
Theoretical Computer Science 349 (2005) 361–381
www.elsevier.com/locate/tcs

Partial Digest is hard to solve for erroneous input data

Mark Cieliebaka, Stephan Eidenbenzb,∗, Paolo Pennac

aInstitute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland
bDiscrete Simulation Sciences (CCS-5), Los Alamos National Laboratory1, USA

cDipartimento di Informatica ed Applicazioni “Renato M. Capocelli” Università di Salerno, Italy

Received 20 January 2004; received in revised form 27 July 2005; accepted 29 August 2005

Communicated by M. Crochemore

Abstract

The Partial Digest problem asks for the coordinates of m points on a line such that the pairwise distances of the points form a
given multiset of

(m
2

)
distances. Partial Digest is a well-studied problem with important applications in physical mapping of DNA

molecules. Its computational complexity status is open. Input data for Partial Digest from real-life experiments are always prone to
error, which suggests to study variations of Partial Digest that take this fact into account. In this paper, we study the computational
complexity of Partial Digest variants that model three different error types that can occur in the data: additional distances, missing
distances, and erroneous fragment lengths. We show that these variations are NP-hard, hard to approximate, and strongly NP-hard,
respectively.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Partial Digest problem is perhaps the classic combinatorial problem from computational biology with appli-
cations in DNA sequencing. Despite considerable research efforts in the past 20 years, its computational complexity
is still an open problem. In the Partial Digest problem we are given a multiset D of distances and are asked to find
coordinates of points on a line, i.e., a point set P , such that D is exactly the multiset2 of all pairwise distances of these
points. In this case, we say that D is the distance multiset of point set P . A formal definition of the problem is as
follows.

Definition 1.1 (Partial Digest). Given an integer m and a multiset D of k = (
m
2

)
positive integers, is there a set

P = {p1, . . . , pm} of m points on a line such that �(P ) := {|pi − pj | | 1� i < j �m} = D?
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Fig. 1. Example for the Partial Digest problem.

For example, for the distance multiset D = {2, 5, 7, 7, 9, 9, 14, 14, 16, 23}, the point set P = {0, 7, 9, 14, 23} is
a feasible solution, which is shown in Fig. 1 (there exist more solutions).

1.1. Previous work

The exact computational complexity of Partial Digest is a long-standing open problem, and it appears in its pure
combinatorial formulation already in the 1930’s in the area of X-ray crystallography (acc. to [29]). The problem can
be solved in pseudo-polynomial time [20,26], and there exists a backtracking algorithm (for exact or erroneous data)
that has expected running time polynomial in the number of distances [29,30], but exponential worst case running
time [35]. The Partial Digest problem can be formalized by cut grammars, which have one additional symbol �, the cut,
that is neither a non-terminal nor a terminal symbol [27], and the problem is closely related to the theory of homometric
sets 3 [29]. Finally, if the points in a solution do not have to be on a line, but only in d-dimensional space, then the
problem is NP-hard [29]. However, for the original Partial Digest problem, neither a polynomial-time algorithm nor a
proof of NP-hardness is known [5,10,23–25,28].

1.2. Biological background

Partial Digest has several applications; the classical and most prominent is in the study of the structure of DNA
molecules. More precisely, given a large DNA molecule (sequence of nucleotides A, C, G, and T), restriction
enzymes can be used to generate a physical map of the molecule. A restriction enzyme cuts a DNA molecule at specific
patterns, the restriction sites. For instance, the enzyme Eco RI cuts occurrences of the pattern GAATTC into G and
AATTC. Under appropriate experimental conditions, all fragments between each two restriction sites are created. This
process is called partial digestion. The lengths of the fragments (i.e., their number of nucleotides) are then measured
by using gel electrophoresis, a standard technique in molecular biology. This leaves us with the multiset of distances
between all restriction sites, and the objective is to reconstruct the original ordering of the fragments in the DNA
molecule, which is the Partial Digest problem.

The Partial Digest problem occurs as well in the realm of de novo peptide sequencing using tandem mass spectrometry:
given a probe with many copies of a single protein, we first use an enzyme like trypsin to cleave the proteins. This leaves
us with a set of protein fragments, called peptides. We separate these peptides by their mass, and break up each single
peptide into even smaller fragments using collision induced dissociation (CID). For each peptide, the mass/charge
ratios of the resulting fragments are measured using mass spectrometry, yielding the tandem mass spectrum of the
peptide. In the dissociation step, each single peptide can break up between any two amino acids in the peptide. If
each single peptide breaks up exactly once, then only fragments occur that are prefixes and suffixes of the peptide
sequence (e.g., peptide AEKGCWTR breaks up into two fragments A and EKGCWRT, or into fragments AE and KGCWTR,
and so on). In this case, there exist efficient algorithms to determine the amino acid sequence of the peptide (de novo
sequencing) [6,23]. However, in real-life experiments a single peptide does not only break up once, but it can break

3 Two (non-congruent) sets of points are homometric if they generate the same multiset of pairwise distances.
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up several times, yielding internal fragments as well [3,4,18]. In the example, peptide AEKGCWTR might break up into
three fragments AEK, GC and WTR. In the extreme, we can obtain not only prefixes and suffixes, but fragments for all
possible substrings of the peptide sequence. In this case, the problem to find the appropriate sequence of amino acid
fragment masses is the Partial Digest problem with the additional restriction that the solution P = {p1, . . . , pm} must
have consecutive points such that |pi − pi+1| equals to some amino acid mass.

In the remainder of this paper, we will focus on data from partial digestion experiments; however, our results apply
analogously to MS/MS spectra, too.

Due to its importance in molecular biological, many experimental variations of Partial Digest have been studied:
probed partial digestion, where probes (markers) are hybridized to partially digested DNA [1,22]; simplified partial
digestion, where clones are cleaved either in one or in all restriction sites [5]; labeled partial digestion, where both
ends of the DNA molecule are labeled before digestion [23]; double digestion, where two different enzymes are used
in complete digestion experiments to obtain three sets of distances [15]; and multiple complete digestion, where many
different enzymes are used [12] (which is a generalization of double digestion). For an introduction to the Partial
Digest problem, see for instance the survey by Lemke et al. [19], and the books by Pevzner [24] or by Setubal and
Meidanis [28].

1.3. Erroneous data

In reality, the partial digest experiment cannot be conducted under ideal conditions, and thus errors occur in the data.
In fact, there are four types of errors that occur in partial digest experiments [11,13,17,30,34]:

Additional fragments. An enzyme may erroneously cut in some cases at a site that is similar, but not exactly
equivalent to a restriction site; thus, some distances will be added to the data even though they do not belong there.
Furthermore, fragments can be added through contamination with biological material, such as DNA from unrelated
sources.

Missing fragments. If the enzyme fails to cut at a restriction site where it would be supposed to cut (partial cleavage
error), this leads to missing fragments. Furthermore, fragments are not detected by gel electrophoresis if their amount
is insufficient to be detected by common staining techniques. Finally, small fragments may remain undetected at all
since they run off at the end of the gel.

Fragment length. Using gel electrophoresis, it is almost impossible to determine the exact length of a fragment.
Typical error ranges are between 2% and 7% of the fragment length.

Multiplicity detection. Determining the proper multiplicity of a distance from the intensity of its spot in the gel is
almost impossible in practice.

In this work, we will focus on the first three types of errors, and prove hardness results for each of these variations.
Intuitively, the problem of modeling real-life instances—in which all error types can occur—is even harder than having
only one error type.

1.4. Missing distances

The Min Partial Digest Superset problem models the situation of omissions, where we are given data for which we
know that some distances are missing, and we search for a set of points on a line such that the number of missing
distances is minimum. This problem is formally defined as follows (recall that �(P ) denotes the multiset of all distances
between any two points in P ).

Definition 1.2 (Min Partial Digest Superset). Given a multiset D of k positive integers, find the minimum number m

such that there is a set P of m points on a line with D ⊆ �(P ).

For example, if D = {2, 5, 7, 7, 9, 14, 23}, then the point set P = {0, 7, 9, 14, 23} (as shown in Fig. 1 on page 362)
would be a minimum solution for the Min Partial Digest Superset instance D. On the other hand, if D′ = {2, 7, 9, 9,

16}, then the points in P would still cover all distances from D′, but there exist solutions with fewer points that cover
D′, e.g. point set P ′ = {0, 2, 9, 18} (yielding distance multiset {2, 7, 9, 9, 16, 18}).

We show in Section 2 that computing an optimal solution for the Min Partial Digest Superset problem is NP-hard,
by giving a reduction from Equal Sum Subsets. Our result provides a partial answer to the open problem 12.116 in
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the book by Pevzner [24], which asks for an algorithm to reconstruct a set of points, given a subset of their pairwise
distances.

We can even strengthen our hardness result by considering the problem t-Partial Digest Superset, where we restrict
the cardinality of a solution to at most t , for some parameter t that is specified as a fixed function in |D|, the cardinality
of the input distance multiset:

Definition 1.3 (t-Partial Digest Superset). Given a multiset D of positive integers, is there a set P of m� t integers
such that D ⊆ �(P )?

We show that the t-Partial Digest Superset problem is NP-hard for any parameter t = f (|D|) := |D|(1/2)+ε, for any
0 < ε < 1

2 . This result is tight in a sense, since any solution (even for the original Partial Digest) must have at least
cardinality �(|D|1/2).

1.5. Additional distances

In Section 3, we study the Max Partial Digest Subset problem, which models the situation of additions: we are given
data in which some wrong distances were added, and we search for a set of points on a line such that they cover a
maximum number of the given distances. A formal definition is as follows.

Definition 1.4 (Max Partial Digest Subset). Given a multiset D of k positive integers, find the maximum number m

such that there is a set P of m points on a line with �(P ) ⊆ D.

We show that there is no polynomial-time algorithm for this problem that guarantees an approximation ratio of
|D|(1/2)−ε for any ε > 0, unless NP = ZPP. 4 To establish this result, we give a gap-preserving reduction from Max
Clique. We also point to a trivial approximation algorithm for Max Partial Digest Subset that achieves a matching
asymptotic approximation ratio. Thus, our inapproximability result is tight up to low-order terms.

Our two optimization variations of the Partial Digest problem allow the multiset of pairwise distances in a solution
to be either a superset (i.e., to cover all given distances in D plus additional ones) or a subset (i.e., to contain only
some of the distances in D) of the input set D. If a polynomial-time algorithm existed for either Min Partial Digest
Superset or Max Partial Digest Subset, we could use this algorithm to solve the original Partial Digest problem as well:

any YES instance of Partial Digest is an instance of both optimization problems whose optimum is 1
2 +

√
1
4 + 2k; any

NO instance of Partial Digest is an instance of Max Partial Digest Subset (resp., Min Partial Digest Superset) whose

optimum is at most 1
2 +

√
1
4 + 2k − 1 (at least 1

2 +
√

1
4 + 2k + 1, respectively).

1.6. Fragment length measurement errors

As a third type of error that can occur in real-life data, we study Partial Digest with inaccurate distance lengths. In
Sections 4 and 5, we will show that measurement errors make the Partial Digest problem strongly NP-complete, for
both additive or multiplicative errors.

Algorithms for Partial Digest with inaccurate data have been studied intensively in the literature [11,17,30], and
different error models have been designed, e.g. for measurement errors that are logarithmic in the size of the fragment
length [31,32] or for intervals of absolute errors [2,30].

We start with additive errors. The Partial Digest problem is known to be strongly NP-hard if additive error bounds
that can be even zero can be assigned to each distance individually [19,29]. However, this does not model reality
appropriately, since in real-life data we cannot assume that even one single fragment length can be measured exactly,
and moreover, we cannot expect individual error bounds. Therefore, we study the computational complexity of the
variation of Partial Digest where all measurements are prone to the same additive non-zero error.

4 A problem � is in class ZPP if there is a probabilistic algorithm for � with polynomial running time which never outputs a wrong result, and
which fails with probability less than 1

2 .
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We say that value v matches a distance d up to (additive) error ε if |v − d|�ε; moreover, a multiset D is a distance
multiset for point set P up to error ε, if each distance between any two points in P can be matched with a distance in
D up to error ε, and this matching is bijective. The Partial Digest with Additive Errors problem is defined as follows.

Definition 1.5 (Partial Digest with Additive Errors). Given an integer m, a multiset D of k = (
m
2

)
positive integers,

and an error bound ε > 0, is there a set P of m points on a line such that D is the distance multiset for P up to error ε?

In Section 4, we prove that Partial Digest with Additive Errors is strongly NP-complete by giving a reduction from
3-Partition.

We then turn to the case of multiplicative errors. We say that distance d matches a value x up to multiplicative
error e > 0 if d(1 − e)�x�d(1 + e). This problem variant models the situation where measurement errors can be
bounded by a percentage of the fragment lengths. Observe that this definition is not symmetric, i.e., if d matches x up
to error e, then this does not in general imply that x matches d (in contrast to the definition of additive errors, which is
symmetric). A multiset D is a distance multiset of point set P up to multiplicative error e if there is a bijective function
f : D → �(P ) such that each distance d ∈ D matches value f (d) up to multiplicative error e. The Partial Digest with
Relative Error problem is defined as follows.

Definition 1.6 (Partial Digest with Relative Error). Given an integer m, a multiset D of k = (
m
2

)
positive integers, and

a rational error e > 0, is there a set P of m points on a line such that D is the distance multiset of P up to multiplicative
error e?

We show in Section 5 that Partial Digest with Relative Error is strongly NP-complete, even for constant error, by
using a similar reduction as for Partial Digest with Additive Errors.

1.7. Notation

We introduce a vector representation for large numbers that will allow us to add up the numbers digit by digit, like
polyadic numbers. The numbers are expressed in the number system of some base Z. We denote by 〈a1, . . . , an〉 the
number

∑
1� i �n aiZ

n−i ; we say that ai is the ith digit of this number. In our proofs, we will choose base Z large
enough such that the additions that we will perform do not lead to carry-overs from one digit to the next. Hence, we
can add numbers digit by digit. The same holds for scalar multiplications. For example, having base Z = 27 and
numbers � = 〈3, 5, 1〉, � = 〈2, 1, 0〉, then � + � = 〈5, 6, 1〉 and 3 · � = 〈9, 15, 3〉. We define the concatenation of
two numbers by 〈a1, . . . , an〉 ◦ 〈b1, . . . , bm〉 := 〈a1, . . . , an, b1, . . . , bm〉, i.e., � ◦ � = �Zm + �, where m is the
number of digits in �. Let �n(i) := 〈0, . . . , 0, 1, 0, . . . , 0〉 be the number that has n digits, all 0’s except for the ith
position, where the digit is 1. Moreover, 1n := 〈1, . . . , 1〉 has n digits, all 1’s, and 0n := 〈0, . . . , 0〉 has n zeros. Notice
that 1n = Zn − 1.

2. NP-hardness of Min Partial Digest Superset

In this section, we study the Min Partial Digest Superset problem and show that this problem is NP-hard by giving
a reduction from Equal Sum Subsets.

First, observe that the minimum cardinality of a point set that covers all distances in a given multiset D cannot
be too large. To see this, let D = {d1, . . . , dk} be a distance multiset. If m is the minimum number such that a
set P of cardinality m with D ⊆ �(P ) exists, then m�k + 1: We set p0 = 0, pi = pi−1 + di for 1� i�k, and
Ptriv = {p0, . . . , pk}, i.e., we simply put all distances from D in a chain “one after the other” (see Fig. 2). In Ptriv,
each distance di induces a new point, and we use one additional starting point 0. Obviously, set Ptriv covers D and has
cardinality k + 1.

Observe that Partial Digest can be easily reduced to Min Partial Digest Superset: given an instance D of Partial
Digest of cardinality |D| = k, there is a solution for D if and only if the minimal solution for the Min Partial Digest

Superset instance D has size m = 1
2 +

√
1
4 + 2k

(
in this case, k = (

m
2

))
.
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Fig. 2. Trivial solution for a distance multiset D.
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Fig. 3. Solution if there are two sets of equal sum.

We now show that Min Partial Digest Superset is NP-hard by giving a reduction from Equal Sum Subsets, which
is the NP-complete problem [33] that is defined as follows: given a set A of n positive integers, are there two disjoint
non-empty subsets X, Y ⊆ A such that sum (X) = sum (Y )?

Theorem 2.1. Min Partial Digest Superset is NP-hard.

Proof. We reduce Equal Sum Subsets to Min Partial Digest Superset. Given an instance A = {a1, . . . , an} of Equal
Sum Subsets, we set D = A (and k = n), and prove in the following that there is a solution for the Equal Sum Subsets
instance A if and only if a minimal solution for the Min Partial Digest Superset instance D has at most n points.

Let X and Y be a solution for the Equal Sum Subsets instance. Assume w.l.o.g. that X = {a1, . . . , ar} and Y =
{ar+1, . . . , as}, for some 1�r < s�n. We construct a set P that covers D and that has at most cardinality n. Similarly
to the construction of Ptriv, we line up the distances from D. In this case, two chains start at point 0: those distances
from X and those from Y (see Fig. 3); the remaining distances from D − (X ∪ Y ) are positioned at the end of the two
chains. More precisely, we set

p0 = 0

pi = pi−1 + ai for 1� i�r

pr+1 = ar+1

pj = pj−1 + aj for r + 2�j �s − 1

qs+1 = pr + as+1

q� = q�−1 + a� for s + 2���n.

Set P = {p0, . . . , ps−1, qs+1, . . . , qn} is the corresponding set of points. Notice that there is no point “ps” in set P ,
since the two chains corresponding to X and Y share two points, namely p0 = 0 and their common endpoint pr .

Obviously, P is a set of cardinality n. Moreover, the definition of the points yields immediately that except for i = s

each ai is the difference between two of the points (either pi − pi−1, or qs+1 − pr , or q� − q�−1). To see that as

occurs as well, first observe that pr = ∑r
i=1 ai = sum (X) and that ps−1 = ∑s−1

j=r+1 aj = sum (Y ) − as . Thus,
pr − ps−1 = sum (X) − (sum (Y ) − as) = as , since X and Y are a solution of the Equal Sum Subsets instance and
yield the same sum. Hence, P covers every distance from D.

For the opposite direction, let P = {p1, . . . , pm} be an optimal solution for the Min Partial Digest Superset instance
with m < n + 1. Since P covers D, for each a ∈ D there is a pair (p, q) of points p, q ∈ P such that a = |p − q|. For
each a ∈ D we choose one such pair and say that it is associated with value a. We define a graph G = (V , E) with
V = P and E = {(p, q) | (p, q) is associated with some a ∈ D}, i.e., G contains only those edges corresponding to
some distance in D. Thus, |V | = m and |E| = |D| = n. Since m < n + 1, this graph contains at least one cycle. We
show in the following that such a cycle induces a solution for the Equal Sum Subsets instance.
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Fig. 4. A solution containing a cycle yields two subsets of equal sum: the overall length of right jumps equals the overall length of left jumps.

Let C = c1, . . . , cs be any cycle in G (see Fig. 4). Then |ci+1 − ci | ∈ D, for all 1� i�s (here, we abuse notation
and identify cs+1 with c1). Assume w.l.o.g. that |ci+1 − ci | is associated with ai , for 1� i�s. We define I+ := {i ∈
{1, . . . , s} | ci+1 > ci}, and I− := {j ∈ {1, . . . , s} | cj+1 < cj }, i.e., we partition the edges in the cycle into two sets,
those that are oriented to the left (I−) and those that are oriented to the right (I+). This yields

0 = cs+1 − c1

=
s∑

i=1
(ci+1 − ci)

= ∑
i∈I+

(ci+1 − ci) + ∑
j∈I−

(cj+1 − cj )

= ∑
i∈I+

|ci+1 − ci | − ∑
j∈I−

|cj+1 − cj |
= ∑

i∈I+
ai − ∑

j∈I−
aj .

Sets X := {ai | i ∈ I+} and Y := {aj | j ∈ I−} yield equal sums, and thus a solution for the Equal Sum Subsets
instance. �

In the previous theorem, we have shown NP-hardness of Min Partial Digest Superset by reduction from Equal Sum
Subsets. In the proof, we distinguished whether a minimal solution uses at most n points, or n + 1 points (which in
fact are always sufficient). We will now extend this result and allow to “decrease” the bound to some value t that is
still sufficiently large. In fact, we show that the corresponding problem t-Partial Digest Superset is NP-hard for every
0 < ε < 1

2 , if we set t to be f (|D|) = |D|(1/2)+ε. Observe that for a distance multiset D, a minimal set of points

covering D has cardinality at least 1
2 +

√
1
4 + 2|D| ≈ |D|1/2. Moreover, the Partial Digest problem is equivalent to

t-Partial Digest Superset with t = 1
2 +

√
1
4 + 2|D| = O(|D|1/2).

Theorem 2.2. t-Partial Digest Superset is NP-hard for any constant 0 < ε < 1
2 and for any t = f (|D|) := |D|(1/2)+ε.

Proof. We show NP-hardness by reduction from Equal Sum Subsets, analogous to the proof of Theorem 2.1. Let
{a1, . . . , an} be an instance of Equal Sum Subsets. Informally speaking, we “blow up” the instance of Min Partial
Digest Superset used in the proof of Theorem 2.1 (cf. Fig. 5): First, we have n distances in a set A′, each corresponding
to one of the ai’s. Then we add a set B of q “essential” distances (for some value q that we specify later) such that any
solution for our instance must use exactly q + 1 points to cover the distances in B, and no two of these points can be
used to cover any distances from A′. Finally, we add a suitable set C′ of O(q2) “inessential” distances to fill up the
number of distances in our instance. Each distance in C′ is the sum of some distances from B, and all the distances
in C′ can be covered “for free” by the points used for the distances in B (i.e., no additional points are necessary). Our
instance D for t-Partial Digest Superset is the union of the distance sets A′, B and C′. We will choose the size of set
C′ such that t = f (|D|) = n + q holds. Moreover, we will show that either n + q points are sufficient to cover all
distances in our instance, or that we need at least n+q +1 points, and that there is a solution for the Equal Sum Subsets
instance if and only if n + q points are sufficient.
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b1 b2 b3 bq

c1,2

c1,3
c2,q′ a2

′ ′
′ ′ ′

′′′

Fig. 5. Distance sets A′, B and C.

We postpone the choice of q and show first how the distance sets are defined. All distances are numbers with
base Z = q2 + ∑n

i=1 ai . Let a′
i = 〈ai〉 ◦ 0q and A′ = {a′

i | 1� i�n}. For 1�j �q, let bj = 〈0〉 ◦ �q(j), and
B = {bj | 1�j �q}. For 1�u < v�q, let cu,v = ∑v

�=u b�, and C = {cu,v | 1�u < v�q}. Obviously, no distances
from A′ sum up to a distance in B or C, and vice versa.

The instance of t-Partial Digest Superset is defined by D = A′ ∪ B ∪ C′, where C′ is a subset of C of appropriate
size. Clearly, |D| = n+ q +|C′|. We want to choose the size of |C′| such that f (|D|) = (n+ q +|C′|)(1/2)+ε = n+ q

is satisfied. To this end, it suffices to take any C′ ⊆ C with cardinality |C′| = (n + q)2/(1+2ε) − (n + q). (If the
latter number is not an integer, the proof can be easily adjusted by considering |C′| = �(n + q)2/(1+2ε)� − (n + q),
and choosing q appropriately; this is possible for sufficiently large n). In order to make this possible, we need to have

|C|�(n + q)2/(1+2ε) − (n + q). Since C contains
(
q
2

)
distances, we have to choose q sufficiently large to make the

inequality
(
q
2

)
�(n + q)2/(1+2ε) − (n + q) hold. This inequality holds if we choose q � max{61/ε, n}, which is shown

as follows.

q � 61/ε (by assumption)

⇒ q1/2 � 61/2ε

⇒ q − 2 � 61/2ε (since q − 2 > q1/2 for q �61/ε > 6)

⇒ (q − 2)2ε � 6

⇒ (q − 2)2ε � q

q − 2
· 4

(
since

3

2
>

q

q − 2
for q > 6

)

⇒ (q − 2)2ε � q

q − 2
· 2(3+2ε)/2 (since 4 > 2(3+2ε)/2 for ε < 1

2 )

⇒ (q − 2)1+2ε � 2q · √
2

1+2ε

⇒
(

q − 2√
2

)1+2ε

� n + q (since q �n)

⇒ (q − 2)2

2
� (n + q)2/(1+2ε)

⇒
(

q

2

)
� (n + q)2/(1+2ε)

We claim that there are two subsets of A of equal sum if and only if there is a set P of at most t = n+q points such that
D ⊆ �(P ). The proof of this equivalence is based on the fact that, by construction, no subset of distances from B ∪ C′
can have the same length as a subset of distances from A′. Therefore, we need q + 1 points to cover all distances from
B ∪ C′. The remaining set A′ behaves as in the proof of Theorem 2.1: by reusing one of the q + 1 points, we need at
most n further points to cover A′; as in the proof of Theorem 2.1, less than n points are sufficient if and only if there
exists a solution for the Equal Sum Subsets instance. �
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3. Approximability of Max Partial Digest Subset

In this section, we show that Max Partial Digest Subset is as hard to approximate as Max Clique, and we give a
trivial approximation algorithm that achieves a matching approximation ratio.

In the following, we construct a gap-preserving reduction from Max Clique to Max Partial Digest Subset, where
Max Clique is defined as follows: given a graph G = (V , E) with vertices V and edges E, find a maximum clique in G,
i.e., a maximum complete subgraph of G. The problem Max Clique cannot be approximated by any polynomial-time
algorithm to within factor n1−ε for any constant ε > 0, where n is the number of vertices of the input graph, unless
NP = ZPP [16,21]. Our reduction is gap-preserving, thus the inapproximability of Max Clique is transferred to Max
Partial Digest Subset.

Theorem 3.1. Max Partial Digest Subset cannot be approximated to within factor |D|(1/2)−ε, for any constant
ε > 0, where |D| is the number of input distances, unless NP = ZPP.

Proof. Let G = (V , E) be an instance of Max Clique with vertex set V = {v1, . . . , vn} and edge set E ⊆ V × V .
We construct an instance D of Max Partial Digest Subset by creating a number di,j = 0 i ◦ 1j−i ◦ 0n−j with base
Z = n2 + 1 for each (vi, vj ) ∈ E, j > i.

Let OPT be the size of a maximum clique in G (i.e., the number of vertices in a maximum clique), let OPT ′ be the
maximum number of points that can be placed on a line such that all pairwise distances appear in D, let k > 0 be an
integer, and let ε > 0. We now prove the following two implications.
(1) If OPT�kn1−ε, then OPT ′ �kn1−ε.
(2) If OPT < k, then OPT ′ < k.
To see the first implication, assume we are given a clique in graph G of size kn1−ε. We construct a solution for the
corresponding Max Partial Digest Subset instance D by positioning a point at position v′

i = 1i ◦ 0n−i for each vertex
vi in the clique. This yields a feasible solution for D, since for j > i each distance v′

j − v′
i = 0 i ◦ 1j−i ◦ 0n−j = di,j

between two points v′
j and v′

i corresponds to an edge in G and is therefore encoded as distance di,j in D.
We now show the second implication by proving its converse, i.e., by showing OPT ′ �

k �⇒ OPT � k. Suppose we are given a solution of the Max Partial Digest Subset instance consisting of k points
p1 < · · · < pk on a line. We assume w.l.o.g. that p1 = 0n. Let dimin,jmax = pk − p1. Note that dimin,jmax , and thus imin
and jmax, are uniquely defined by construction. Each of the points p2, . . . , pk−1 from the solution has the following
properties:
(1) It only has zeros and ones in its digits, as the distance to point p1 would not be in D otherwise.
(2) It only has zeros in the first imin digits, as the distance to point pk would not be in D otherwise.
(3) It contains at most one continuous block of ones in its digits, as the distance to point p1 would not be in D otherwise.
The points p2, . . . , pk−1 also have the property that they are of the same form,

either 0 imin ◦ 1� ◦ 0jmax−�−imin ◦ 0n−jmax

or 0 imin ◦ 0� ◦ 1jmax−�−imin ◦ 0n−jmax ,

where 0���jmax − imin. Only one of the two forms can occur in a solution, since if both forms existed, i.e., at least
one point of each form existed, then the distance between points of different form would not be in D, since at least one
digit would not be 0 or 1.

We now construct a vertex set V ′ that will turn out to be a clique. Let vimin and vjmax be in vertex set V ′. In
addition, for each point pk′ , 2�k′ �k − 1, we have one vertex in set V ′: if pk′ is of the first form, i.e., pk′ =
0 imin ◦ 1�′ ◦ 0jmax−�′−imin ◦ 0n−jmax for some �′ ∈ {0, . . . , jmax − imin}, then we include v�′+imin . Analogously, if pk′ is
of the second form, i.e., pk′ = 0 imin ◦ 0�′ ◦ 1jmax−�′−imin ◦ 0n−jmax for some �′ ∈ {0, . . . , jmax − imin}, then we include
v�′+imin .

In order to see that the vertex set V ′ is a clique, consider the difference pk′ − pk′′ of any two points with k′ > k′′,
where pk′ has led to the inclusion of vertex v�′ into the set and pk′′ has led to the inclusion of vertex v�′′ into the clique.
This difference is exactly d�′,�′′ , and thus the edge (v�′ , v�′′) is in E.
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The promise problem of Max Clique, in which we are promised that the size of the maximum clique in a given
graph G is either at least kn1−ε, or less than k, and we are to decide which is true, is hard to decide [16]. The two
implications above show that our reduction transforms this promise problem of Max Clique into a promise problem of

Max Partial Digest Subset, in which we are promised that in an optimum solution of D either at least kn1−ε, or less
than k points can be placed on a line. This promise problem of Max Partial Digest Subset is hard to decide as well,
since a polynomial-time algorithm for it could be used to decide the promise problem of Max Clique. Thus, unless
NP = ZPP, Max Partial Digest Subset cannot be approximated with an approximation ratio of

kn1−ε

k
= n1−ε � |D|1/2−ε,

where |D| is the number of distances in instance D. This yields the claim. �

A trivial approximation algorithm for Max Partial Digest Subset works as follows: given an instance D = {d1, . . . ,

d|D|}, it simply places two points at distance d1 from each other. This approximation algorithm achieves an approxima-

tion ratio of O(|D|1/2), since any optimal solution has at most 1
2 +

√
1
4 + 2|D| points. This matches our lower bound

up to lower order terms.

4. Strong NP-completeness of Partial Digest with Additive Errors

In this section, we prove that Partial Digest with Additive Errors is strongly NP-complete by giving a reduction from
3-Partition, which is defined as follows: given 3n positive integers q1, . . . , q3n and an integer h such that

∑3n
i=1 qi = nh

and h
4 < qi < h

2 , for i ∈ {1, . . . , 3n}, are there n disjoint triples of qi’s such that each triple adds up to h? The 3-Partition
problem is NP-complete in the strong sense [14]. Observe that h

4 < qi < h
2 already implies that each subset of the qi’s

that adds up to h must have exactly three elements.
The idea of the reduction is as follows. Given an instance q1, . . . , q3n and h of 3-Partition, we define a multiset of

distances D and an error ε = h
4 that form an instance of Partial Digest with Additive Errors. Our construction is based

on the following observation: if there is a solution for the 3-Partition instance, then we can arrange the qi’s such that
triples of adjacent qi’s sum up to h. If we sum up, say, 25 adjacent qi , then we sum over at least 7 complete triples (that
have sum h), plus some few (up to four) additional qi’s at the beginning and the end. In the special and trivial case that
all qi’s have exactly value h

3 , we can easily determine the exact sum of the 25 values. However, in a given instance
of 3-Partition typically not all qi’s will have value h

3 . However, they have “approximately” value h
3 , since they satisfy

h
4 < qi < h

2 by definition. In the proof of the following theorem, we will use error ε to “close the gap” between h
3 and

the true values of the qi’s.

Theorem 4.1. Partial Digest with Additive Errors is strongly NP-complete.

Proof. The problem Partial Digest with Additive Errors is obviously in NP. To prove strong NP-hardness, we give
a reduction from 3-Partition. Given an instance of 3-Partition, i.e., integers q1, . . . , q3n and integer h, we define a
distance multiset D and an error ε that are an instance of Partial Digest with Additive Errors. There will be a solution
for this instance if and only if there is a solution for the 3-Partition instance.

The set D will contain two types of distances: atoms and non-atoms. Atoms will be those distances that, in any
solution P , will correspond to consecutive points. In particular, we will have an atom zi for each qi , and n − 1
additional atoms c1, . . . , cn. The idea is to define the set of non-atoms so that every solution P (if any) must arrange
atoms in consecutive blocks of three zi’s separated by one cj . These blocks will correspond to triples of sum h each. In
particular, solution P will be forced to approximate each atom zi and ci by ẑi := zi + ε and ĉi := ci + ε, respectively.
The set D will be such that there exists a solution

(qi1 , qi2 , qi3), (qi4 , qi5 , qi6), . . . , (qi3n−2 , qi3n−1 , qi3n
)
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for the 3-Partition instance if and only if there exists a set P of points whose consecutive distances are

ẑi1 ẑi2 ẑi3 ĉj1 ẑi4 ẑi5 ẑi6 ĉj2 · · · ĉjn−1 ẑi3n−2 ẑi3n−1 ẑi3n
.

Parallel to the definition of D, we show already the “if” direction of the previous statement: to this end, we assume
that the 3-Partition can be solved, i.e., there are n triples T1, . . . , Tn of qi’s that each sum up to h, and we show how to
construct a point set P that is a solution for the Partial Digest with Additive Errors instance, i.e., P matches D up to
error ε. The opposite direction (“only if”) is shown in a second step. We want to stress at this point that although the
definition of D and the construction of P are presented simultaneously, the definition of D itself does not rely on the
fact that there exists a solution for the 3-Partition instance.

We assume that h
12 is integer. (Otherwise, we can achieve this by simply multiplying all values qi and h by 12.)

Moreover, we assume w.l.o.g. that the values q1, . . . , q3n are ordered such that the three qi’s that belong to the same
triple Tj are adjacent, i.e., T1 = (q1, q2, q3), T2 = (q4, q5, q6), and so on. Finally, we assume that the elements in
each Ti are sorted in ascending order, i.e., q1 �q2 �q3, q4 �q5 �q6, and so on. This ordering allows us to derive a set
of inequalities for the qi’s. Let (q3k+1, q3k+2, q3k+3) be a triple that sums up to h, for 0�k�n − 1. Then q3k+1 � h

3 ,
since q3k+1 is the smallest of the three elements in the triple, and not all of them can be greater than h

3 . Similarly,
h
3 �q3k+3. With q3k+1 + q3k+2 = h− q3k+3, we have q3k+1 + q3k+2 �h− h

3 = 2h
3 . In combination with the restriction

h
4 < qi < h

2 (from the definition of 3-Partition), this yields the following inequalities:

h

4
< q3k+1 � h

3
h

4
< q3k+2 <

h

2
h

3
�q3k+3 <

h

2
h

2
< q3k+1 + q3k+2 � 2h

3
2h

3
�q3k+2 + q3k+3 < h

h = q3k+1 + q3k+2 + q3k+3 (1)

Equivalently, we can express these inequalities using H := h
12 :

3H < q3k+1 � 4H

3H < q3k+2 < 6H

4H �q3k+3 < 6H

6H < q3k+1 + q3k+2 � 8H

8H �q3k+2 + q3k+3 < 12H

12H = q3k+1 + q3k+2 + q3k+3 (2)

We will use these inequalities later to derive upper and lower bounds for the error that we need to apply to our distances
in order to guarantee the existence of a solution for the Partial Digest with Additive Errors instance.

Before we define our distances, we need to introduce the level of a distance: for a point set P , we say that a distance
d between two points has level � if it spans � − 1 further points, and we say that distance d is an atom if it has level 1
(see Fig. 6).

We now define our instance of Partial Digest with Additive Errors and show at the same time how to construct a
solution for this instance. Let c = n2 · h2. Moreover, define error ε := 3H . The distances are expressed as numbers
with base Z = 10nc, and each distance consists of three digits. The first digit will denote the level of a distance
(the meaning of the other two digits will become clear soon).



372 M. Cieliebak et al. / Theoretical Computer Science 349 (2005) 361 –381

atom

level 3

level 4

atom

p1 p2 p3 p4 p5

Fig. 6. Distances of different level.

First, we define 4n − 1 distances that will turn out to be atoms in our solution:

zi = 〈1, 0, qi〉 − ε for 1� i�3n, and

ci = 〈1, c, 0〉 − ε for 1� i�n − 1.

Observe that the operation “−ε” does not affect the first digit since ε = 3H = h/4 < qi (and in fact, we could have
defined zi by 〈1, 0, qi − ε〉 instead) and since we choose base Z sufficiently large.

Using these distances, we can already define a “solution” P for distance multiset D (although we did not finish yet
to define D; in fact, we will construct D in the following such that it matches point set P up to error ε): let ẑi = zi + ε

for 1� i�3n, and ĉi = ci + ε for 1� i�n − 1. Observe that each ẑi has exactly value qi in its third digit. We call
these values z-pseudoatoms or c-pseudoatoms, respectively, and use them to define a point set P = {p1, . . . , p4n} by
specifying the pairwise distances between the points: starting in 0, the points have distances ẑ1, ẑ2, ẑ3, ĉ1, ẑ4, ẑ5, ẑ6,

ĉ2, . . . , ĉn−1, ẑ3n−2, ẑ3n−1, ẑ3n, i.e., we alternate blocks of three z-pseudoatoms and one c-pseudoatom, starting and
ending with a block of three z-pseudoatoms (see Fig. 7).

We now show level by level how the distances in D are defined, and that error ε (which is 3H ) is sufficient to make
all distances from D match some distance between points in P .

By construction of P , the distances of level 1 are the pseudoatoms, and they match the corresponding zi’s and ci’s
up to error ε.

To denote the distances of higher levels we use notation d[�, j, k], for appropriate parameters �, j and k. These
names already indicate the values of the three digits of a distance: distance d[�, j, k] will have value � in the first digit,
which will be the level of the distance in our point set P . The second digit of the distance has value j · c, which denotes
that this distance will be used to span j c-pseudoatoms (and � − j z-pseudoatoms) in our point set P . For instance,
in Fig. 7 distance d[7, 2, 1] spans the two pseudoatoms ĉ1 and ĉ2 (and five ẑi’s). Finally, the third digit of distance
d[�, j, k] has value k ·h plus some “small offset”, which will be a multiple of H . Here, k specifies how many complete
blocks of three adjacent z-pseudoatoms the distance spans in P (recall that such a block corresponds to three qi’s that
sum up to exactly h). In the following, we show how to choose these offsets in the third digit such that our point set P

matches distance multiset D up to error ε.
First, consider distances of level 2 in P , i.e., two points pi, pi+2 ∈ P with one point pi+1 in between. There are

four possibilities for the two pseudoatoms between these two points, for some 0�k�n − 1:
Case 1: ẑ3k+1 and ẑ3k+2;
Case 2: ẑ3k+2 and ẑ3k+3;
Case 3: ẑ3k+3 and ĉk; or
Case 4: ĉk and ẑ3k+1.
For the first case, the two pseudoatoms sum up to 2 in the first and to 0 in the second digit. For the third digit of the

sum, recall that ẑ3k+1 has value q3k+1 in its third digit, and ẑ3k+2 has value q3k+2 in its third digit. Hence, inequalities
(2) yield that the third digit of ẑ3k+1 + ẑ3k+2 is bounded below by 6H and bounded above by 8H . We define a distance
d[2, 0, 0] := 〈2, 0, 9H 〉. Obviously, we can span the two pseudoatoms by this distance if we apply at most error ε

(recall that ε = 3H ). Observe that we could have chosen other values for the third digit of d[2, 0, 0], namely any value
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z1 z2 z3 z4 z5 z6 z7 z8 z9c1 c2 c3

d [3, 0, 1]

d [7, 2, 1]

...

sum in third digit: q7sum in third digit: h

sum in third digit: q2 + q3 + h

Fig. 7. Atoms and distances in multiset D.

between 5H and 9H (which still allows to match the bounds using error ε). Here, we chose value 9H , since we will
use that same distance to cover the two pseudoatoms in Case 2 as well (see below).

Case 1 occurs exactly n times in our point set P , once for each block of three z-pseudoatoms. Hence, we let distance
d[2, 0, 0] be n times in our distance multiset D.

Case 2 is similar to Case 1. The third digit of ẑ3k+2 + ẑ3k+3 is bounded below by 8H and bounded above by 12H ,
using again inequalities (2). Like before, this case occurs n times, and we can use n additional distances d[2, 0, 0] in
D to span such two pseudoatoms up to error ε. Thus, in total we have 2n distances d[2, 0, 0] in D that arise from the
first two cases.

For the remaining two cases of two pseudoatoms, the last digit of the two pseudoatoms is at least 4H and at most
6H in Case 3, and at least 3H and at most 4H in Case 4. Moreover, in both cases the first digit of the sum is 2 and the
second digit is c, and both cases occur exactly n − 1 times. Hence, we can define distance d[2, 1, 0] := 〈2, c, 4H 〉 and
include it 2(n − 1) times in D, in order to cover these pairs of pseudoatoms, again up to error ε.

Before we specify the distances of higher level, we introduce a graphical representation of pseudoatoms: each z-
pseudoatom is represented by a •, and each c-pseudoatom by a |. This allows us to depict sequences of pseudoatoms
without referring to their exact names. E.g. pseudoatoms ẑ3ĉ1ẑ4ẑ5ẑ6ĉ2 yield •|••• |, and the four cases of two adjacent
pseudoatoms above can be represented by ••, ••, •| and |•.

We now define the distances of higher level. Analogously to distances of level 2, we can compute for each level
the corresponding upper and lower bounds for the third digit and define appropriate distances in D. Fig. 8 shows the
distances and multiplicities for level 2 to 7. This table is organized as follows. The first column specifies the level of
the distance, and the second column gives the graphical representation of the combinations of pseudoatoms that can
occur. The next column specifies how often each combination occurs, and the following two columns show lower and
upper bounds for the third digit of the sum of the pseudoatoms. Finally, the last two columns specify the distance name
that is used to cover the pseudoatoms, and the value of the distance. Distance values are only introduced once, and the
lines are sorted such that those cases that use the same distance stand together.

In order to define the distances of level 8 to 4n−2, observe that each such distance differs from some distance of level
4, 5, 6 or 7 by a number of blocks of three z-pseudoatoms and one c-pseudoatom: e.g. distance d[8, 2, 1], represented
by • • | • • • |•, differs from distance d[4, 1, 0], represented by • • |•, by exactly one block | • ••. Since this is true
for all higher level distances, we can define a block value � := 〈4, c, h〉 and use � to construct all distances up to level
4n− 2, where the number of blocks varies between 1 and n− 3. In our example, this yields d[8, 2, 1] = d[4, 1, 0]+�.
The multiplicities of the higher order distances can be determined straightforwardly. Finally, we define the (unique)
distance of level 4n − 1 explicitly as d[4n − 1, n − 1, n] = 〈4n − 1, (n − 1)c, nh〉 + ε. The resulting distances are
shown in Figs. 9 and 10.

Our distance multiset D consists of all atoms zi and ci , and all distances as specified in the previous paragraphs, with
the corresponding multiplicities. There are 4n − 1 levels, and for each level � there are 4n − � distances in D. In total,
this yields

∑4n−1
�=1 (4n − �) = (4n

2

)
distances. The cardinality of D is polynomially bounded in n, and each distance in

D is polynomial in h. Hence, multiset D can be constructed in polynomial time from a given instance of 3-Partition.
Observe that the construction of D is possible for any instance of 3-Partition, and does not rely on the fact that there

is a solution for the 3-Partition instance, nor on a particular ordering of the qi’s. In our argumentation above, we used



374 M. Cieliebak et al. / Theoretical Computer Science 349 (2005) 361 –381

Fig. 8. Distances up to level 7.

these two properties of the instance only to construct simultaneously a point set P that matches D up to error ε. Hence,
we have constructed an instance D and ε of Partial Digest with Additive Errors from the given instance of 3-Partition,
and we have shown already that a solution for the 3-Partition instance yields a solution for the Partial Digest with
Additive Errors instance.

In the following, we show the opposite direction, i.e., we show that a solution for the Partial Digest with Additive
Errors instance yields a solution for the 3-Partition instance.

Let R = {r1, . . . , r4n} be any set of 4n points on a line that is a solution for the Partial Digest with Additive Errors
instance, i.e., multiset D is the multiset of pairwise distances of R, up to error ε for each distance. We assume w.l.o.g.
that the points are ordered from left to right, i.e., r1 < r2 < · · · < r4n. We will show that R is basically identical to P ,
the point set that we constructed above.
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Fig. 9. Distances with level 8 to 4n − 5. Value k varies between 1 and n − 3.

Fig. 10. Distances with level 4n − 4 to 4n − 1. Each case occurs once.

Obviously, error ε can affect only the last digit of each distance, since base Z is sufficiently large. Thus, exactly those
distances with value 1 in the first digit are atoms, since all other distances have value greater than 1 in the first digit,
and since there must be exactly 4n − 1 atoms. This implies immediately that the first digit of each distance denotes the
level of the distance in any solution.
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We now show that error +ε has to be applied to each single atom to make it fit to the distances between adjacent
points in R. To see this, first observe that the atoms sum up to

3n∑
i=1

zi +
n−1∑
i=1

ci

=
3n∑
i=1

(〈1, 0, qi〉 − ε) +
n−1∑
i=1

(〈1, c, 0〉 − ε)

= 〈3n, 0, nh〉 − 3nε + 〈n − 1, (n − 1)c, 0〉 − (n − 1)ε

= 〈4n − 1, (n − 1)c, nh〉 − (4n − 1)ε.

On the other hand, the largest distance in multiset D is d[4n − 1, n − 1, n] = 〈4n − 1, (n − 1)c, nh〉 + ε. Each atom
is the distance between two adjacent points in R, up to error ε, while d[4n − 1, n − 1, n] is the distance between the
first and the last point in R, again up to error ε. Hence, the atoms must sum up to the length of the largest distance.
This is only possible if we apply error +ε to each atom, yielding sum 〈4n − 1, (n − 1)c, nh〉, and if we apply error
−ε to the largest distance, yielding 〈4n − 1, (n − 1)c, nh〉 as well. Knowing this, we can again define pseudoatoms
ẑi = zi + ε and ĉi = ci + ε, which represent exactly the distances of adjacent points in R (without error). Observe that
if we represented the distances between adjacent points in R in our number representation, then pseudoatom ẑi would
have exactly value qi in its last digit, for all 1� i�3n.

We now show that the ordering of the pseudoatoms arising from R is such that there are n blocks of three pseudoatoms
ẑi , and each two blocks are separated by one pseudoatom ĉi . Again, we call the pseudoatoms with value c in the second
digit c-pseudoatoms, and those with value 0 in the second digit are called z-pseudoatoms. Between any two adjacent
c-pseudoatoms there must be exactly three z-pseudoatoms: since there are no distances of level 4 with value 2c in the
second digit, no combination || or | • | or | • •| is possible, and there are at least three z-pseudoatoms in between two
c-pseudoatoms; moreover, since there are n − 2 distances of level 5 with value 2c in the second digit, there must be
at least n − 1 c-pseudoatoms such that there are always at most 3 z-pseudoatoms in between. Hence, the points in R

are such that blocks of three z-pseudoatoms alternate with one c-pseudoatom, starting and ending with a block of three
z-pseudoatoms.

Finally, we show that the third digits of each three adjacent z-pseudoatoms sum up to h: consider those distances
of level 3 that have a zero in the second digit. There are n such distances, and their third digits sum up to nh + nε.
Each of these distances must span exactly one of the n blocks of three z-pseudoatoms. The total sum of the last digit of
all z-pseudoatoms is exactly

∑3n
i=1 qi = nh. Since the distances of level 3 that span these blocks do not overlap, they

have to sum up to the same total. Hence, the error for each such distance of level 3 must be −ε. This implies that each
three qi’s that correspond to one block sum up to exactly h (since we have applied error +ε to each atom to define the
z-pseudoatoms). Thus, these triples yield a solution for the 3-Partition instance. �

5. Strong NP-completeness of Partial Digest with Relative Error

In this section, we show that Partial Digest with Relative Error is strongly NP-complete by using a reduction
from 3-Partition similar to the one used to prove strong NP-completeness of Partial Digest with Additive Errors
(see Theorem 4.1).

Theorem 5.1. Partial Digest with Relative Error is strongly NP-complete, even if the error is a constant.

Proof. The problem is in NP analogously to the proof of Theorem 4.1. The proof of NP-hardness is also along the
lines of the proof of Theorem 4.1. In fact, the proof has a similar structure overall, but the details are quite different.

Given an instance of 3-Partition, we define a multiset E of distances which forms an instance of Partial Digest with
Relative Error. The distances are expressed as numbers with a base Z, with Z = 10hnc and c = n2h2.

In Partial Digest with Relative Error, all distances are required to be integers. For the purposes of this proof, we first
relax this condition and show how the proof works if we allow even real numbers in the input of Partial Digest with
Relative Error. In a second step, we will show how we can guarantee that all distances are integers. 5

5 Note that the choice of values Z and c is not tight, i.e., even smaller values might be possible.
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We replace the definition of the atoms as follows:

zi = 〈1, 0, qi〉 · 1

1 + e
for 1� i�3n,

ci = 〈1, c, 0〉 · 1

1 + e
for 1� i�n − 1,

where e = 1
100 .

All zi’s and ci’s are part of the distance set E. Note that for a fixed level �, the corresponding distances d[�, ·, ·]
from the proof of Theorem 4.1 are defined for at most two consecutive values of the second digit, say d(�, j, ·) and
d(�, j + 1, ·). For the relative error proof, we define distances e[�, j ] and e[�, j + 1] for all levels 2���4n − 1 and
corresponding j or j + 1, respectively, as follows. Here, we use values Bu() and Bl() which are specified below

e[�, j ] = 〈�, j, Bu(�, j)〉 · 1

1 + e
,

e[�, j + 1] = 〈�, j + 1, Bl(�, j + 1)〉 · 1

1 − e
.

The first digit � still indicates the level of the distance (i.e., how many atoms it will span in a solution) and the second
digit j or j + 1 indicates the number of c-atoms it will span. Value Bu(�, j) is the maximum upper bound from the
corresponding column in Figs. 8–10, taken over all distances d[�, j, ·] (for Fig. 9, these bounds result from Fig. 8 by
adding appropriate multiples of h); similarly, value Bl(�, j + 1) is the minimum lower bound from the corresponding
column in the same figures, taken over all distances d[�, j + 1, ·]. The multiplicity of distance e[�, j ] is the sum of the
multiplicities for all distance values d[�, j, ·] taken from the same figures, likewise for distance e[�, j + 1]. Thus, for

example e[5, 1] = 〈5, 1, 20H 〉 · 1
1+e with multiplicity 3(n − 1), while e[6, 2] = 〈6, 2, 15H 〉 · 1

1−e with multiplicity
2(n − 2).

For d[·]-distances with levels divisible by four (i.e., distances d[4�′, j, ·] with integer �′ < n), we only have one pos-
sible value j for the second digit. Thus, we define the corresponding e[·]-distances by e[4�′, j ] = 〈4�′, j, Bu(4�′, j)〉 ·
1/1 − e.

Finally, we define two special distances:

e[3, 0] = 〈3, 0, h〉 · 1

1 + e
,

e[4n − 1, n − 1] = 〈4n − 1, (n − 1)c, nh〉 · 1

1 − e
.

Here, e[3, 0] has multiplicity n, and distance e[4n − 1, n − 1] has multiplicity 1.
All the distances, including the atoms, are put into distance multiset E. This completes our description of how to

construct a Partial Digest with Relative Error instance from a given 3-Partition instance. We now show that a solution for
the 3-Partition instance yields a solution for the Partial Digest with Relative Error instance, and vice versa; thereafter,
we will present a strategy how to transform these rational distances into integer distances.

We first show that a feasible solution for the 3-Partition instance can be turned into a feasible solution for the Partial
Digest with Relative Error instance. Assume that we are given a solution for the 3-Partition instance. Assume w.l.o.g. that
the 3-Partition solution is such that the correct triples are formed by the numbers (q1, q2, q3), (q4, q5, q6), . . . , (q3n−2,

q3n−1, q3n), and qi �qi+1 �qi+2 within each triple. We now define a set P = {p1, . . . , p4n} of points on a line, and
show that P is a solution for the Partial Digest with Relative Error instance. Let pu,v denote the distance between points
pu and pv . In order to be able to distinguish the distances from multiset E from distances pu,v , we refer to distances
pu,v as point distances.

We define all point distances by setting the atomic point distances pu,u+1 as follows for integer u′ with 0�u′ �n−1:

p4u′,4u′+1 = z3u′+1 · (1 + e),

p4u′+1,4u′+2 = z3u′+2 · (1 + e),

p4u′+2,4u′+3 = z3u′+3 · (1 + e)

while, for 0�u′ �n − 2, we let

p4u′+3,4u′+4 = cu′ · (1 + e).
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In other words, we apply the maximum error 1 + e to all z- and c-atoms and order them as z1, z2, z3, c1, z4, z5,

z6, c2, . . . , cn−1, z3n−2, z3n−1, z3n. Observe that this is the same ordering as in the proof of Theorem 4.1.
In order to show that this is a feasible solution for the Partial Digest with Relative Error instance, we have to indicate

how the distances from multiset E are matched within the allowable error range to point distances pu,v . As indicated by
the definition of point set P , the z-atoms and c-atoms from E are matched to atomic point distances pu,u+1, applying
error 1 + e. The maximum distance e[4n − 1, n − 1] is matched to p1,4n with error 1 − e. Any other distance e[�, j ]
(resp. e[�, j + 1]) is matched to any point distance pu,u+� spanning exactly � atoms, of which j (resp. j + 1) are
c-atoms, using an appropriate relative error. In order to see that this is feasible, we need to show that error e is large
enough such that distance e[�, j ] can be used to generate every possible distance spanning over � atoms.

More precisely, if distance e[�, j ] is matched to point distance pu,u+�, it suffices to show that e[�, j ](1−e)�pu,u+� �
e[�, j ](1 + e). By construction of the matching, the number of c-atoms between pu and pu+� is j . Hence, we have
pu,u+� = 〈�, jc, S〉, where S denotes the sum of the qi’s corresponding to the z-atoms between pu and pu+�. Since

S�Bu(�, j) by construction, we have immediately pu,u+� �e[�, j ](1 + e). On the other hand, with e = 1
100 � nh

2Z2 ⇒
(�Z2 + jcZ + nh)(1 − e)�(�Z2 + jcZ)(1 + e), we have e[�, j ](1 − e)�pu,u+�.

Analogously, it can be shown that error e is sufficient to match distance e[�, j + 1] to point distance pu,u+�, where
we use that the sum of the corresponding qi’s is at least Bl(�, j + 1). For the special cases e[3, 0], the matching point
distance is exactly 〈3, 0, h〉, since the three qi corresponding to the z-atoms belong to the same triple and sum up to h.

We now show the opposite direction of our claim, i.e., we show that a feasible solution for the Partial Digest with
Relative Error instance can be turned into a feasible solution for the 3-Partition instance. We assume that we are given a
solution of the Partial Digest with Relative Error instance as a set of points P = {p1, . . . , p4n} on a line. Let pu,v again
denote the point distance between points pu and pv . As the solution is feasible, each point distance pu,v is matched to
a distance e[�, ·] or to an atom zi or ci (in a bijective way).

The following five item show how to construct a 3-Partition solution:
(1) The atomic point distances pu,u+1 for 0�u�4n − 2 must be matched to the atoms zi and ci in any solution and

any matching.

Proof. We first show that no non-atomic distance e[�, ·] from multiset E can be made smaller by using the error range
than any z- or c-atom, even if we make the atom as large as possible. To this end, we show that zi ·(1+e) < e[�, ·]·(1−e)
for any z-atom zi , and ci ·(1+e) < e[�, ·]·(1−e) for any c-atom ci : we have zi = (Z2+qi)· 1

1+e and ci = (Z2+Z)· 1
1+e ;

with qi � Z2

2 and Z� Z2

2 (by definition of Z), we have that zi and ci are both smaller or equal to 3
2Z2 · 1

1+e . Thus, it is

sufficient to show that 3
2Z2 · 1

1+e < �Z2 · 1−e
1+e , where the right side models a lower bound for e[�, ·]. Straight-forward

analysis shows that this is true if e < 1
4 , which is true by definition of e.

Let us now assume for the sake of contradiction that point distance pu′,u′+1 is matched to a non-atomic distance
e[�, j ]. This implies that in the matching at least one atom is matched to a non-atomic point distance pu,v with v � u+2.
The atomic point distances pu,u+1 and pu+1,u+2 must be matched with some distances from E; since the z-atoms are the
smallest distances among all distances in E, we have that both pu,u+1 and pu+1,u+2 are at least Z2 · 1−e

1+e (applying error

1−e), hence, pu,v � 2Z2 · 1−e
1+e . On the other hand, point distance pu,v is matched to some atom a, hence pu,v �a ·(1+e).

Since each atom is smaller than (Z2 +cZ+ h
2 ) · 1

1+e , we have 2Z2 · 1−e
1+e �pu,v �a ·(1+e) < (Z2 +cZ+ h

2 ) · 1+e
1+e . With

c < Z
4 and h

2 < Z2

4 (by definition), this yields e > 1
7 , which contradicts our definition of e, which was set to 1

100 . �

(2) Any solution has to use the maximum error 1 + e for all atoms zi and ci , i.e., pu,u+1 = zi · (1 + e) or pu,u+1 =
ci · (1 + e).

Proof. To see this, we first show that the sum of all atoms zi and ci multiplied by 1 + e is equal to the longest
distance e[4n − 1, n − 1] multiplied by 1 − e: (

∑3n
i=1 zi + ∑n−1

i=1 ci) · (1 + e) = ∑3n
i=1 〈1, 0, qi〉 + ∑n−1

i=1 〈1, c, 0〉 =
〈4n − 1, (n − 1)c, nh〉 = e[4n − 1, n − 1] · (1 − e). Together with the fact that the ci’s and zi’s are matched to atomic
point distances (due to Item 1), this implies that in any solution and any matching, error 1 + e has to be applied to each
atom (and error 1 − e to the maximum distance) in order to guarantee that the maximum distance can be matched to
some point distance. �
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(3) In any solution, any distance e[�, ·] must match a point distance pu,u+� for � < 1
4e − 1 (i.e., parameter � actually

describes the level of the distance in any solution and any matching, for small values of �).

Proof. Let � < 1
4e − 1. We first show that no distance e[�′, ·] with �′ < � can match a point distance pu,u+�,

even if maximum error 1 + e is applied. To see this, we prove that e[�′, ·] · (1 + e) < pu,u+�: first, observe that

e[�′, ·]�〈�′, (n − 1)c, nh〉 · 1
1−e . Thus, with (n − 1)c < Z

4 and nh < Z2

4 (by definition of c and Z), we have

e[�′, ·] · (1 + e)�〈�′, (n − 1)c, nh〉 · 1+e
1−e = (�′Z2 + (n − 1)cZ + hn) · 1+e

1−e �(�′ + 1
2 )Z2 · 1+e

1−e . Since �′ < �, we have

that (�′ + 1
2 ) · 1+e

1−e < �′ + 1 implies e[�′, ·] · (1 + e) < (�′ + 1)Z2 ��Z2. On the other hand, we have pu,u+� � �Z2,

since each atomic point distance within pu,u+� has at least size Z2 (due to Item 1).
We now show that no distance e[�′, ·] with �′ > � can match a point distance pu,u+�, even if minimum error 1 − e is

applied. To this end, we prove that e[�′, ·] · (1 − e) > pu,u+�: first, we have e[�′, ·] · (1 − e) � �′Z2 · 1−e
1+e by definition

of distance e[�, ·]. Second, we have pu,u+� ��Z2 + (n − 1)cZ + nh < (� + 1
2 )Z2, since each atomic point distance

has at most size �Z2 + (n − 1)cZ + nh. Finally, since � < 1
4e − 1, we have (� + 1

2 ) · 1+e
1−e < � + 1. Combining these

three inequalities yields that e[�′, ·] · (1 − e) > pu,u+�.
The previous two paragraphs prove that no distance e[�′, ·] with �′ �= � can match point distance pu,u+� in any

solution and any matching. �

(4) Any solution and corresponding matching must be such that atomic point distances

p4u′,4u′+1, p4u′+1,4u′+2, p4u′+2,4u′+3

for 0�u′ �n − 1 are matched to z-atoms, and atomic point distances p4u′+3,4u′+4 for 0�u′ �n − 2 are matched
to c-atoms. In other words, the ordering must of the form zzz c zzz c . . . c zzz.

Proof. It suffices to show that any four adjacent atomic point distances pu,u+1, pu+1,u+2, pu+2,u+3, pu+3,u+4 cannot
be all matched to z-atoms, because only 4n − 1 atoms exist, and if two c-atoms were matched such that less than
three z-atoms are inbetween, there would have to exist a location where at least four z-atoms occurred in a row, in
contradiction to the claim.

Assume for the sake of contradiction that atomic point distances pu,u+1, pu+1,u+2, pu+2,u+3, pu+3,u+4 are all
matched to z-atoms, say w.l.o.g. z1, z2, z3, z4. We consider point distance pu,u+4; according to Item 3, this point
distance must be matched to a distance e[4, 1], which is the only distance of type e[4, ·] that exists in multiset E. It is
a necessary condition that if the minimum error is applied to distance e[4, ·], it must be smaller (or equal) to the sum
of the four z-atoms multiplied by the maximum error; thus, using qi �6H , we have

e[4, 1] · (1 − e) � (z1 + z2 + z3 + z4)(1 + e),

(4Z2 + Z + 16H)
1 − e

1 − e
� (4Z2 + q1 + q2 + q3 + q4)

1 + e

1 + e
,

Z + 16H � q1 + q2 + q3 + q4 �24H,

Z � 8H.

The last inequality is false by definition (recall that H = h
12 ), thus we have shown a contradiction. �

(5) In any feasible solution three consecutive atomic point distances that are matched to z-atoms sum up to the desired
value of h in the last digit.

Proof. Let pu be any point where three consecutive atomic point distances start that are matched to z-atoms. Then
pu,u+3 = 〈3, 0, S〉, with S the sum of the three qi’s corresponding to the matched z-atoms, since error 1 + e is applied
in each z-atom, due to Item 1. Moreover, only distances with level � = 3 might match to point distance pu,u+3, due to
Item 3. Since e[3, 1]·(1−e) = 〈3, c, 0〉 > pu,u+3, only a distance e[3, 0] can match point distance pu,u+3. This implies
that 〈3, 0, S〉 = pu,u+3 �e[3, 0](1 + e) = 〈3, 0, h〉, hence S�h. Since the previous inequality holds for any triple of
adjacent atomic point distances that are matched to z-atoms, and there are n such triples due to Item 4, summing up
all these triples yields at most total nh in the third digit. On the other hand, since the qi’s sum up to

∑
i=1 3n qi = nh
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as well (by definition of 3-Partition), the previous inequalities need to be tight, hence, each consecutive atomic point
distances that are matched to z-atoms sum up to value h in the last digit. �

To finish our proof, we show how to make all distances integer. First, observe that all distances in E are integers
multiplied by either 1

1−e or 1
1+e . Since error e is a rational number, we can express it as e = p

q
, with p and q co–primes

(i.e., the greatest common divisor of p and q is 1). Then 1
1+e = q

p+q
and 1

1−e = q
q−p

. Hence, if we multiply all

distances by (p + q)(q − p) = q2 − p2, then we obtain integer distances, and they still fulfill all properties above,
since each distance is scaled by the same factor.

The distance multiset E contains 4n − 1 distances, and each distance is a 3-digit number with base Z. By con-
struction, the largest distance is d[4n − 1, n − 1, n] = 〈4n − 1, (n − 1)c, nh〉 · 1

1−e · (q2 − p2). With e = p
q

, we

have d[4n − 1, n − 1, n] = 〈4n − 1, (n − 1)c, nh〉 · q(p + q). Since e = 1
100 , Z = 10hnc, and c = n2h2, each

distance in E is polynomially bounded in n and h. Hence, we can construct multiset E and error e from a given
instance of 3-Partition in polynomial time, and our reduction shows that Partial Digest with Relative Error is strongly
NP-hard. �

6. Conclusion

We have shown that the minimization problem Min Partial Digest Superset is NP-hard, and that the maximization
problem Max Partial Digest Subset is hard to approximate. This partially answers open problem 12.116 left open in
the book by Pevzner [24], as our results rule out the possibility of having exact polynomial-time algorithms. Moreover,
we have shown that Partial Digest is strongly NP-complete if all measurements are prone to the same additive or
multiplicative error. However, in the realm of Partial Digest, many questions are still open:
• Since our optimization variations model different error types that (always) occur in real-life data, our hardness results

suggest that real–life Partial Digest problems are in fact instances of NP-hard problems. However, the backtracking
algorithm from [19] performs well in experiments [35]. How can this be explained?

• What is the best approximation ratio for Min Partial Digest Superset?
• In our NP-hardness proof for Partial Digest with Additive Errors, we used non-constant error ε = h

4 . Is Partial Digest
still NP-complete if we restrict the error to some (small) constant? What if we allow only one-sided errors, i.e., if
the lengths of the distances are for instance always underestimated?

• Using gel electrophoresis, it is very hard to determine the correct multiplicity of a distance. This yields the following
variation of Partial Digest: we are given a set of distances, and for each distance a multiplicity, and we ask for
points on a line such that the multiplicities of the corresponding distance set do not differ “too much” from the given
multiplicities. What is the computational complexity of this problem?

• Is there a polynomial-time algorithm for the Partial Digest problem if we restrict the input to be a set of distances
(instead of a multiset), i.e., if we know in advance that each two distances in the input are pairwise distinct?
Finally and obviously, the main open problem is of course the computational complexity of Partial Digest itself.
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