 14 (see Example 1). Let us assume that c¢(n) = 3. We divide
the sequence o into blocks of size ¢(n). Now rather than shifting the two
pointers letter by letter, we will shift them by a complete block at a time.
In order to do this, we store, for each block, a pointer to an index I which
corresponds to the substring within the block. Let us assume now that /¢
is at the beginning of the first block, and r is at the end of the second
block, as indicated in Figure 2. We are interested in the possible changes to
the current submass if we shift the two pointers at most ¢(n) to the right.
Given a list of these, we could search for M — o(¢,r). For example, the
current submass in Figure 2 is ¢(1,6) = 13, and we want to know whether
by moving ¢ and r at most 3 positions to the right, we can achieve a change
of 14 - 13 =1.

4 r Y4 r

| | | |

‘abb‘cab‘cca‘abb ‘abb‘cab‘cca‘abb
I —

L J L J mass = 14

abb cab cca abb

Figure 2: Example 2 — LOOKUP searching for M = 14



We can calculate these possible changes and store them in a (¢(n)+1) X
(¢(n) + 1) matrix T whose (7, j)—entry holds the submass change when / is
moved ¢ — 1 positions to the right, and r is moved j — 1 positions to the
right:

0 5 10 11
Tlabb,cca] = :; ; 3 1(8)
-5 0 5 6

In order to be able to do fast search, we store the entries of the matrix
in a sorted array: S[abb,cca] = [-5,-3,-1,0,2,4,5,6,7,8,9,10,11]. Now
we can find out in time O(log(size of array)) whether the difference we are
looking for is there. In the present case, 1 is not in the array, which tells us
that we have to move one of the two pointers to the next block.

To determine which pointer to move, we consider what the linear search
algorithm LINSEARCH would do when searching for M and starting in the
current positions of the left resp. right pointers. Since M is not present
within these two blocks, at least one of the two pointers would reach the
end of its current block. Here, we want to move the pointer which first
reaches the end of its block. We can determine which pointer this is if
we compare the difference M — o(¢,r) with the matrix entry T'(c(n), c(n))
corresponding to ¢(n) — 1 moves of both the left and the right pointer (in
this case 7). If the difference is smaller, we move the left pointer to the
next block, otherwise we move the right one. In our example, we have a
difference of 1, thus we move the left pointer to the next block.

This will change the current submass by —5 (the minimum of the ar-
ray), yielding 0(4,6) = 13 — 5 = 8. Thus, we now look for M — 0(4,6) =
14 — 8 = 6. The sorted array for this pair of positions is S[cab, cca] =
[-8,-6,—5,-3,-1,0,2,3,4,5,6,10,11], and the matrix is as follows:

0 5 10 11
Tlcab,cca] = :2 _(1) Z g
-8 -3 2 3

6 is in the array: By looking in the matrix, we can see that a difference
of 6 can be achieved by moving the left pointer by 1 position and the right
pointer by 3 positions. The algorithm outputs positions 5 and 9 and then
terminates.



3.2 Algorithm LooKuUP

We postpone the exact choice of the function ¢(n) to the analysis, but assume
for now that it is approximately log n. For simplicity, we assume that c¢(n)
is a divisor of n.

Preprocessing: Given o of length n, first compute ¢(n). Next, build a
table T of size |A|°(") x |A|°("), Each row resp. column of T will be indexed
by a string from A", For I,J € A", the table entry T[I,.J] contains
the matrix and the sorted array as described above. The matrix contains all
differences p(prefix(.J)) — p(prefix(l)), including the empty prefixes. Note
that the table T depends only on n and A, and not on the sequence ¢ itself.
Next, divide ¢ into blocks of length ¢(n). For each block, store a pointer to
an index I that we will use to look up table T'. Each such index I represents
one string from A4°(").

Query Algorithm: Given M, set £ := 1 and r := 0. Repeat the
following steps until M has been found or r > n:

1. Say [ is set to the beginning of the ¢’th block and r to the end of
the (j — 1)’th block. Then look in the sorted array in T'(I,.J) where
the pointer of block ¢ resp. j points to index I resp. .J. Find whether
M — o(¢,r) is in the array with binary search.

2. If M — o(¢,r) is in the array, search for an entry (k,[) in the matrix
T(I,J) which equals M — o(¢,r) by exhaustive search®, and return
yes, along with the witness ¢’ := 7 -¢(n) + k,j := 5 -¢(n)+ (I - 1),
since (¢, j') has mass M.

3. If M — o(,r) is not in the array and if M — o(¢,r) is less than the
matrix entry at position (¢(n), ¢(n)), then increment £ by ¢(n) and set
o(f,r):= o(f,r)+ min(array); otherwise, increment r by c(n) and set
o(l,r):=o(l,r)+ max(array).

Analysis: First we derive formulas for space and time, and then we
show how to choose ¢(n). The space needed for storing table T is:

number of entries - (size of matrix + size of sorted array)
= AP ((e(m) + 1) + (e(n) +1)%)
= O (|4 - e(n)?).

3 Alternatively, we could have stored (k,1) during the preprocessing in the sorted array.

10



Space needed for storing the pointer at each block is:

number of blocks - log(number of elements in A%™)
n

— 1 c(n)

5 on(l )

=0(n).

~—

For the query time, observe that after each iteration (consisting of Steps
1 to 3), either £ or r is advanced to the next block. As each of the point-

ers can advance at most % times, there can be at most 26(”—71) iterations.

Each iteration except the last one takes time O(logc(n)?) + O(1). The last
iteration may take time O(c(n)?).
In total, the algorithm requires storage space O(n 4+ |42 . ¢(n)?) and

time O(="slogec(n) + =2~ + ¢(n)?). If we choose c(n) = longAln, then we

c(n) e(n)
obtain |A|(") = n. This yields a storage space of O(n—l—nlE log®n) = O(n)
and time O(% loglog n), which is both skinny and speedy. Other choices
of ¢(n) do not asymptotically improve time and speed at the same time.

Theorem 1. Algorithm LOOKUP solves the ONE—STRING Mass FINDING

PROBLEM with storage space O(n) and query time O (17 loglogn).

4 A Speedier Algorithm for Binary Alphabets

In this section, we present algorithm INTERVAL which solves the ONE-
STRING MaAss FINDING PROBLEM for an alphabet of size 2. It runs in
time O(logn) and uses space O(n). The algorithm decides whether a given
mass is a submass of o, but does not return a witness.

Let o be a string over A := {a,b} and fix & < n. Observe that, when
sliding a window of size k over o, then in one step, the multiplicities of a
and b within the window change at most by one. We represent substrings
of o by points in the Z X Z lattice, where the two coordinates signify the
multiplicities of @ and b:

Sk :=A{(i,j) € ZXZ|i+j =k, there is a substring 7 of o : |T|, =4, |T|s = j}.

All points in Si will lie on a line (a diagonal), and moreover, they will
form an interval on this line, cp. Example 3. Each such interval has two
extremal points.

Assume for a moment that we know the multiplicities of ¢ and b in M,
ie. i and j s.t. M = i-pu(a) + j- pu(b), and they are unique. Then, we

11



Example 3. ¢ = aaaaabaabb. The
figure shows the representation of all
substrings of length k¥ = 8. Ex-
tremal points of this interval are

(5,3) and (7,1).

can check whether (¢, j) € S;4;, which takes O(1) time if we have stored the
extremal points of all Sy during the preprocessing phase. This would require
space linear in n. If, in addition, ¢ and 7 are known to be unique, then this
algorithm would decide wether M is a submass of o. Unfortunately, we do
not know the multiplicities of @ and b in M. We define d := u(b) — p(a)
(w.lo.g., we assume that p(a) < u(b)) and use the residue* of M mod d
to look up a table. The table, generated during the preprocessing phase,
contains representations of all submasses of o.

Let My := {u(r) | 7 is a k-length substring of o}. Observe that consec-
utive elements of M (when sorted) differ by exactly d. Therefore, we can
write My = {cx+0-d | £ =0,...,np—1}, where ¢ = min My and ny = |M|.
Furthermore, My = {rr + ¢-d | { = ag,...,bx}, where rp = (¢ mod d),
ap = [%’“J and bp = ap + np — 1. This says that all submasses of the same
length have the same residue modulo d.

Example 3 cont’d: Let p(a) =2 and p(b) = 7. Then d = 5, and

S10=1{(7,3)} Mo = {35} rio=0,a10=T,b1o=7
Se ={(7,2),(6,3)} Mgy = {28, 33} rg = 3,a9 = H,bg = 6
Sz ={(7,1),(6,2),(5,3)} Mg = {21,26,31} rg = l,ag = 4,bg = 6
S7={(6,1),(5,2),(4,3)} M7 = {19, 24,29} re=4,a7=3,b7 =5
Se =1{(5,1),(4,2),(3,3)} Me = {17,22,27} re = 2,a6 = 3,bg = 5
Ss ={(5,0),(4,1),(3,2),(2,3)} Ms5={10,15,20,25} r5=0,a5=2,b5=5
Ss=1{(4,0),(3,1),(2,2)} My = {8,13,18} rg = 3,04 = 1,04 =3
S3=1{(3,0),(2,1),(1,2)} Mz = {6,11,16} rg = l,az3 =1,b3 =3
S2 ={(2,0),(1,1),(0,2)} M, = {4,9, 14} ro = 4,09 = 0,6y = 2
S1 ={(1,0),(0,1)} M, ={2,7} r1=2,a;=0,by =1
*We define & mod ¢, for real z,¢c € RT, by (z mod ¢) := r, where r is the unique real

number 0 <r <cst.z=g-c+r and g € N.

12



Observe that rp = (k- p(a) mod d). Thus, we may have the same residue
modulo d for different values of k. Instead of storing ax and by for each
r individually (which could result in linear query time), we will store the
union of all intervals which belong to the same residue r, sorted by their
endpoints.

Example 3 cont’d: In the example, this yields the following preprocessed
data. For residues 1 and 4, the intervals have been merged.

residue modulo d union of intervals

B w o O
oo -1

4.1 Algorithm INTERVAL

In the preprocessing phase, we calculate the rp’s, ap’s, and by’s as above.
We then sort the rp’s, thus obtaining a sorted array ¢, ..., ¢, where m < n
(since different Si’s may have the same residue). For each ¢, we compute a
list of interval endpoints which represents the union of all intervals [ag, bg]
with rp = ¢;. This list consists of one or more disjoint intervals, which we
store in sorted order in an array A;.

Now when querying whether a given mass M is contained in o,

1. decompose M = ¢ -d + r, where r = (M mod d) and g € N;

2. find index [ € {1,...,m} such that r = ¢, using binary search; if
no such index can be found, then M is not a submass of o, and the
algorithm outputs no.

3. otherwise, find whether there is an interval [a, b] in array A; such that
g € [a,b], using binary search on the left endpoints of the intervals; M
is a submass of ¢ iff such an interval exists.

Since the total number of intervals to be stored is n, the storage space
needed is O(n). The first step of the algorithm takes time O(1). The second
step takes time O(logn), since the number of different residues is at most n.
The third step takes time O(logn), since the maximum number of intervals
stored in one array 4; is n. We obtain a total query time O(logn).
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Theorem 2. Algorithm INTERVAL solves the ONE—STRING Mass FIND-
ING PROBLEM for binary alphabets with storage space O(n) and query time

O(logn).

The problem in generalizing this approach to larger alphabets is that the
algorithm relies on the crucial fact that points representing substrings of the
same length lie on a line and form an interval. This does not generalize to
higher dimensions, since there we only know that the points representing
substrings of the same length are connected.

5 Weighted Strings

A question closely related to the analysis of algorithms for the ONE-STRING
Mass FINDING PROBLEM is the following: Given o, how many different
submasses does ¢ have? We define a function Klaus which counts the number
of different submasses of a string;:

Klaus(o) := [{u(o(i,5)) [ 1 <i < j <|o[}].

For example, the storage space required by BINSEARCH is proportional to
Klaus(¢). An obvious upper bound on Klaus(o) for |o| = n is the number
of different substrings of o, which is at most @ However, different
substrings may have the same mass, e.g. if the multiplicities of their letters
coincide (i.e. if Va € A : |0|q = |T|a, then p(c) = p(r)). In addition,
different letters may yield the same sum, e.g. if p(a) = 2, and u(b) = 3, then

p(aaa) = p(bb). We define the UNIQUE DECOMPOSITION PROPERTY:

A mass function g has the UNIQUE DECOMPOSITION PROP-
ErRTY (UDP) if, for all strings ¢ and 7:

plo) = pu(r) <= Va € A:|olq=|7|a.

This just means that the masses are linearly independent over the in-
tegers. With the UDP, a mass M has at most one decomposition M =
> acav(a)p(a) with v(a) € N. For strings o over alphabet A = {a4, ..., a,},
we define the multiplicity vector mult(c) = (|o|ay,...,|0la,). With the
UDP, we have p(0) = p(7) < mult(c) = mult(r).

For the rest of this section, we assume that p has the UDP.

The question of the value of Klaus(o) for a given string o is equivalent to
the question of how many different multiplicity vectors (also called Parikh-
vectors, see [ABBO7]) the set L, := {7 | 7 is substring of o} has. If we
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denote by A% the free commutative monoid over A, then any language
L C A* induces a subset L® of A%, namely L® = {J],c4 ale | 7 € LY.

Since the mapping
[T o Xl
acA a€A

is a bijection, we have Klaus(c) = |L?|. We are not aware that |L?| has
been characterized in the literature.

In the following, we present strings for which the number of different
submasses is linear resp. quadratic in their length, and we prove a tight
upper bound and a lower bound (which is not tight) on Klaus. We denote
by [P] the characteristic value of a proposition P, i.e. [P] = 1if P is true,
and [P] = 0 otherwise. As usual, s = |A|.

Lemma 3. There are stringso, 7 € A" s.t. Klaus(c) = O(n) and Klaus(7) =
O(n?). In particular, for k,r,ny,...,ns € Ns.t. r < s and > ;_, ni = n,

1. Klaus((ay...a,)*) = (k= 1) - (s +1—s) + 1(s* + 5),

2. Klaus((ay . ..as)%ay ...a,) =
(k1) (s +1—s)+%(sz+s)+r<s—1)+[r=s],
(

ny N2 n

3. Klaus(ay" ay® ...a3") = n+ 31 cicjcs Wi " 1y

Proof.

1. Let 0 := (ay ...a,)*. Note that substrings of o have length m - s+ p,
where m = 1,...,k—1, and p=1,...,s. Now for fixed 0 < m < k — 2,
there is exactly one subsum with length m - s + s, since all substrings of
this length have weight > 7, (m + 1)u(a;); while for each p=1,...,5 - 1,
there are s different subsums, namely one for each 1 < j < st Y7 ;m -
11(ai) + 3701 11(a(j44) mod s)- Putting this together yields (k—1)(1+(s—1)s).
Finally, for m = k — 1, the string 0 = (a1 ...a5)™a; ...as has s different
subsums with length m-s+1, s — 1 with length m -s+2 and so on, yielding
i, 1= 1(s*+s) subsums. Slnce the alphabet size s is constant and k=1,
this expression is linear in n: Klaus(o) = (k—1)- (s> +1—s)+ L(s*+5) =
O(n(s—1))+ O(1) = O(n).

2. This is an easy extension of 1., noting that each of the last r letters
will contribute s — 1 new subsums ending in this letter: For a;, 1 < j <r,
o(t,k-s+j) will benew forall i =1,...,7—1,7+1,...,s. In addition, if
r = s, then the substring o(s,n) = a,(a; . ..a,)* will also be new.

8. First consider submasses which start and end with the same letter a,.
For fixed 1 < ¢ < s, there are n; different submasses of this type, yielding
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Y i_, ni = n different submasses. All other submasses start with some letter
a; and end with a different letter a;, where 7 < j. For each pair 7, j, there are
n; - nj different choices of the beginning and ending position which generate
different submasses. Now, if we choose all n; roughly equal, i.e. n; = [2]
or n; = |}] 4+ 1, this yields 357, ni + 3 cicjc,miny & n+ () - (2) =
n+ in? = O(n?). O

Lemma 4. Letn € N,z € A and 0 € A™.
1. If o does not contain letter x, then Klaus(oz) = Klaus(o) 4+ (n + 1).

2. If o contains letter x, then

Klaus(oz) < Klaus(o) + n — |o|, + [o(n) = z].

Proof.

1. Obvious.

2. There are Klaus(o) different submasses starting and ending within
0. Furthermore, there are n substrings of oz starting within ¢ and ending
in z. For each index 1 < i < n — 1 s.t. 0(¢) = 2, we have mult(o(i,n)) =
mult(o(i41,n)z). Thus, none of these substrings generates a new submass.
There are |o|, such substrings if o(n) # z, and |o|, — 1 otherwise. O

Lemma 5. Let n € N and fiz 0 < ny,...,n, € Ns.t. Y7 n; =n. Then,

Klaus(a{" ...a}*) = max{Klaus(r) | Vi=1,...,5:|T]s; = n;}.

Proof. By induction on n: For n = 1, the claim is obvious. Choose o € A"*!
and denote by n; := |ol|,, for i = 1,...,s. Up to relabeling (which leaves
Klaus invariant), we may assume that the last letter of o is a,. If ny =1,
Klaus(o) = Klaus(o') + (n + 1) by Lemma 4
< Klaus(ai" .. .a?i_ll) + (n+1) by the induction hypothesis
= Klaus(a{" ...a}*).

5

Otherwise, n, > 1, and
Klaus(o) < Klaus(o') + n — |0']4, + 1 by Lemma 4
< Klaus(a? ...a?* ™ )+ n—(n,— 1)+ 1 by the ind.hypo.

s—1 s—1
=n4+ Z n,'nj—i—Zn,'(ns—l)—}—Zni—}—l by Lemma 3
1Sl<j<$ =1 =1

=(n+1)+ n;n; = Klaus(a” ...a”*). by Lemma 3
7 1 s
1<i<y<s

O
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Theorem 6 (Tight Upper Bound on Klaus). Let ¢ € A". Then
Klaus(o) < n+ Xicicjcs minj, where n; = |[2| or n; = |3] + 1 for

5

i=1,...,s. Inparticular, if n is a multiple of s, then Klaus(c) < 52_51 n24n.
This bound is tight.

Proof. Let 0 € A". Denote by y; := |o|s; for ¢ = 1,...,s. Then, by
Lemma 5, Klaus(o) < Klaus(ai'...a5") = n + 35,0 Uity Let
flze, ... z4) = El<i<j<s z;z;. Function f reaches its maximum on the set
{(z1,...,25) | 3°i_, z; = n} if all values are approximately equal, i.e. if they
all equal [2] or [ 2] 4+ 1. Moreover, since Klaus(a{" ...a}*) =n+> 7 n,,
this bound is tight. If n is a multiple of s, then n; = 2 for all ¢, and thus:

n s—1

max{Klaus(c) | |o| = n} = n + (;) ()2 = n? tn.

s 2s
O

For a lower bound, we define the index of the first occurrence of a letter
a € Ain a string o as Pos,(0) :=min({i | o(i) = a} U{|o| + 1}).

Lemma 7 (Lower Bound on Klaus). Let n € N and 0 € A". Then
Klaus(a) > > c4lola - Posa(o).

Proof. Let x = o(n). If z does not occur in o(1,n — 1), then appending
z to o(1,n — 1) generates n new strings, i.e. Klaus(o) = Klaus(o(1,n —
1)) + n = Klaus(o(1,n — 1)) 4+ Pos,(o(1,n — 1)). On the other hand, if =
occurs in (1, n—1), then it generates at least Pos, (0 (1,7 — 1)) new strings,
namely those starting in positions ¢ = 1,...,Pos,(¢(1,n—1)) and ending in
o(n) = z. Thus, in both cases we obtain Klaus(c) > Klaus(o(1,n — 1)) +
Pos,(o(1,n —1)). Applying this n times, we obtain

Klaus(o) > ZPOSa(i)(U(L i—1)).
=1

Let i € {1,...,n}. If o(i) occurs in o(1,i — 1), then Pos,(;)(o(1,7 —
1)) = Pos,(jj(o). In the sum above, this happens |o[,;) — 1 times. For
the first occurrence of letter o(i) in o, we count Pos,(;(c), too. Thus,

Yoy Pos(,(t»)(o(l, i—1)) =2 caPose(0) - |o]a O

For fixed multiplicities n1,...,n,, the sum ) . 4 Posq(0) - 0|, is mini-
mized over all strings with these multiplicities if all different letters occurring
in o are positioned in the first positions of o, ordered ascending according
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to their multiplicities. In particular, if each letter occurs exactly & times,
we obtain Klaus(co) > k37 i = &(s? + ).

This lower bound, however, is not tight: For instance, for s = 4 and
equal multiplicities k = 3, the lower bound is 30, while the minimum value
of Klaus is 36, e.g. for string ¢ = abedabedabed.

On the other hand, from Lemma 3 we know that Klaus((a;...a,)*) =
(k—1)-(s*+1—s)+ 3(s*+s), thus these strings miss the lower bound of
Lemma 7 only by a factor of 2. However, we know that they do not minimize
Klaus, since e.g. Klaus((abede)?) = 78, while Klaus((abcde)?(aedcb)?) = 75.

6 Problem Variants
The MULTIPLE-STRING MASS FINDING PROBLEM is defined as follows:

Given k strings oy,...,0, and a mass M € RT, return a list
11, ..., of those strings oi; which have M as a submass.

An algorithm ¥ for the ONE-STRING MAss FINDING PROBLEM can
be extended to an algorithm for the MULTIPLE-STRING Mass FINDING
PROBLEM by running ¥ on each string o; one by one. Required storage
space and time simply sum up.

Alternatively, we can define a new string ¢ := gjwoow .. .woy, where w
is a new letter with mass p(w) := max®_, {u(o;)} + 1. Before applying ¥
to o, we check whether M > p(w). If so, then M cannot be a submass of
any of the strings, and we are done. Otherwise, we know that whenever ¥
finds mass M in o, then it is a submass of ¢; for some index 2. If algorithm
¥ can output all positions of M in o, this solves the MULTIPLE-STRING
Mass FINDING PROBLEM. If ¥ only decides whether M is a submass of
o (i.e. it outputs only yes or no), we use a kind of “binary tree search”
BINTREESEARCH to find all o; with submass M as follows. First, we run
¥ on o as described above. If it outputs no, then no string o; has sub-
mass M, and we are done. Otherwise, we divide ¢ into two new strings
01 1= 010 WOk and o, = Tk - - WOk and run ¥ on both strings
separately. We repeat the division step until the new strings cover exactly
one o;, in which case the answer of ¥ determines whether o; has a sub-
mass M. Analysis of BINTREESEARCH depends heavily on storage space
and query time required by W. For instance, if algorithm ¥ requires storage
space linear in the length of the string, then the storage space of BIN-
TREESEARCH is O((logk) - Y°F_, |oi]). Query time of BINTREESEARCH is
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output sensitive (i.e. it depends on the number of strings with submass M),
in contrast to the simple idea of applying ¥ to each string one by one.

Given a specific algorithm for the ONE-STRING Mass FINDING PROB-
LEM, there might be even better ways to extend it to the MULTIPLE-STRING
Mass FINDING PROBLEM: E.g. for BINSEARCH, we can use one sorted array
to store all submasses of all strings. For each submass z we store the set
of indices I, of all those strings which have a submass z. Given mass M,
we perform binary search in the array and output all indices stored in Ips.
Required storage space remains unchanged, but the running time becomes
O(log Ele |o:| + |Iar|), where |[Ins| < k is the size of the output. A similar
idea applies to LOOKUP, which we can improve by storing only one table T’
(e.g. with index length max®_ {n,}) and use it for all runs of the algorithm.
However, this does not decrease the asymptotic space required, which still
remains linear.

Finally, we define a third problem variant, the MULTIPLE-STRING MULTIPLE—
Mass FINDING PROBLEM:

Given k strings o4,..., 0k, m masses My,...,M,, € R, and a
threshold 1 < ¢ < m, return a list 71,...,1, of those strings o;;
which have at least ¢t of the masses as submasses.

In the setting of our application in computational biology, this will be
a more realistic formulation, since typically, one breaks a given protein in
several pieces and wants to find the protein in the database which contains
all, or at least many, of these pieces. Obviously, the MULTIPLE-STRING
MuLTIPLE-MASS FINDING PROBLEM can be solved by applying algorithms
for the MULTIPLE-STRING MAss FINDING PROBLEM m times. We are
investigating the question whether concurrently searching for m masses can
be performed more efficiently.

7 Ongoing Work

Currently, we are working on another algorithm called CLUSTER, which
solves the ONE—-STRING Mass FINDING PROBLEM. The main idea is this:
Given M, imagine that some oracle gave us a set of positions C' with the
following property: If M is a submass of o, then there is ¢ € C s.t. i covers
M, i.e. there is a substring of & that starts in ¢ and has mass M. Then we
would only have to check whether one of the positions in C' covers M. But
this can be done fast, as long as we have stored in advance, in each position
i=1,...,n, the mass of the suffix o (¢, n): We can now do binary search on
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Jj =1,...,n where in each step, we compare o(i,j) = o(i,n) — o(j + 1,n)
with M and change j accordingly. This takes time O(log(n —1)) = O(logn)
for each element ¢ € C, i.e. O(|C|logn) in total.

But how do we find such sets C'7 First calculate all submasses, and for
each submass z, store all positions ¢ which cover z, and then sort the sub-
masses by size. Next, cluster the submasses in disjoint intervals Iy, ..., I,
and for each I}, store a set C} of candidate positions with the property that,
for any z € I, = is a submass of ¢ if and only if there is an 2 € C covering
x. Such a set always exists, since in the worst case, we have to store one
position for each submass in I;. The interesting question is how to cluster
the submasses. We will return to this shortly.

First, to the query algorithm: Given M, we can first find &k s.t. M € I,
with binary search on the intervals. Now we check, for each 7 € C, whether
1 covers M. If the answer is yes, the algorithm returns a substring starting
in ¢ with weight M; if for all ¢ € C}, the answer is no, then, by construction,
we know that M is not a submass of o.

Now some complexity considerations: Say there are m intervals, and
¢ = max;—1, m |Ck|l. Storage space needed for the preprocessed data is,
first, O(m) for storing the intervals, since storage of one interval requires
constant space. Note that in the preprocessing phase, we have to calculate
all submasses of o; however, once the preprocessing is complete, we only
store the intervals. Storing the candidate positions requires O(m - ¢) space,
and storing the masses of the suffixes at each position 2 = 1,..., n requires
O(n) space. The running time of the query algorithm is O(log m) for finding
the right interval for M, and O(c-logn) for checking all candidate positions.
Altogether, this yields storage space O(m-c+n) and running time O(log m+
c-logn).

In our present implementation, we decide for a size for ¢ before the start
of the preprocessing phase. After having computed and sorted all submasses,
we build up the intervals and candidate sets in the following way: Let us
say the current interval being built is Ij. If the next subsum z in the list of
all subsums is already covered by an ¢ € Cy, then add = to Ip. Otherwise,
choose a position ¢ which covers z. If |Cy U {i}| < ¢, then add i to Cj and
z to I, otherwise start a new interval Ixy1 = [M] and a new candidate set
Cry1 ={i}.

For CLUSTER to be both skinny and speedy, it would need to have stor-
age space o(n?) and running time o(n). Obviously, m, the number of in-
tervals, depends on the choice of ¢, the maximal size of the candidate sets.
If we succeeded in defining the intervals and their candidate sets in such
a way that, say, ¢ = O(y/n) and m = O(n), this would meet the require-
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ments. From simple implementation experiments, we have the impression
that CLUSTER performs well, but have not yet been able to prove this.

For CLUSTER, as well as many other algorithms, storage space and the
query time for a string o depend on Klaus(o). Therefore, we are interested
in properties of function Klaus, e.g. its minimal value, or its expected value.
Furthermore, we are looking for efficient algorithms to compute Klaus(o).

As mentioned in the Introduction, for an algorithm to be of any practical
value in computational biology, it needs to be fault tolerant. We are cur-
rently in the process of modifying the algorithms introduced in this paper
to be tolerant against measurement errors. The next step will be to check
their practical impacts.

In the long run, we are interested in the tradeoff between time and space
for the mass finding problem. Both Lookup and CLUSTER allow for a
tradeoff between time and space. We would like to find further algorithms
that can be parametrized to allow for adjustment of this tradeoff.
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