
SIAM J. COMPUT. c© 2012 Society for Industrial and Applied Mathematics
Vol. 41, No. 4, pp. 829–879

DISTRIBUTED COMPUTING BY MOBILE ROBOTS: GATHERING∗

MARK CIELIEBAK† , PAOLA FLOCCHINI‡ , GIUSEPPE PRENCIPE§ , AND

NICOLA SANTORO¶

Abstract. Consider a set of n > 2 identical mobile computational entities in the plane, called
robots, operating in Look-Compute-Move cycles, without any means of direct communication. The
Gathering Problem is the primitive task of all entities gathering in finite time at a point not fixed
in advance, without any external control. The problem has been extensively studied in the literature
under a variety of strong assumptions (e.g., synchronicity of the cycles, instantaneous movements,
complete memory of the past, common coordinate system, etc.). In this paper we consider the setting
without those assumptions, that is, when the entities are oblivious (i.e., they do not remember results
and observations from previous cycles), disoriented (i.e., have no common coordinate system), and
fully asynchronous (i.e., no assumptions exist on timing of cycles and activities within a cycle). The
existing algorithmic contributions for such robots are limited to solutions for n ≤ 4 or for restricted
sets of initial configurations of the robots; the question of whether such weak robots could determin-
istically gather has remained open. In this paper, we prove that indeed the Gathering Problem is
solvable, for any n > 2 and any initial configuration, even under such restrictive conditions.

Key words. autonomous mobile robots, gathering, asynchrony, unlimited visibility, oblivious-
ness, distributed computing

AMS subject classification. 68W15

DOI. 10.1137/100796534

1. Introduction.

1.1. Setting. In distributed computing, the research focus is on the compu-
tational and complexity issues in systems composed of autonomous computational
entities interacting with each other (e.g., to solve a problem or to perform a task).
While traditionally the entities have been assumed to be static, recent advances in a
variety of fields, ranging from robotics to networking, have motivated the distributed
computing community to address the situation of mobile entities located in a spatial
universe U . The entities, called agents or robots, have storage and processing capa-
bilities, exhibit the same behavior (i.e., execute the same protocol), and can move
in U (their movement is constrained by the nature of U). Depending on the nature
of U , there are two basic settings in which autonomous mobile entities are being in-
vestigated. The first setting, sometimes called graph world or discrete universe, is
when the universe is a simple graph; the second setting, sometimes called continuous
universe, is when U is a region of the two-dimensional (2D) space. In this paper
we are interested in the continuous setting of mobile computational entities in the
plane, which has been investigated by researchers in distributed computing as well as

∗Received by the editors May 26, 2010; accepted for publication (in revised form) May 22, 2012;
published electronically August 16, 2012. This work was partially supported by NSERC Discovery
Grants (Canada), and by MIUR of Italy under project MadWeb. A preliminary version of this paper
was presented at the 30th International Colloquium on Automata, Languages, and Programming
(ICALP).

http://www.siam.org/journals/sicomp/41-4/79653.html
†sd&m Schweiz AG, 8050 Zurich, Switzerland (mark@dreamboxx.com).
‡School of Electrical Engineering and Computer Science, Ottawa University, Ottowa, ON, K1N

6N5, Canada (flocchin@site.uottawa.ca).
§Department of Informatics, University of Pisa, 56100 Pisa, Italy (prencipe@di.unipi.it).
¶School of Computer Science, Carleton University, Ottowa, ON, K1S 5B6, Canada (santoro@

scs.carleton.ca).

829

830 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

in robotics, control, and artificial intelligence, albeit with different assumptions (see,
e.g., [1, 3, 11, 13, 21, 26, 27, 28, 29, 30, 33, 41, 40, 43, 49, 51, 52]; for recent surveys
see [5, 24, 25, 47]).

In distributed computing, each mobile entity, traditionally called robot, is mod-
elled as a computational unit provided with its own local memory and capable of
performing local computations. The robots are placed in the plane, and are viewed
as points in R2. Each robot has its own local coordinate system; however, the local
coordinate systems of the robots might not be consistent with each other. A robot is
endowed with sensorial capabilities and it observes the world by activating its sensors,
which return a snapshot of the positions of all other robots with respect to its local
coordinate system. Each robot is endowed with motorial capabilities, and can move
freely in the plane. A move may end before the robot reaches its destination, e.g.,
because of limits to its motion energy. The robots are indistinguishable by their ap-
pearance, execute the same protocol, and have no explicit communication capabilities.
The robots operate autonomously, without a central control, in Look-Compute-Move
cycles. During a cycle, a robot obtains a snapshot of the environment (Look); executes
the protocol, the same for all robots, using the snapshot as an input (Compute); and
moves toward the computed destination, if any (Move). After each cycle, a robot
may be inactive for some time. For more details on the model, see the distributed
computing literature on the subject (e.g., [1, 3, 11, 15, 24, 26, 27, 46, 49, 51, 52, 56]),
as well as section 2 in this paper.

Different (sub)models arise depending on the additional assumptions made on the
capabilities of the robots and on the nature of the system.

The first basic distinction is about time and level of synchronization. In particular,
three models are commonly used: Fsync, Ssync, and Async; the fully synchronous
model Fsync is the strongest, the asynchronous model Async is the weakest, and the
semisynchronous model Ssync lies in between. In the synchronous models (Fsync
and Ssync), the cycles of all robots are fully synchronized: the sensors that become
active do so all at the same time and each operation of the life cycle is performed by
all robots simultaneously [1, 6, 11, 13, 19, 20, 21, 29, 41, 52]. In the asynchronous
model (Async), there is no global clock, and the robots do not have a common
notion of time; furthermore, the duration of each activity (or inactivity) is finite but
unpredictable [15, 26, 27, 36, 46].

With respect to the level of global agreement on the local coordinate systems,
different assumptions are made, ranging from availability of a global positioning sys-
tem [31, 32, 35, 40, 43], to the agreement on the direction and orientation of both
axes but not on the unit of distance nor the origin (e.g., as provided by a com-
pass) [26, 27], to partially accurate agreement on the direction and orientation (e.g.,
inaccurate compass) [34, 36, 49], to the absence of any relationship among the local
coordinate systems of different robots [6, 27, 52], i.e., when the robots are disoriented.

Two submodels have been identified with respect to workspacememory the robots
have available and its persistence. In the oblivious model, all the information con-
tained in the workspace is cleared at the end of each cycle. In other words, at
the beginning of each cycle, the robots have no memory of past actions and com-
putations, and the computation is based solely on what is determined in the cur-
rent cycle. The importance of obliviousness comes from its link to self-stabilization
and fault-tolerance. This model, sometimes called memoryless, is used, e.g., in
[11, 13, 20, 26, 27]. In the persistent memory model, all the information contained in
the workspace is legacy: unless explicitly erased by the robot, it will persist thoughout

GATHERING MOBILE ROBOTS 831

the robot’s cycles [8, 52].

In this paper, we consider the weak setting when the entities are oblivious (i.e.,
they do not remember results and observations from previous cycles), disoriented (i.e.,
they have no common coordinate system), and fully asynchronous (i.e., no assump-
tions exist on synchronization of cycles and timing of activities within a cycle).

1.2. The problem and its difficulty. The problem we consider is the Gath-

ering Problem: given n robots arbitrarily placed in the plane, with no two robots
at the same position, have them gather at the same point in a finite number of cy-
cles; the gathering point is not fixed in advance. This task constitutes one of the
very basic primitives for the control and coordination of autonomous mobile robots.
Known also as rendezvous, point formation (because the robots are viewed as points
in the plane), aggregation, and homing, this task has been the object of intensive
investigations in robotics, artificial intelligence, control, and distributed computing
(e.g., see [1, 3, 8, 11, 16, 55, 26, 29, 30, 36, 41, 43, 44, 45, 46, 48, 52, 56]).

In distributed computing, the Gathering Problem has been solved under a
variety of strong assumptions. In particular, solutions exist assuming (full or partial)
synchronicity of the cycles and instantaneous movements (i.e., in Fsync and Ssync),
even if the robots are oblivious and disoriented [52], assuming the robots have un-
bounded persistent memory (i.e., they can record all past observations and computa-
tions), even if they are asynchronous and disoriented [8], and assuming agreement on
the local coordinate systems (i.e., the robots are not disoriented), even if the robots
are oblivious, asynchronous, and with limited visibility [26].

In this paper, we ask whether it is possible to solve the Gathering Problem

without these additional strong assumptions; that is, we consider the problem in the
weak setting when the entities are oblivious, disoriented, and fully asynchronous. This
question has been open for a long time. It is known that multiplicity detection (i.e.,
the ability to detect whether at a point there is none, one, or more than one robot) is
necessary in the absence of additional assumptions [48]; thus, in the following we will
assume it.

Notice that the simpler Converge problem, where the robots are required only
to move “very close” to each other, without necessarily gathering at the same point
[3, 11, 15, 19, 46], can be easily solved: each robot computes the center of gravity
of all robots and moves toward it; it has been shown that using this strategy the
robots converge toward the same point, albeit without ever reaching it [11]. The
reason the same solution (i.e., moving toward the center of gravity) does not work
for the Gathering Problem is because the center of gravity is not invariant with
respect to robots’ movements toward it and the robots are oblivious. In fact, once
a robot makes a move toward the center of gravity, the position of the center of
gravity changes; since the robots act independently and asynchronously from each
other and have no memory of the past, a robot (even the same one) observing the
new configuration will compute and move toward a different point.

The obvious solution strategy for the Gathering Problem would be to choose
as destination a point that, unlike the center of gravity, is invariant with respect
to the robots’ movements toward it. The only known point with such a property
is the unique point in the plane that minimizes the sum of the distances between
itself and all positions of the robots. In fact, this point, known as the Weber (or
Fermat or Torricelli) point, does not change when moving any of the robots straight
toward it [39, 53]. Unfortunately, it has been proven in [4] that the Weber point
is not expressible as an algebraic expression involving radicals since its computation

832 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

requires finding zeros of high-order polynomials even for the case n = 5 (see also [10]).
In other words, for n ≥ 5, the Weber point is not computable even by radicals; thus it
cannot be used to solve the Gathering Problem. Interestingly, even convergence
toward the Weber point cannot be guaranteed due to its instability with respect to
changes in the point set [23].

The existing algorithmic contributions for robots in our setting are limited to
solutions for n = 3 and n = 4 robots or for restricted sets of initial configurations of
the robots [9] (the problem is unsolvable for n = 2 robots [52]). The lack of results
so far on the Gathering Problem is not due to lack of research efforts, but rather
to the inherent difficulties that this weak setting presents. In fact, the simultaneous
presence of asynchrony, obliviousness, and disorientation impose severe limitations to
the robots to cooperatively perform the assigned task. In particular, their inability
to remember the past and the asynchrony of their behavior are crucially hindering
factors.

Since robots are oblivious, they do not have any memory of past observations,
and the destination is decided by a robot during a Compute operation solely on the
basis of the location of other robots perceived in the last Look operation. Asynchrony
implies that, based on an observation made at some time t, a robot r computes a
destination at some time t′ > t, starts to move to its destination at an even later time
t′′ > t′, eventually stopping at time t′′′ ≥ t′′; thus it might be possible that at time
t′′ some robots are in different positions from those previously perceived by r at time
t, because in the meantime they performed their Move operations (possibly several
times). In other words, robots may move based on significantly outdated perceptions.

Among the many difficulties created by this fact is the difficulty of avoiding col-
lisions: since the robots do not look while moving (the robot’s sensors are activated
only during the Look), and the destination is computed based on possibly outdated
information about the position (and moves) of the other robots, to avoid collisions,
the computation of a robot r must take into account all possible movements of all
the other robots from the time t of the Look to the unknown and a priori unbounded
time t′′′ > t when r will actually end its move. In other words, collision avoidance, if
required, is difficult, and it is the sole responsibility of the protocol.

An additional difficulty due to obliviousness and related to collisions is that if two
robots (accidentally or by design) end a cycle at the same location, then they become
indistinguishable, and from that moment on they might behave exactly in the same
way (in fact, there is at least one execution in which they will do so); in particular, it
might not be possible for them to separate ever again.

In this paper, we prove that, in spite of all these difficulties, the Gathering

Problem is solvable for any n > 2 and any initial configuration, even under the
restrictive conditions of asynchrony, obliviousness, and disorientation.

1.3. Our solution. The overall strategy followed by the robots is quite simple
to state: at the beginning the robots are in distinct locations (forming a plain config-
uration); within finite time, a unique dense point (i.e., where there is more than one
robot) is created, and all other robots gather there. However, since the robots are
disoriented and oblivious and operate in a totally asynchronous manner, this strategy
is not simple to enact. For example, ensuring that a unique dense point is created re-
quires that during the execution of the algorithm no collisions occur at any point other
than the final gathering one. An additional difficulty is in recognizing if a symmetric
configuration is being formed during the execution. For instance, if all the robots ini-
tially are the vertices of an n-gon (a configuration called equiangular), then the trivial

GATHERING MOBILE ROBOTS 833

strategy in this case would be that the robots move toward the center of the n-gon;
however, if such a configuration is created by the movement of some robots during the
execution, the still robots might observe the equiangular configuration and decide to
apply the go-to-center strategy, while those already moving continue their procedure
(possibly destroying the newly formed equiangularity). Our algorithm ensures that,
if a symmetric configuration is formed during the execution, all robots become aware
of it (recall, however, that the robots are oblivious and do not remember previous
observations), so that all robots follow the same strategy.

The algorithm works by examining the configuration observed by a robot in the
Look operation. The first test a robot does when computing is to determine whether
there is a single dense point, p; if so, the robot moves toward p. In absence of a
dense point, the robot checks for the presence of a specific symmetric configuration:
the biangular configuration. If the check for a biangular configuration is positive, the
robot will move toward the center of biangularity, b. The algorithm ensures that, if
this case is recognized by one robot, then all robots will recognize it and will move
toward b; in this case, within finite time b will become dense.

Should the first two tests fail, the robot analyzes the string of angles of the
robots with respect to the center c of the smallest enclosing circle. The algorithm
distinguishes four cases. For all of them, the algorithm uses the string of angles of the
robots to “elect” a subset of the robots. If the elected set consists of a single robot,
that robot moves until it reaches another robot, thus creating a single dense point.

Otherwise, the robots of the elected set move toward c, ensuring that the smallest
enclosing circle is not changed by their movements, and paying particular attention
to potential biangular configuration that might be formed during their movements.
In fact, it is possible that the elected robots reach, during their movements, points
that render the configuration biangular; such points are called critical. The algorithm
explicitly computes these points; in particular, if an elected robot has a critical point
on its way, the algorithms ensure that it reaches it; also, the algorithm ensures that the
configuration is still (i.e., no robot is moving or about to move) when this happens.
Hence, if a biangular configuration is formed during the movements of the elected
robots, all other robots will observe it in their next Look state and will eventually
gather on the center of biangularity, as described above. Otherwise, if no biangular
configuration is formed, the elected robots will create a unique dense point at c, where
all other robots will gather.

1.4. Related work. Gathering a set of autonomous mobile robots dispersed in
the plane constitutes a basic control and coordination task. In distributed computing,
this problem has been extensively studied in a variety of settings.

The most difficult setting for the gathering problem for oblivious robots is clearly
the asynchronous one (Async), where no timing assumptions are made; as mentioned
earlier, the only solutions are for 2 < n < 5, and for restricted sets of initial config-
urations of the robots when n ≥ 5 [9]. A solution protocol has been presented also
in the case of limited visibility, provided there is agreement on the coordinate system
(e.g., a compass) [26]. Probabilistic protocols for gathering in absence of agreement
on the coordinate systems have been proposed and experimentally analyzed in [50].

In the semisynchronous setting Ssync, the gathering problem of oblivious robots
has been tackled in [11, 41, 44]. With limited visibility, a solution has been proposed
in [3], where the robots converge toward the same point.

There have been several investigations on the Gathering Problem with robots
operating in the fully synchronous setting Fsync [29, 41, 44, 57]. The starting point

834 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

of these investigations is the convergence protocol of [3], operating in the Ssync and
thus in the Fsync models. Like [3], these protocols work for oblivious robots with
no common coordinate system and limited visibility, and they all converge toward a
unique point; unlike [3], they are only for the Fsync model.

The nonoblivious case has been studied in [8], where a protocol to achieve gather-
ing inAsync with unbounded memory in finite time has been presented. Convergence
of nonoblivious robots toward a single point has also been achieved with limited visi-
bility under a restricted form of asynchrony [41].

The investigations have also considered the case of “fat” robots, that is, when the
robots are not considered to be points but rather discs. The study of gathering in
this case has considered only a few robots [7, 14, 16].

The problem has also been examined when there are robot failures or movement
inaccuracies in stronger models or on restricted spaces [1, 12, 55, 30]. Also investigated
has been the gathering with a compass that might be inaccurate (e.g., [36, 49]); this
setting is stronger than the one considered here, which does not assume the availability
of any compass.

The gathering problem is part of the more general class of problems called Pattern
Formation which requires the robots to move in the plane to form a prescribed pattern
given in input. Specific important patterns are precisely the point (i.e., gathering), the
line [13], and the circle (e.g., [18, 22]). Special attention has been given to Arbitrary
Pattern Formation, the problem of forming any pattern given in input (e.g., see [17,
27, 52, 56]).

It is interesting to note that gathering by asynchronous, oblivious, disoriented,
and anonymous robots has been studied also when the universe U is discrete, i.e.,
when it is a graph (e.g., [37, 38]).

1.5. Organization. The paper is organized as follows. In section 2 the defini-
tions and terminology are introduced, basic geometric properties are established, and
techniques for detecting some geometric features are described; the proofs of some of
these properties can be found in Appendix A. In section 3, the notion of the critical
point, crucial for our solution, is introduced, and, based on this notion, the moving
primitives that will be used in our algorithm are defined in section 4. The algo-
rithm that solves the Gathering Problem for any arbitrary initial configuration
is described and its correctness analyzed in section 5. Finally, some open research
problems are outlined in section 6.

2. Model and basic properties. In this section, we introduce the model of
robots in use and define the basic concepts that we need to present our algorithm for
the Gathering Problem.

2.1. Autonomous mobile robots. The system is composed of a set R =
{r1, . . . , rn} of n ≥ 5 mobile robots,1 each modeled as a computational unit provided
with its own local memory and capable of performing local computations.

A robot is endowed with sensorial capabilities, and it can perceive the spatial
environment and the robots in it. Each robot has its own local coordinate system: a
unit of length, an origin, and a Cartesian coordinate system defined by the directions
of two coordinate axes, identified as the x and y axes, together with their orientations,
identified as the positive and negative sides of the axes. However, the local coordinate
systems of the robots might not be consistent with each other.

1For the cases 2 < n < 5, solution protocols already exist [9].

GATHERING MOBILE ROBOTS 835

The robots are anonymous: they are indistinguishable by their appearance and
without identifiers that can be used during the computation. The robots are au-
tonomous, without a central control.

Each robot is endowed with motorial capabilities; it can turn and move in any
direction. A move may end before the robot reaches its destination, e.g., because
of limits to its motion energy. The distance traveled in a move is neither infinite
nor infinitesimally small. More precisely, there exists an (arbitrarily small) constant
δr > 0 such that if the destination point is closer than δr, r will reach it; otherwise,
r will move toward it of at least δr. We shall refer to this restriction as Assumption
Dis. Note that, without this assumption, an adversary would make it impossible for
any robot to ever reach its destination, following a classical Zenonian argument. In
the following, we shall use δ = minr δr.

The robots are silent: they have no means of direct communication of information
to other robots. Thus, any communication occurs in a totally implicit manner, by
observing the other robots’ positions. Each robot is viewed as a point: let r(t) denote
the position of robot r at time t; when no ambiguity arises, we shall omit the temporal
indication.

The robots execute the same deterministic algorithm, which takes as input the
observed positions of the robots and returns a destination point toward which the
executing robot moves.

At any point in time, a robot is either active or inactive. When active, a robot r
performs the following three operations, each in a different state:

(i) Look. The robot observes the world by activating its sensors, which return a snap-
shot of the positions of all other robots with respect to its local coordinate
system (since robots are viewed as points, their positions in the plane are just
the set of their coordinates). A robot can detect whether at a point there is
none, one, or more than one robot; i.e., it can detect multiplicities.

(ii) Compute. The robot performs a local computation according to its algorithm. The
result of the computation is a destination point; if this point is the current
location, the robot stays still (performs a null movement).

(iii) Move. The robot moves toward the computed destination; this operation can
terminate before the robot has reached it.

When inactive, a robot is in a Wait state.

(iv) Wait. The robot is idle. A robot cannot stay infinitely idle.

A robot is initially in a waiting state (Wait); the sequence: Wait-Look-Compute-
Move is called a computation cycle (or briefly cycle) of a robot. Concerning time, we
will assume that the amount of time required by a robot r to complete a computational
cycle is finite. As no other assumption on time exists, the resulting system is fully
asynchronous and the duration of each activity (or inactivity) is unpredictable. This
is precisely the Async model. As a result, the robots do not have a common notion
of time, robots can be seen while moving, and computations can be made based on
obsolete observations.

A remark is needed regarding the Look state. As already stated, the result of
this state is a set of positions retrieved at one time instant, i.e., at the time when
the snapshot of the world was done. Thus, each Look can be split into three parts:
in the first part the sensors are activated; in the second part the actual snapshot is
performed; and in the last part, the data captured by the sensors are sent away in
order to be processed. In the following, we shall assume that the first and third parts
have null length. This is not a loss of generality: in fact, the first part can be thought

836 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

a.

c

bα
a

b.

c

q

p p′

Fig. 2.1. (a) Convex angle α = �(a, c, b). (b) Two points, p and p′, on the same radius.

to be part of the previous Wait state and the third part of the following Compute
state; therefore, each Look coincides with the snapshot. According to this assumption,
if r is executing a Look at time t, then its view of the world is the snapshot retrieved
at t.

Notice that the only time the sensors are activated (i.e., the robot observes the
environment) is during Look; in particular, a robot does not sense the environment
while moving.

The robots that, at time t, are moving or are computing a nonnull movement are
said to be acting at time t. Furthermore, we say that the acting robots at time t are
acting on p if they are moving toward point p or their computed destination is p.

We shall partition the robots into sets depending on their state at a given time.
Let W(t), L(t), C(t), and M(t) denote the sets of all the robots that at time t are,
respectively, in states Wait, Look, Compute, and Move. Let the subset C∅(t) ⊆ C(t)
contain those robots whose computation’s result is to execute a null movement, and
let the subset M∅(t) ⊆ M(t) contain the robots executing a null movement. We say
that a robot r is still if r ∈ L(t) ∪C∅(t) ∪M∅(t) ∪W(t).

A configuration (of the robots) at time t, denoted by Dt, is the set of robots’
positions at time t. We say that a configuration Dt is still at time t if all the robots
are still at time t; given a subset A of the robots, we say that Dt is stillBut(A) at
time t if all robots not in A are still at that time.

A point in the plane is called dense if it is occupied by more than one robot; we
call plain a configuration with no dense point, that is, a configuration where all robots
occupy at time t distinct positions. A configuration is final at time t if it is still and
if there exists a point pg such that ri(t) = pg for all 1 ≤ i ≤ n; in this case we say
that the robots have gathered on point pg at time t.

We study the problem of gathering the robots into a single point whose location
is not predetermined, that is, of transforming a plain configuration into a final one. A
gathering algorithm is a deterministic algorithm that brings the robots in the system
to a final configuration in a finite number of cycles from any given plain configuration.

2.2. Geometric definitions and properties. In this section we introduce the
notation and the basic geometric properties that will be used in the rest of the paper.
All the proofs of this section can be found in Appendix A.

2.2.1. Basic notation. In the rest of the paper, the following notation is used.

Given two distinct points a and b in the plane,
−→
ab denotes the half-line that starts in

a and passes through b, and ab denotes the line segment between a and b. Given two

half-lines −→ca and
−→
cb, we denote by �(a, c, b) the convex angle (i.e., the angle which is

at most 180◦) centered in c and with sides −→ca and
−→
cb (Figure 2.1(a)).

Given a circle C with center c, radius Rad, and a point p, we say that p is on C
if dist(pc) =Rad, where dist(ab) denotes the Euclidean distance between point a and

GATHERING MOBILE ROBOTS 837

β

p1

α

a. b.

p0

p
q

s t
c

p3
p5

p4

p6
α

β

γ

p7
α

γ

α

p2

Fig. 2.2. (a) In the example, q = succ(p, c) and s = succ(q, c). (b) Example of the string
of angles of P = p0, . . . , p7, computed with respect to their SEC, with a clockwise orientation
of the circle. We have SA+(P, c)[0] = 〈α, β, γ, α, α, β, γ, α〉; LMS(P, c) = 〈α, α, β, γ, α, α, β, γ〉;
StS+(P, c) = {p3, p7}; and StS−(P, c) = ∅. The points are numbered according to routine succ().

b (i.e., p is on the circumference of C); if dist(pc) <Rad, we say that p is inside C.
Given two distinct points p and p′, with p inside C, let q be the intersection between
the circumference of C and −→cp. We say that p and p′ are on the same radius if p′ ∈ cq
(see also Figure 2.1(b)). Moreover, we denote by Rad(p) the radius cq where p lies;
in the following we refer to Rad(p) also as the radius of p.

Given points p, p′, and p′′, the triangle with these three points as vertices is
denoted by �(p, p′, p′′). We use q ∈ �(p, p′, p′′) to indicate that q is inside the
triangle or on its border.

Given a set of n ≥ 2 distinct points P in the plane, we denote by SEC (P) (or
SEC if set P is unambiguous from the context) the smallest enclosing circle of the
points; that is, SEC (P) is the circle with minimum radius such that all points from
P are inside or on the circle. An example of SEC of a set of eight points is depicted
in Figure 2.2(b). The smallest enclosing circle of a set of n points is unique and
can be computed in polynomial time [54]. Obviously, the smallest enclosing circle of
P remains invariant if we remove all or some of the points from P that are inside
SEC (P). Also, we have the following property.

Property 1. Given a set P of n ≥ 3 points, there exists a subset S ⊆ P such
that |S| ≤ 3 and SEC (S) = SEC (P).

Given a set of points P = {p1, . . . , pn} and a point x in the plane, we define the
Weber distance between x and P by WD(x, P) =

∑
p∈P dist(p, x). A point w is the

Weber point of point set P if it minimizes the Weber distance between P and any
point x in the plane, i.e., if WD(w,P) = minx∈R2 WD(x, P). If the points in P are
not on a line, then the Weber point always exists, and it is unique [53]. Moreover, it
is easy to verify (see also [2]) that the following holds.

Property 2. Given a set of points P and any point p ∈ P , the Weber point of P
is invariant under straight movement of p toward or away from it, with all movements
on the half-line connecting the Weber point and p.

Clearly, the above property holds also for any subset of points in P ; this implies
that the Weber point might yield a solution for the Gathering Problem. Unfortu-
nately, it is not computable in general—not even with radicals [4, 10].

838 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

a.

c

r2

rw

rk

r1

c.

δ

ε

γ
γ

δ

ε

γ

α
α

γ(0, 4)

(5, 9)

(2, 2)

(4, 0)

(6, 8)
(7, 7)

(8, 6)

(1, 3)

rw

rk

c

rk
rw

(3, 1)

(9, 5)

b.

Fig. 2.3. (a) rk ∈ StS+(R), rw ∈ StS−(R), and LMS(R) = 〈α, γ, γ, α, δ, γ, ε, ε, γ, δ〉. Each
pair of numbers represents the ranking of the robot in the clockwise (starting from rk) and in
the counterclockwise (starting from rw) orientation, respectively. (b) and (c) represent two cases
described in Lemma 2.2.

2.2.2. String of angles. Given a set P of n distinct points in the plane and a
point c /∈ P called center, let

⋃
i
−→cpi be the set of all rays starting from c and passing

through each pi ∈ P . The successor of p ∈ P with respect to c, denoted by succ(p, c),
is defined as the point q ∈ P such that (refer to Figure 2.2(a))

- either q is the closest point to p on the ray where p lies, with dist(c, q) >
dist(c, p), if such a point exists;

- or −→cq is the ray following −→cp in the order implied by the clockwise direction,
and q is the closest point to c on −→cq .

Symmetrically, given a point q ∈ P , the predecessor of q with respect to c, denoted
by pred(q, c), is the point p ∈ P such that succ(p, c) = q.

The functions succ() and pred() define a unique cyclic order on P , which we
shall denote by 〈p0, p1, . . . , pn−1〉, where pi+1 = succ(pi); here and in the following,
all operations on the indices are modulo n. This in turn defines a cyclic string of
angles SA+(P, c) = 〈α0, α1, . . . , αn−1〉, where αi = �(pi, c, pi+1); pi is called the
(clockwise) start point of αi. The string of angles in the opposite direction is denoted
by SA−(P, c) = 〈αn−1, . . . , α0〉.

Associated to the cyclic string of angles SA+(P, c) there is the set of strings
SA+(P, c)[i] = 〈αi, αi+1, . . . , αi+n−1〉, with 0 ≤ i ≤ n − 1 (refer to the example
depicted in Figure 2.2(b), where the string of angles are computed with respect to
the SEC of the eight points); similarly, associated to SA−(P, c) there is the set of
strings SA−(P, c)[i] = 〈αi−1, . . . , αi〉. We define the start point of SA+(P, c)[i] as the
start point of αi, that is, pi. Finally, let SA(P, c)[i] = SA+(P, c)[i]∪SA−(P, c)[i] and
SA(P, c) =

⋃
i SA(P, c)[i].

We say that SA(P, c) is simple if SA+(P, c) does not contain any angle of zero
degrees; otherwise, at least two points are on the same radius, and we say that SA(P, c)
is mixed.

We denote by LMS(P, c) the lexicographically minimum string among all strings
in SA(P, c). Let StS+(P, c) = {pi ∈ P |SA+(P, c)[i] = LMS(P, c)} be the set of
start points of LMS(P, c) in SA+(P, c), and let StS−(P, c) be defined similarly. Let
StS(P, c) = StS+(P, c) ∪ StS−(P, c).

An interesting property of LMS(P, c) is the following lemma.

Lemma 2.1. Let pk ∈ StS(P, c) be a starting point for LMS(P, c). If αi �= αj

for some 0 ≤ i, j ≤ n− 1, then SA+(P, c)[k] �= SA−(P, c)[k].

GATHERING MOBILE ROBOTS 839

b.

α1α2

α2

α2

α0

α1

α1

α0

u0

v2
x2α0

v1

x1

y0

x0

v0

u1

β

α0

u2

y1

a.

α1α11

α8

α5 = α2

α2

α9

α7

α10

α6

u0 P
e
r
i
o
d

v2

α4 = α1

u1

α3 = α0

α0

v1

x1

y0

x0

y1

v0

x2

u2
y2

Fig. 2.4. (a) Example with |StS+(P, c)| = 4, LMS(P, c) = 〈α0, . . . , α11〉 with period
〈α0, α1, α2〉. There are n

k
= 12

3
= 4 periods, with β = 90◦. The thick lines represent the start-

ing points of each of the four periods. Robots xi, yi, ui, and vi, 0 ≤ i ≤ 2, are equivalent. (b) If
y2 is removed from P , we obtain an example of a set of points that is periodic with one gap, with
β = α1 + α2.

In the following, three particular settings related to the string of angles will be
of interest: the cases when s = 1, s = 2, and s > 2. In each case, it is possible to
establish an ordering of the robots.

When s = 1, there is a unique starting position rk for LMS(R), and by Lemma 2.1,
SA+(R)[k] �= SA−(R)[k]; without loss of generality, let LMS(R) = SA+(R)[k]. This
yields a total ordering of the robots according to the direction of LMS(R) and starting
from rk; this ordering will be used to achieve different means.

When s = 2, LMS(R) does not yield a total ordering of the robots, because there
are two start points, rk and rw . However, by Lemma 2.1, SA+(R)[k] �= SA−(R)[k]
and SA+(R)[w] �= SA−(R)[w]; that is, from each start position, LMS(R) is present
only in one direction. Based on this property, we can group robots in teams of at
most two elements and totally order the teams as follows:

1. Rank each robot r according to the total ordering implied by LMS(R) start-
ing from rk.

2. Rank r according to the total ordering implied by LMS(R) starting from rw.
3. Assign to r a value v set to the minimum of the two ranks.
4. The robots with the same value form a team.

It is easy to see that this assignment of values has the useful property that each team
is composed of either one or two robots (refer to Figure 2.3.a). We will use the total
ordering of the teams, according to the assigned values, to achieve different goals. For
this case, we have the following interesting property.

Lemma 2.2. If all robots are on SEC, there exists a team composed of two distinct
robots such that SEC remains invariant if they are removed from SEC.

Finally, when s > 2, the robots can be grouped into classes, as described in the
next section.

2.2.3. Periodic set of points. We say that a set P of n points is regular periodic
(or simply periodic) if SA+(P, c) is a periodic string with period greater than or equal

840 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

a. b.

α

α

αβ

α

β

β

β
α

β

α

ββ
α

α+ β

Fig. 2.5. (a) A regular biangular and (b) an irregular biangular set of eight points.

to 3, where c is the center of the SEC of P ; that is, there exist a string W , with
|W | ≥ 3, and e ≥ 2 such that SA+(P, c) = W e. Let s = |StS(P, c)|, and, without loss
of generality, let |StS+(P, c)| = k ≥ |StS−(P, c)|, with k ≥ 2.

Lemma 2.3. Let s > 2. Then
1. SA+(P, c) is periodic with period γ = n

k , and
2. either |StS+(P, c)| = |StS−(P, c)| or |StS−(P, c)| = 0.

In the following, we also say that SA(P, c) is periodic whenever SA+(P, c) is
periodic. We say that two points p ∈ P and p′ ∈ P are equivalent (modulo periodic
shift) if �(p, c, p′) is a multiple of β = 360◦ · k

n . From Lemma 2.3, the following
property holds (refer to Figure 2.4(a)).

Property 3. Let s > 2, and let all points in P be on SEC (P), and p ∈ P .
Then, P has n

k − 1 equivalent points. Moreover, p and all the points equivalent to p
form a regular n

k -gon, and c is inside this n
k -gon.

All points can thus be partitioned into n
k equivalence classes, all of the same size.

Let EQ(p) denote the equivalence class of p. Thus, it is possible to create a total
ordering of the equivalence classes of the points according to the period. Two other
useful properties will be now introduced.

Lemma 2.4. Let s > 2, and let all points in P be on SEC (P). Then, for any robot
p ∈ P , SEC (P) remains invariant if all points except those in EQ(p) are removed.

The other important property is that points can be moved toward SEC or toward
c without obtaining set of points that are biangular, as shown by the following lemma.

Lemma 2.5. Given a periodic and nonbiangular set of distinct points P , then
1. moving any subset of the points toward SEC (P) or
2. moving any subset of the points toward c

does not make the set of points become biangular.
Similarly to the “gaps” introduced for a biangular set of points, we say that a set

P of n − 1 points is periodic with one gap if there exist a string W , with |W | ≥ 3,
and e ≥ 2 such that SA+(P, c) = W e−1 ◦ W ′, with W = 〈w0, . . . , wn/e−1〉 and
W ′ = 〈w0, w1, . . . , wi−1, w, wi+2, . . . , wn/e−1〉 for some 0 ≤ i ≤ n/e − 1, and with
w = wi + wi+1 (refer to Figure 2.4(b)). Note that, since n ≥ 5 and e ≥ 2, if P is
periodic with one gap, then i is unique.

Furthermore, we say that a set P of n points is irregular periodic if one of the
points in P is at c, and P \ {c} is periodic with one gap. Note that, the same total
order defined for a regular periodic set of points also applies to an irregular periodic
set of points.

2.2.4. Biangular set of points. Informally, a biangular configuration is a con-
figuration where there exist a point b and an ordering of the robots such that the

GATHERING MOBILE ROBOTS 841

angle between two adjacent robots with respect to b is either α or β, and α and β
alternately (refer to Figure 2.5(a)).

More precisely, we say that a set of n distinct points in the plane P is regular
biangular (or simply biangular) if there exists a point b such that for all i ≥ 0 αi =
αi+2 > 0 where SA+(P, b) = 〈α0, . . . , αn−1〉 (refer to Figure 2.5(a)); b is then called
the center of biangularity of P . Note that, by definition, if P is regular biangular, then
P has an even number of robots. Note that the equiangular case (i.e., all angles in
SA+(P, b) are the same) is considered here to be just a particular case of the biangular
one.

There is a strict relationship between a set of points that is regular biangular and
the Weber point of P . In fact, the following property holds [2].

Property 4. If P is rotational symmetric with respect to some rotation center
z, then z is the Weber point of P . Furthermore, if P is regular biangular, then the
Weber point is the center of biangularity.

Given a set P of n − 1 points on the plane, we say that P is regular biangular
with one gap and center b if there exists a point xg �∈ P such that P ∪ {xg} is regular
biangular with center b. In such a case, we call xg a gap point for b; we denote by ↑xg

the half-line starting from the center of biangularity of P ∪{xg} and passing through
xg, and we call it a gap ray.

Given a set P of n−2 points, we say that P is regular biangular with two gaps and
center b if there exist two distinct points xg and yg not in P such that P ∪ {xg, yg}
is regular biangular with center b. In this case, we call xg and yg gap points for b;
we denote by ↑xg and ↑yg the half-lines starting from the center of biangularity of
P ∪ {xg, yg} and passing through xg and yg, respectively, and we call them gap rays.

Finally, given a set P of n points, we say that P is irregular biangular if there
exists a point p ∈ P , the center, such that P \ {p} is regular biangular with one gap
with center p (refer to Figure 2.5(b)). First we have that, if P is irregular biangular,
then its center is unique.

Lemma 2.6. Let P be a set of n ≥ 3 distinct points. If P is irregular biangular,
then the center of biangularity is unique.

In the following, we introduce two simple but useful properties related to biangular
sets of points with gaps; let γ = α+ β.

Property 5. Let P be a set of n− 1 points on the plane. If P is biangular with
one gap and center b, then ∃S ⊂ P , |S| = n/2, such that SA+(S, b) = γ

n
2 . That is,

S is equiangular.

Property 6. Let P be a set of n− 2 points. If P is biangular with two gaps and
center b, then one of the following two conditions holds:

1. There exists a set S ⊂ P of points, |S| = n/2 − 1, such that SA+(S, b) =
〈δ, γ n

2 −2〉, with δ = 2γ. That is, S is equiangular with one gap.
2. There exists a set S ⊂ P of points, |S| = n/2, such that SA+(S, b) = 〈γ n

2 〉.
That is, S is equiangular.

Given a set of points P and a cyclic sequence of angles σ = 〈α0, . . . , αn−1〉, using
the algorithm described in [2], it is possible to efficiently determine whether there
exists a point c such that σ ∈ SA(P, c). In other words, there exists an efficient way
to determine whether P is biangular if the two angles α and β are given. Routine 7,
reported in Appendix C, shows how to determine whether a set of points P is biangular
with at most two gaps, or irregular biangular, when the two angles are not given; if
so, it finds the set B of all centers.

842 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

a.

x

u

p

x

α

αβ

α

β

β

β
α

b.

Fig. 3.1. Critical point: (a) x is a critical point for u; in fact (b) if u is moved to x, the
configuration becomes regular biangular.

3. Critical points. In this section we introduce the notion of critical points,
which will be crucial to achieving the final gathering. Informally, a critical point is
a point that, if crossed by a moving robot, might at that time generate a biangular
configuration (see the example depicted in Figure 3.1).

Definition 3.1. Given a set of n points P , a point u ∈ P , and another point
p (that might or might not belong to P), a point x /∈ P is a critical point for u with
respect to p if either (i) x = p, or (ii) x ∈ up and P \ {u} ∪ {x} is regular biangular.

Let us denote with CP(u, p) the set of critical points of u with respect to p. The
first part of Routine 1 (Routine CriticalOne()) describes how to compute this set.
In particular, Property 5 is exploited as follows: we consider the set P \ {u} and
determine if it is biangular with one gap by invoking Test 2 in Routine 7. If it is not,
the configuration cannot become biangular regardless of the position of u (that in this
case represents one of the robots). Otherwise, a biangular configuration is created if
and only if up crosses one of the gap rays. Therefore, the set of critical points of u
with respect to p is the set of the points in the intersection between up and those
rays.

We now extend the previous definition to pairs of points.

Definition 3.2. Given a set of n points P , two points u, v ∈ P , and another
pair of points p′, p′′ (that might or might not belong to P), a pair of points x /∈ P
and y /∈ P is a pair of critical points for u and v with respect to p′ and p′′ if either
(i) x = p′ and y = p′′, or (ii) x ∈ up′, y ∈ vp′′, and P \ {u, v} ∪ {x, y} is regular
biangular.

Let us denote with CP((u, p′), (v, p′′)) the set of critical points of u and v with
respect to p′ and p′′. It follows directly from Definitions 3.1 and 3.2 that the following
holds.

Property 7. CP((u, p′), (v, p′′)) ⊆ CP((q′, p′), (q′′, p′′)), with q′ ∈ (u, p′] and
q′′ ∈ (v, p′′].

Similarly to the previous case, Routine CriticalTwo() (in the second part of
Routine 1) describes how critical points for pairs can be computed, exploiting Prop-
erty 6. The correctness of CriticalOne() and CriticalTwo() follows directly from
Properties 5 and 6.

4. Robots’ movements. In our algorithm, there are different movement oper-
ations, described in the following; in all cases, movements are in straight lines.

GATHERING MOBILE ROBOTS 843

Routine 1 Routines for computing critical points.

Routine CriticalOne(u, p)

Let B be the set returned by Routine 7.2 when executed on P \ {u}.
For Each c ∈ B, and For each gap point xg for c Do

Add up ∩ ↑xg to the set of critical points of u.

Routine CriticalTwo((u′, p′), (u′′, p′′))—critical points for u′

Let B be the set returned by Routine 7.3 when executed on P \ {u′, u′′}.
For Each c ∈ B, and For each pair of gap points xg and yg for c Do

Add u′p′ ∩ ↑xg, and u′p′ ∩ ↑yg to the set of critical points of u′.

The basic move. The basic movement operation is moveTo(p), where the robot
r moves toward point p; recall that the robot executing this operation might not
reach p. If r is inside SEC, we denote by moveTo(SEC) its movement toward the
intersection between SEC and the radius where r lies.

To avoid collisions. The operation moveIfFreeWay(p) is used to avoid the cre-
ation of unintended dense points and is defined as follows: if no other robot is between
robot r and its destination p, then r moves toward p; otherwise, r does not move at
all. As a consequence, the following holds.

Property 8. If all movements executed in the system from time t to t′ > t are
due only to moveIfFreeWay(p) operations, then during this time no dense points can
be created except at p.

Recall that a robot is acting on p at time t if at that time it is moving toward
point p or its computed destination is p; we now introduce the following definition.

Definition 4.1 (safely acting). A robot r is safely acting on p if r is acting on
p and either (i) there is no other robot between r and p, or (ii) r moves toward p by
executing moveIfFreeWay(p).

Cautious movements. The next two types of movement, moveCautiously() and
movePairwiseCautiously(), are crucial to keep under control when a configuration
that is not biangular changes into a biangular configuration because of the movement
of one or two robots. In order to introduce them, we exploit the properties of critical
points, introduced in the previous section.

In the operation moveCautiously(p), a robot first computes the set CP(r, p) as
described in Routine 1. Then, it moves toward the first critical point on its way
toward p. As a consequence, we have the following property.

Property 9. Let r perform a moveCautiously(p) at time t; and let the config-
uration be stillBut(r) from time t to time t′ when r stops. Then, at time t′

1. r is at point p, or
2. r is at a point y �= p closer to p, and where no biangular configuration exists,

or
3. r is on a critical point such that the configuration is biangular and still.

In all cases, no biangular configuration occurs during its movement.
In the following, whenever r is inside a circle C and p is the intersection of C and

the radius where r lies, we use moveCautiously(C) instead of moveCautiously(p).
The operation movePairwiseCautiously((r′, p′), (r′′, p′′)) controls the moves of

a pair of robots r′ and r′′ moving toward p′ and p′′, respectively, with regard to
biangularity. The robot r′ (similarly, r′′) performing this operation first computes all
the pairs of critical points and determines those that are in its path to p′ (by executing

844 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

Routine 2 movePairwiseCautiously((r′, p′), (r′′, p′′))—executed by r′.
Compute CP((r′, p′), (r′′, p′′));
N ′ := Number of critical points on r′p′;
N ′′ := Number of critical points on r′′p′′;
If N ′ �= 0 Then cp := My next critical point; hp := Point half way on r′cp;
Case r′, r′′

• neither I nor r′′ is at a critical point
Case N ′, N ′′

• N ′ = N ′′ = 1: moveTo(p′).
• N ′ = N ′′ > 1: moveTo(cp).
• N ′ > N ′′: moveTo(cp).
• N ′ < N ′′: do nothing()

• I am at a critical point and r′′ is not
If N ′′ > N ′ Then do nothing() Else moveTo(hp).

• only robot r′′ is at a critical point and I am not
Case N ′, N ′′

• N ′ = 1 ∧N ′′ = 0: moveTo(p′).
• N ′ > 1 ∧N ′′ = 0: moveTo(cp).
• N ′ > N ′′ > 0: moveTo(cp).
• N ′′ ≥ N ′: do nothing()

• both I and r′′ are at a critical point
If N ′ = 0 ∨N ′′ > N ′ Then do nothing() Else moveTo(hp).

CriticalTwo() in Routine 1). In particular, for all critical points that are between r′

and its destination p′, we call the next critical point the first critical point the robot
would reach on its way toward its destination. The robot r′ is allowed to move only
if it has at least as many critical points ahead as r′′. If allowed, it then moves toward
either its next critical point or the point half the distance to its next critical point; the
choice depends on whether or not r′ is already at a critical point when it executes the
operation. The pseudocode for operation movePairwiseCautiously((r′, p′), (r′′, p′′))
when executed by r′ is reported in Routine 2; see also Figure 4.1.

Let N ′(t) and N ′′(t) denote the set of critical points on r′p′ and on r′′p′′, respec-
tively. By definition of movePairwiseCautiously((r′, p′), (r′′, p′′)) the next property
follows.

Property 10. Let r′ execute movePairwiseCautiously((r′, p′), (r′′, p′′)) at
time t. Moreover, from time t to the time t′ when r′ becomes active again, let the
configuration be plain and stillBut({r′, r′′}), and let r′′ be still or executing move-

PairwiseCautiously((r′, p′), (r′′, p′′)). Then, r′ performs a nonnull movement at
time t only if |N ′(t)| ≥ |N ′′(t)|.

Property 11. Let r′ execute movePairwiseCautiously((r′, p′), (r′′, p′′)) at
time t and, as result, perform a nonnull movement. Moreover, from time t to the
time t′ when r′ stops, let the configuration be plain and stillBut({r′, r′′}), and let
r′′ be still or executing the same operation. Then, at time t′,

1. r′ is at point p′, or
2. r′ is at a point y �= p′ closer to p′, and where no biangular configuration

exists, or
3. r′ and r′′ are on a pair of critical points such that the configuration is bian-

gular, and they are both still.

GATHERING MOBILE ROBOTS 845

Case 3.

Case 1.

Case 2.

Robot r′

Robot r′′
p′′

p′

Robot r′

Robot r′′

Robot r′

Robot r′′

p′

p′′
p′′

p′

N ′ = 0, N ′′ = 1

N ′ = 0, N ′′ > 1

N ′ = 1, N ′′ = 1

N ′ = 1, N ′′ > 1

N ′ > 1, N ′′ = 1

N ′ > 1, N ′ > N ′′

N ′ > 1, N ′ = N ′′

N ′ > 1, N ′ < N ′′

N ′ = 1, N ′′ = 1 N ′ = N ′′ > 1

N ′ > N ′′

e.

a.

N ′ < N ′′, N ′ > 0

d.

e.

N ′ > N ′′ > 0

b. f.

g.

h.

N ′ = 0, N ′′ = 0

b.

d.

a.

N ′ = 0, N ′′ > 0

b.

a.

c.

c.

N ′ = N ′′ > 0

c.

Fig. 4.1. Case 1: Movements if no robot is at a critical point. Case 2: Movements if one of
the two robots is at a critical point. Case 3: Movements if both robots are at a critical point.

In all cases, no biangular configuration occurs during their movements.

In other words, if r′ and r′′ are the only robots allowed to move from time t on,
and they do so with operation movePairwiseCautiously((r′, p′), (r′′, p′′)), they will
reach their destination in finite time. Furthermore, the two robots will first reach a
situation when |N ′(t′)| = |N ′′(t′)| (if not already so at time t). From that time on,
they will operate in lock-step, that is, abs(|N ′(t′′)| − |N ′′(t′′)|) ≤ 1 for t′′ ≥ t′, and
they will stop at each critical point on their way.

In the following, we shall write movePairwiseCautiously(r′, r′′, p) instead of
movePairwiseCautiously((r′, p), (r′′, p)) to simplify the notation. Also, instead
of movePairwiseCautiously((r′, p′), (r′′, p′′)), we shall use movePairwiseCautiou-

sly(r′, r′′, C) whenever r′ and r′′ are inside or on a circle C, and p′ and p′′ are the
intersection of C and the radius where r′ and r′′ lie, respectively.

846 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

dense at p
3a1

2

3b

4a 4b

Move to b

SA mixed

no r at c

SA simple

one r at c

SA mixed

one r at c

Move to p

biangular
w.r.t. b

Routine3 Routine5

Routine6Routine4

GoGather

SA simple

no r at c

Fig. 5.1. Schematic overview of our solution; the numbers on the arrows represent the ordering
of the tests performed by Algorithm GoGather.

5. The solution protocol and its correctness. In this section, we describe
and analyze the algorithm GoGather. This algorithm is based on a case analysis of
the possible initial configurations. We prove that the proposed algorithm solves the
Gathering Problem for all initial plain configurations of n ≥ 5 robots.

5.1. Overall structure. The global behavior of our algorithm can be summa-
rized as follows. If the initial configuration is biangular, the robots gather at the
center of biangularity. If the initial configuration is nonbiangular, the robots elect
a subset of the robots which move and (i) form a dense point at the center of the
smallest enclosing circle of all robots, or (ii) form a dense point on the circumference
of the smallest enclosing circle of all robots (while such a circle remains invariant), or
(iii) form a biangular still configuration, which all robots will eventually notice.

The local behavior of the algorithm (i.e., from the point of view of the robot
executing it) consists of a sequence of tests on the configuration observed in the Look
operation; its overall structure is shown in Algorithm 1 (see also Figure 5.1). The
robot first determines if there is a dense point, p; if so, the robot moves toward it.
Otherwise the robot checks if the observed configuration is biangular; if so, the robot
will move toward the center of biangularity, b; as proved later, in this case all robots
eventually recognize it and move toward b, and within finite time b becomes dense.
These two cases are described and analyzed in section 5.2.

If there is no dense point and the configuration is not biangular, the robot exam-
ines the string of angles SA of the robots with respect to the center c of the smallest
enclosing circle in the observed configuration. The robot determines which of four
possible cases the observed configuration falls into; these cases depend on whether
there is one or no robot at the center of SEC, and on whether the SA is simple (i.e.,
the string does not contain any angle of zero degrees) or mixed (i.e., at least one angle
of zero degrees is in the string; this implies that at least two robots are on the same
radius).

In all four cases, a subset of the robots is elected. A robot is allowed to move only
if it is one of the elected robots. In each case, the type of movement used by the elected
robots depends on the number of start points in the string of angles and on the number
of robots inside SEC (see Figure 5.2). In these movements, particular attention is

GATHERING MOBILE ROBOTS 847

payed to avoiding accidental collisions, as well as to the presence of critical points
(i.e., points where these movements might form biangular configurations). These
points are explicitly computed: if an elected robot has one or more critical points on
its way, the algorithm ensures that it reaches the first one. If the movements of the
elected robots create a biangular configuration, this configuration will eventually be
observed by all other robots (and thus they will all eventually gather on the center of
biangularity). If no biangular configuration is formed by their movement, the elected
robots will create a unique dense point where all other robots will gather: if the elected
set consists of a single robot, that robot will move until it reaches another robot, thus
creating a single dense point; otherwise, the robots of the elected set move toward
the center of the smallest enclosing circle, ensuring that the smallest enclosing circle
is not changed by their movements, creating a dense point there.

In particular, the four cases are as follows.

Case 1. If there is no robot at c and SA() is simple (this case is described and
analyzed in section 5.3; refer also to Figure 5.2(a)), the behavior of the algorithm
depends on the number s of start points of the lexicographically minimum string
(LMS()). If s = 1 and inside SEC there is more than one robot, first all robots inside
SEC are sequentially (and cautiously) moved to the rim of SEC, except one; then,
this last robot cautiously moves to the center c of the SEC. Otherwise (s = 1 and
the interior of SEC is empty), one robot is elected as a leader (this is possible since
s = 1), and this elected robot cautiously moves toward c. After a robot reaches c, the
configuration now has one robot at c, and one of Cases 3 or 4 below applies.

If s = 2, robots are paired in teams; if s > 2, robots are grouped into classes.
In both cases, the algorithm follows an approach similar to s = 1: if more than one
team or class is inside SEC, first all teams (classes) are sequentially (and cautiously)
moved to the rim of SEC, except the robots of one team (class); then, these robots
move toward c (the movement is cautious when s = 2). Otherwise (the interior of
SEC is empty), one team (class) is elected, and the elected robots cautiously move
toward c. As a consequence, after a finite time, either two (or more) robots reaches
c simultaneously (hence a dense point is created), or one robot reaches c while the
others are inside SEC on their way toward c, and Case 2 below applies.

Case 2. If there is one robot at c and SA() is simple (this case is described and
analyzed in section 5.5; refer also to Figure 5.2(c)), the algorithm distinguishes on
the number NI of robots inside SEC. If NI = 1, then the only robot inside SEC is
at c; in this case, this robot simply chooses another robot on the rim of SEC and
cautiously moves toward it. As soon as the robots leaves c, Case 3 below applies. If
NI = 2, then the robot inside SEC and not at c moves cautiously toward c; hence, in
finite time, a dense point will be created. If NI > 2 and the configuration of robots
is irregular periodic, then all robots inside SEC move toward c; hence, in finite time,
at least two robots will be at c, and a dense point is created. If NI > 2 and the
configuration of robots is not irregular periodic, the algorithm further distinguishes
on the number s of start points of the lexicographically minimum string obtained not
considering the robot at c. In all these cases, in finite time at least two robots will be
at c, and a dense point is created.

Case 3. If there is no robot at c and SA() is mixed (this case is described and
analyzed in section 5.4; refer also to Figure 5.2(d)), the algorithm once again distin-
guishes on s, the number of start points of the lexicographically minimum string. If
s = 1, a robot can be elected as a leader; furthermore, on the radius where the leader
is, there must also be (at least) one other robot: the leader moves cautiously toward

848 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

Else

s = 1

s = 2

s > 2

s = 1

s = 2

s > 2

NI = 1

NI = 2

NI > 2

s = 1

s = 2

s > 2 s > 2

s = 2

s = 1

a.

c. d.

b.

Routine3 Routine5

if > 1 robot in SEC →

if ≤ 1 robot in SEC →

if > 1 team in SEC →

if ≤ 1 team in SEC →

if > 1 class in SEC →

if ≤ 1 class in SEC →

Move Cautiously to SEC

Move Cautiously to c

Move Cautiously to SEC

Move Cautiously to c

Move to c

Move to SEC

Move Cautiously

Move Cautiously to c

Move Cautiously to c

towards another robot

[no r at c, SA simple] [no r at c, SA mixed]

Routine4 Routine6

Move Cautiously to SEC

Move Cautiously to c

if R is irregular periodic →
Move to c

Move Cautiously to c

Move Cautiously to c

Move to c

if R is irregular periodic →

Move Cautiously to c

Move Cautiously to c

Move to c

Move to c

[one r at c, SA simple] [one r at c, SA mixed]

Else

Fig. 5.2. The four cases of the algorithm when there is no dense point, and the configuration
is not biangular. Recall that s is the number of start points in the string of angles; s is the number
of start points in the string of angles built not considering c (such a string of angles is denoted by
SA in the figure); and NI is the number of robots inside SEC. Note that the figure specifies only
the kind of movement that is performed in each case and not which robot (or subset of robots) is
performing it.

the closest robot on its radius. Hence, in finite time, a dense point is formed.
If s = 2, then robots are paired in teams, and one team can be elected as leader;

the robots in the elected team move cautiously toward c. Finally, if s > 2, the robots
are grouped into classes, and one class is elected as leader. The robots in the elected
class move toward c. Hence, in both these cases, in finite time a dense point is created
at c.

Case 4. If there is one robot at c and SA() is mixed (this case is described and
analyzed in section 5.6; refer also to Figure 5.2(e)), if the configuration of robots is
irregular periodic, then the robots can be grouped into classes, and one class is elected
as a leader: the robots from this class move toward c.

GATHERING MOBILE ROBOTS 849

SA simple

SA simple
no r at c

s = 1

no r at c
SA simple

s = 2

no r at c

s > 2
SA simple

s = 2
SA mixed
no r at c

s > 2

no r at c
SA mixed

no r at c

s = 1
SA mixed

biangular dense

SA simple
NI = 1

one r at c

SA simple
NI = 2

one r at c

irr. per., NI > 2

SA simple

NI > 2, s > 2
not irr. per.

NI > 2, s = 1, 2
not irr. per.
SA simple SA mixed

not irr. per.
s = 1, 2

SA mixed

s > 2
not irr. per.

irr. per., |T | = 2
SA mixed

one r at c one r at c

one r at c

one r at c

one r at c

one r at c

one r at c

irr. per., |T | > 2
SA mixed

Fig. 5.3. The possible transitions among the configurations; SA and s are as in Figure 5.2.

If the configuration is not irregular periodic, the algorithm distinguishes on the
number s of start points of the lexicographically minimum string obtained not con-
sidering the robot at c and behaves similarly to Case 2, when NI > 2. In both cases,
in finite time a dense point is formed at c.

The possible transitions between configurations induced by the execution of the
algorithm are shown in Figure 5.3.

5.2. First tests. The first test a robot does when computing is to determine
whether there is a single dense point, p; if so, all robots will gather there, carefully
avoiding collisions, i.e., the (even temporary) creation of another dense point. Recall
that, by definition, the initial configuration of the robots is plain (i.e., there is no
dense point); as we will prove, our algorithm ensures that exactly one dense point is
created.

Theorem 5.1. Let p be the only dense point at time t. If at that time all the
robots are either still or safely acting on p, then there exists a time t∗ > t when all
robots gather at p.

Proof. First we show that, in finite time, a robot either reaches p or moves
exclusively according to moveIfFreeWay(p). Let A(t) be the set of robots that are
active at time t. Any robot in A(t) is, by hypothesis, safely acting on p; hence, by
Property 8 and Definition 4.1, no collisions can occur during these movements; that
is, no other point becomes dense even temporarily. Also, each robot in A(t), during
the cycle it is executing at time t, either reaches p or stops before p. In the latter
case, in the next cycle it executes, according to Algorithm GoGather, it will move
toward p according to operation moveIfFreeWay(p). Furthermore, since the active
robots in A(t) do not create a dense point other than p, any robot that is not active
at t, the next time it becomes active, if not yet at p, will, by Algorithm GoGather,
move toward p according to operation moveIfFreeWay(p).

850 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

Algorithm 1 GoGather.

R := Set of positions of the robots;
If One dense point p Then moveIfFreeWay(p).
Else

If The robots are in regular (resp., irregular) biangular configuration Then
5: b := Center of regular (resp., irregular) biangularity;

moveIfFreeWay(b).
Else

SEC := Smallest Enclosing Circle of all robots;
c := Center of SEC ;

10: If No robot is at c Then
Compute the set of strings SA(R), LMS(R);
Compute StS+(R), StS−(R);
s := |StS+(R) ∪ StS−(R)|;
If SA(R) is simple Then Routine3. Else Routine5.

15: Else %One robot r is at c%

R := R \ {c};
Compute the set of strings SA(R), LMS(R);
Compute StS+(R), StS−(R);
s := |StS+(R) ∪ StS−(R)|;

20: If SA(R) is simple Then Routine4. Else Routine6.

Therefore, in finite time, each robot either is at p or moves exclusively according
to moveIfFreeWay(p). Hence, by definition of moveIfFreeWay(p), by Property 8,
and by Assumption Dis, within finite time all robots gather at p, and the theorem
follows.

In the absence of a dense point, the next check is whether the configuration is
biangular (regular or irregular). Should this be the case, the robots will gather at the
center of biangularity.

Theorem 5.2. Let at time t the configuration be plain, still, and biangular (either
regular or irregular) with center b. Then there exists a time t∗ > t when all robots
gather at b.

Proof. First observe that, if the movements performed from time t on are only
according to operation moveIfFreeWay(b), the configuration remains biangular, and,
by Property 8, no collisions can occur at points other than b.

Thus, if the configuration is plain, still, and regular biangular with center b at
time t, when a robot becomes active, according to Algorithm GoGather, it can only
execute moveIfFreeWay(b); hence, by AssumptionDis, within finite time one or more
robots will reach b. Let t′ be the first time b is reached; if two or more robots reach b
at t′, b becomes dense, and all active robots not on p are safely acting on p; thus, by
Theorem 5.1, all robots will gather at b within finite time. If only one robot reaches b
at time t′, the configuration becomes biangular irregular. This means that while some
robots might be safely acting on b because of earlier observations, others might now act
based on the irregularity of the biangular configuration. According to the algorithm,
the latter robots will safely act on the center b′ of irregular biangularity by executing
moveIfFreeWay(b′). However, by definition of biangular irregular configuration, b′ =
b; hence, by Assumption Dis and Property 8, within finite time b will become dense,
and all robots will gather there by Theorem 5.1.

GATHERING MOBILE ROBOTS 851

Similarly, if at time t the configuration is plain, still, and irregular biangular
with center b (by Lemma 2.6 the center is unique), the robot already at b stays still.
According to the algorithm, all other robots can only execute moveIfFreeWay(b);
hence, within finite time, b will become dense, with all acting robots safely acting on
b. Therefore, by Theorem 5.1, all robots will gather there within finite time.

5.3. No robot at the center of SEC and SA is simple. The next test a
robot performs is whether no robot is at the center of SEC and SA is simple. Let c bet
the center of SEC (R). Consider the number s of starting positions of LMS(R, c),
i.e., the cardinality of the set StS+(R, c) ∪ StS−(R, c). In the following, when no
ambiguity arises, we will use the notation (R) instead of (R, c).

The overall structure of the algorithm in this case is to first carefully move all
robots that might be inside SEC on the circumference of SEC (with some exceptions).
Then, some robots are elected as leaders (their number depends on the value of s);
finally, the leaders are moved toward the center of SEC. Depending on the value of s,
we distinguish three possible cases.

5.3.1. One starting position of LMS(R) (s = 1). In case there is a unique
starting position rk for LMS(R), by Lemma 2.1, SA+(R)[k] �= SA−(R)[k]; without
loss of generality, let LMS(R) = SA+(R)[k]. We use the ordering of the robots in
SA+(R)[k] to achieve different means.

We first consider the two cases when there is only one robot inside SEC (e.g.,
as a result of the scenario considered by the above lemma), and when all robots are
on SEC (e.g., as an initial configuration). In both cases, we use the total ordering
implied by s = 1 to elect a robot as the leader, using operation ElectOne() defined
as follows. If there is only one robot inside SEC, this robot is chosen as the leader. If
all robots are on SEC , then the leader is the first robot l (according to the ordering)
such that SEC remains invariant if l is removed; note that, since n ≥ 5, by Property 1
such a robot exists. Once the leader is elected, it moves cautiously toward the center
of SEC. Hence we have following lemma.

Lemma 5.3. Let the configuration at time t be plain and still, no robot be at c,
SA(R) be simple, s = 1, and at most one robot be inside SEC . Then there exists a
time t∗ > t when the robots reach a plain and still configuration H such that either

1. H is biangular, or
2. in H only one robot is inside SEC and at c, and SA(R \ {c}) is simple.

Proof. According to Routine3, a single robot, say, l, is elected as leader by
ElectOne(). The move operation l performs is moveCautiously(c); moreover, all
other robots stay still during this movement.

By Property 9, at time t′ when l stops, either l reaches c, or a biangular con-
figuration is formed, or l is the only robot inside SEC, and its distance to c has
decreased. Note that, in all cases, at time t′ the configuration is still and plain. In
the first case, SA(R \ {c}) is simple. In the last two cases, SA(R) does not change
during the movement; hence, it is still simple and s = 1. Thus, in the first two cases,
the lemma holds. In the last case, the hypotheses of the lemma are still met with l
closer to c; hence, by Assumption Dis, the lemma will eventually hold.

If there is more than one robot inside SEC, we use the ordering to sequentially
move to SEC each of those robots but one. Each of these robots is selected in turn,
according to the ordering, in an operation called SelectOneInside(); more precisely,
this operation selects the first robot (according to the total ordering) that is inside
SEC. The chosen robot moves cautiously toward SEC, while all others stay still; this

852 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

Routine 3 Subroutine: No robot at c, SA is simple.

Case s
• s = 1

If There is more than one robots inside SEC Then
l:=SelectOneInside();

5: If I am l Then p := Intersection between SEC and Rad(l); moveCautiously(p).
Else %Either SEC is empty, or there is only one robot inside%

l :=ElectOne();
If I am l Then moveCautiously(c)

• s = 2
10: If There are robots inside SEC from more than one team Then

T :=SelectTeamInside();
If |T | = 1 Then

l := Robot in T ;
If I am l Then moveCautiously(SEC).

15: Else %Two robots in T%
(l′, l′′) := Robots in T ;
If I am l′ or l′′ Then movePairwiseCautiously(l′ , l′′,SEC)

Else %Either SEC is empty, or only robots from the same team are inside SEC%
T :=ElectTeam();

20: If I am in T and |T | = 1 Then moveCautiously(c).
Else %Two robots in T%

If I am in T Then
r := Point where I am; p := Half point on Rad(r);
r′ := Point where my teammate is; p′ := Half point on Rad(r′);

25: If Both robots of T are inside SEC Then
movePairwiseCautiously(r, r′, c).

If Both robots of T are on SEC and |CP((r, c), (r′, c))| = 1 Then
moveTo(p).
If Both robots of T are on SEC and|CP((r, c), (r′, c))| > 1 Then

movePairwiseCautiously(r, r′, c).
30: If I am the only robot of T on SEC and |CP((r, c), (r′, c))| = 1 Then

moveTo(p).
If I am the only robot of T on SEC and|CP((r, c), (r′, c))| > 1 Then

movePairwiseCautiously(r, r′, c).
If I am the only robot of T inside SEC and|CP((r, c), (r′, c))| > 1 Then

movePairwiseCautiously(r, r′, c).
35: • s > 2

If MoreOneClassInside() Then
SC:=SelectClassInside();
If I am in SC and inside SEC Then moveTo(SEC)

Else %Either SEC is empty, or inside there are only robots from the same class%
40: T :=ElectClass();

If I am in T Then
NI := Number of robots inside SEC;
If |NI | = 0 Then

If I am in T Then moveTo(half point on my radius).
45: If |NI | = 1 Then

If I am in T Then do nothing().
If |NI | ≥ 2 Then

If I am in T Then moveTo(c).

GATHERING MOBILE ROBOTS 853

operation is repeated until either a biangular configuration has been formed or all
robots except one are on SEC.

Lemma 5.4. Let the configuration at time t be plain and still, no robot be at c,
SA(R) be simple, s = 1, and more than one robot be inside SEC . Then there exists
a time t∗ > t when the robots reach a plain and still configuration H such that either

1. H is biangular, or
2. in H no robot is at c, SA(R) is simple, s = 1, and only one robot is inside

SEC.
Proof. We proceed by induction on the number m ≥ 1 of robots inside SEC. The

lemma trivially holds for m = 1. Let it hold for 1 ≤ m ≤ k robots, and consider the
case when inside SEC there are k+1 robots. According to Routine3, only one robot
inside SEC is allowed to move—the one chosen by SelectOneInside(). In this case,
the move operation r performs is moveCautiously(p), where p is the intersection
between SEC and Rad(r); moreover, all other robots stay still during this movement.
By Property 9, at time t′ when r stops, (i) a biangular configuration is formed, or (ii)
r reaches SEC , decreasing by one the number of robots inside SEC , or (iii) r is still
inside SEC, and its distance to it has decreased. Note that, in all cases, SA(R) does
not change during the movement; hence, it is still simple and s = 1. Furthermore, at
time t′ the configuration is still and plain. Thus, in case (i) the lemma holds. In case
(ii) the lemma holds by induction. In case (iii) the hypotheses of the lemma are still
met with r closer to SEC; hence, by Assumption Dis, conditions (i) or (ii), and thus
the lemma, will eventually hold.

As a consequence, if a biangular configuration is not formed, within finite time
there will be exactly one robot inside SEC (and Lemma 5.3 applies). By Lemmas 5.3
and 5.4 we can state the following theorem.

Theorem 5.5. Let the configuration at time t be plain and still, no robot be at
c, SA(R) be simple, s = 1. Then there exists a time t∗ > t when the robots reach a
plain and still configuration H such that either

1. H is biangular, or
2. in H only one robot is inside SEC and at c, and SA(R \ {c}) is simple.

5.3.2. Two starting positions of LMS(R) (s = 2). In this case, we can
pair robots in teams of at most two elements and totally order the teams as described
in section 2.2.2. We consider first the two cases when all robots are on SEC, and
when there are only robots from one team inside SEC. In both cases, we use the total
order of the teams to elect a team as the leader, using operation ElectTeam() defined
as follows. If there is only one team inside SEC, this team is chosen as the leader. If
all robots are on SEC , then the leader is the first team T (according to the ordering)
such that SEC remains invariant if robots in T are removed. Note that, since n ≥ 5,
such a team exists, as shown by Lemma 2.2.

Once the leader team is elected, robots from this team move cautiously toward the
center of SEC. Note that the algorithm ensures that both robots from the team are
inside SEC before allowing one of them to reach the center c. If the robots have more
than one critical point toward their path to c, this is implicitly ensured by movePair-

wiseCautiously(); otherwise, the robots are first moved toward the median point
on their radius.

Lemma 5.6. Let the configuration at time t be plain and still, SA(R) be simple,
s = 2, and all robots be on SEC . Then there exists a time t∗ > t when the robots
reach a configuration H such that either

1. H is biangular and still, or

854 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

2. H is plain; only robots from one team T = {l′, l′′} are inside SEC; H is still,
or stillBut(l) with l ∈ T either acting on the median point on Rad(l) and
|CP((l′, c), (l′′, c))| = 1, or performing movePairwiseCautiously(l′, l′′, c).
Furthermore, in H both robots in T are inside SEC but not at c, and s = 2.

Proof. If all robots are on SEC, by Lemma 2.2, a unique team T of two robots is
elected by ElectTeam(); let T = {rk, rw}. Let pk and pw be the half points between
their positions and c, respectively, at time t. Let N ′(t) and N ′′(t) be the number
of critical points of rk and rw at time t, respectively; without loss of generality, let
N ′(t) ≥ N ′′(t). We distinguish the possible cases.

1. If N ′(t) = N ′′(t) = 1 (i.e., c is the only critical point for both robots),
the algorithm forces rk and rw to perform moveTo(pk) and moveTo(pw),
respectively. Note that, if one of the two robots stops inside SEC while the
other is still on SEC, it will wait. Thus, by Assumption Dis, within finite
time, they will both be inside SEC, with at least one of them still, and the
lemma follows.

2. If N ′(t) > N ′′(t) = 1, then the algorithm forces rk and rw to perform move-

PairwiseCautiously(rk, rw , c). By definition of movePairwiseCautiou-

sly(), by Properties 10 and 11, and by Routine3, rk is the only one allowed
to move inside SEC as long as no regular biangular configuration is formed
(rw can be on a critical point on SEC) and N ′ > 1. By Assumption Dis,
within finite time, say, at t′, N ′(t′) = 1. At this time Routine3 forces rk to
not move (at time t′, rw is on SEC) and forces rw to move toward pw. The
lemma follows as soon as rw moves inside SEC.

3. If N ′(t) = N ′′(t) > 1, then the algorithm forces rk and rw to perform
movePairwiseCautiously(rk, rw, c); then, by Properties 10 and 11, the two
robots are forced to move toward c in lock-step (both executing movePair-

wiseCautiously(rk, rw, c)), and the lemma follows.
4. If N ′(t) > N ′′(t) > 1, by definition of movePairwiseCautiously(), by Prop-

erties 10 and 11, and by Routine3, rk is the only one allowed to move inside
SEC as long as no regular biangular configuration is formed (rw can be on
a critical point on SEC) and N ′ �= N ′′. By Assumption Dis, within finite
time, say, at t′, N ′(t′) = N ′′(t′). At this time Routine3 forces rk to not
move (at time t′, rw is on the SEC) and forces rw to move toward c by in-
voking movePairwiseCautiously(rk, rw, c). The lemma follows as soon as
rw moves inside SEC.

Note that, in all the above arguments, the movements of both robots can only
be along Rad(rk) and Rad(rw), respectively; hence, during these movements the
configuration remains plain, SA(R) does not change (it stays simple), s = 2, and the
robots in T are the only ones allowed to move.

Lemma 5.7. Let the configuration at time t be plain, no robot be at c, SA(R)
be simple, s = 2, only robots of one team T be inside SEC , with T = {l′, l′′},
and at least one robot of T be inside SEC. Furthermore, let the configuration be
still, or stillBut(l), l ∈ T , with l either acting on the median point on Rad(l)
and |CP((l′, c), (l′′, c))| = 1, or performing movePairwiseCautiously(l′, l′′, c). Then
there exists a time t∗ > t when the robots reach a configuration H such that

1. H is biangular and still, or
2. H is dense at c and still, or
3. in H one robot of the team, say, l′, is at c; SA(R \ {c}) is simple; l′′ is the

only other robot inside SEC; and H is plain and still or stillBut(l′′), with

GATHERING MOBILE ROBOTS 855

l′′ safely acting on c.

Proof. By definition, T is the team selected by ElectTeam(). We consider the
two possible cases.

Case 1. Consider first the case when both robots in T are inside SEC. Observe
the following (whose proof can be found in Appendix C).

Claim 1. Within finite time one of the following conditions holds:

(i) l′ and l′′ are on a pair of critical points such that the configuration is biangular,
and they are both still.

(ii) l′ and l′′ are both on c, and they are both still.

(iii) l′′ is on c, and l′ is inside SEC.

(iv) no robot is on c, and l′′ is at a point closer to c where no biangular configu-
ration exists.

If condition (i) or (ii) occurs, the lemma holds. In case condition (iii) occurs,
SA(R \ {c}) is simple. Moreover, l′ is either still or is moving toward c executing
operation movePairwiseCautiously(l′, l′′, c): in both cases the lemma holds. In the
last case, when condition (iv) occurs, l′ is again either still or performing movePair-

wiseCautiously(l′, l′′, c); by the lock-step movements implied by Property 10, one
of the conditions (i), (ii), or (iii) will eventually hold, with l′′ closer to c. Hence, by
Assumption Dis, the lemma will eventually hold.

Case 2. The second case is when only one robot of the team is inside SEC at time
t. Without loss of generality, let l′ be the one inside SEC. First observe the following
claim (whose proof can be found in Appendix C).

Claim 2. Within finite time either both robots in T are inside SEC, or a still
biangular configuration is formed.

Thus, the lemma holds either directly or by Case 1.

Now, we consider the case when only a single team T is inside SEC, with |T | = 1.

Lemma 5.8. Let the configuration at time t be plain and still, no robot be at c,
SA(R) be simple, s = 2, and exactly one team T be inside SEC, with |T | = 1. Then
there exists a time t∗ > t when the robots reach a plain and still configuration H such
that either

1. H is biangular, or
2. in H one robot is at c, SA(R \ {c}) is simple, and no other robot is inside

SEC.

Proof. By Routine3, the only team inside SEC is elected by ElectTeam(). The
move operation that the robot in T , say, l, performs is moveCautiously(c); moreover,
all other robots stay still during this movement.

By Property 9, at time t′ when l stops, l reaches c, or a biangular configuration
is formed, or l is the only robot inside SEC, and its distance to c has decreased.
Note that, in all cases, at time t′ the configuration is still and plain. In the first
case, SA(R\{c}) is simple. In the last two cases, SA(R) does not change during the
movement; hence, it is still simple and s = 2. Thus, in the first two cases, the lemma
holds. In the last case, the hypotheses of the lemma are still met with l closer to c;
hence, by Assumption Dis, the lemma will eventually hold.

If there are robots from more than one team inside SEC, we use the total ordering
to sequentially move to SEC every team but one until we reach a situation considered
in Lemma 5.7 or 5.8. Each of the teams inside SEC is selected in turn, according
to the total ordering, in an operation called SelectTeamInside(); the team moves
cautiously toward SEC.

Lemma 5.9. Let the configuration at time t be plain, no robot be at c, SA(R)

856 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

be simple, s = 2, and robots from more than one team be inside SEC ; furthermore,
let the configuration be still, or stillBut(l), with l ∈ T , where T is the smallest
team inside SEC at time t, and l performing movePairwiseCautiously(l′, l′′, SEC)

(if T = {l′, l′′}) or moveCautiously(SEC) (if T = {l}). Then there exists a time
t∗ > t when the robots reach a plain and still configuration H such that either

1. H is biangular, or
2. in H no robot is at c, SA(R) is simple, s = 2, and only robots from one team

are inside SEC.

Proof. We proceed by induction on the number m ≥ 1 of teams where at least one
robot is inside SEC. The lemma trivially holds for m = 1. Let it hold for 1 ≤ m ≤ k
teams, and consider the case when inside SEC there are robots from k + 1 teams.
According to Routine3, only one team T is allowed to move—the one chosen by
SelectTeamInside(). We distinguish the three possible cases.

Case 1. T = {r}. In this case, r performs moveCautiously(SEC); moreover,
all other robots stay still during this movement. By Property 9, at time t′ when r
stops, (i) a biangular configuration is formed, or (ii) r reaches SEC , decreasing by one
the number of teams inside SEC , or (iii) r is still inside SEC , and its distance to it
has decreased. Note that, in all cases, SA(R) does not change during the movement;
hence, it is still simple and s = 2. Furthermore, at time t′ the configuration is still
and plain. Thus, in case (i) the lemma holds. In case (ii), by inductive hypotheses the
lemma holds. In the last case, the hypotheses of the lemma are still met with r closer
to SEC; hence, by Assumption Dis, condition (i) or (ii) will eventually hold. Thus
the lemma will eventually hold either directly (in case (i)) or by inductive hypothesis
(case (ii)).

Case 2. T = {r′, r′′}, and one of them, say, r′′, is on SEC. By Routine3, the
move operation they perform is movePairwiseCautiously(r′, r′′, SEC). In this case,
r′′ will perform only null moves (and hence be still) as long as r′ is inside SEC. Let
t′ be the first time when r′ stops. By Property 11, at time t′, (i) a regular biangular
configuration is formed, or (ii) r′ reaches SEC , decreasing by one the number of teams
inside SEC , or (iii) r′ is still inside SEC and its distance to it has decreased. Note
that, in all cases, SA(R) does not change during the movement; hence, it is still
simple and s = 2. Furthermore at time t′ the configuration is still and plain. Thus,
in case (i) the lemma holds. In case (ii), by inductive hypothesis, the lemma holds. In
the last case, the hypotheses of the lemma are still met with r′ closer to SEC; hence,
by Assumption Dis, condition (i) or (ii) will eventually hold. Thus the lemma will
eventually hold either directly (in case (i)) or by inductive hypothesis (case (ii)).

Case 3. T = {r′, r′′}, and both robots are inside SEC. By Routine3, the move
operation they perform is movePairwiseCautiously(r′, r′′, SEC). Without loss of
generality, let r′ be the first to execute the operation with a nonnull movement, and
let t′ be the first time when r′ stops. During r′’s movement only r′′ is allowed to move,
by performing movePairwiseCautiously(r′, r′′, SEC). Since the movements of both
robots are only along Rad(r′) and Rad(r′′), respectively, during these movements the
configuration remains plain and SA(R) does not change; hence, it is still simple and
s = 2. This is also true if only r′ moves during this time. By Property 11, at time t′

when r′ stops, (i) r′ and r′′ are on a pair of critical points such that the configuration
is biangular, and they are both still, or (ii) r′ is on SEC, or (iii) r′ is at a point closer
to SEC and where no biangular configuration exists. In all three cases, at time t′,
robot r′′ is either still or performing movePairwiseCautiously(r′, r′′, SEC). In case
(i) the lemma holds. In case (ii), if r′′ is inside SEC, we are in Case 2 above, and

GATHERING MOBILE ROBOTS 857

hence the lemma holds; otherwise there are only k teams now inside SEC, and the
lemma holds by inductive hypothesis. In case (iii), the hypotheses of the lemma are
still met, and the distance of the team from SEC (defined as the sum of the distances
of r′ and r′′ from SEC) has decreased. Hence, by Assumption Dis, condition (i) or
(ii) will eventually hold. Thus the lemma will eventually hold either directly (in case
(i)) or by inductive hypothesis (case (ii)).

Summarizing, by Lemmas 5.6–5.9, we have the following.
Lemma 5.10. Let the configuration at time t be plain and still, no robot be at c,

SA(R) be simple, and s = 2. Then there exists a time t∗ > t when the robots reach a
configuration H such that

1. H is biangular and still, or
2. H is dense at c and still, or
3. H is plain with one robot at c; SA(R\{c}) is simple; at most one other robot

r is inside SEC, with r in the same team of the robot at c; and H is either
still or stillBut(r), with r safely acting on c.

5.3.3. Many starting positions of LMS(R) (s > 2). Let there be more
than two starting positions of LMS(R) in SA+(R, c) and SA−(R, c). The behavior
of the algorithm in this case is similar to the previous case s = 2; the only difference
is that in this case the movements of the robots do not need to be cautious because
of Lemma 2.5. The proofs of the lemmas in this section follow the same reasoning of
the corresponding lemmas of section 5.3.2, and they are reported in Appendix D.

We consider first the cases when all robots are on SEC, and when there are only
robots from one class inside SEC. In both cases, we use the ranking of the teams
implied by s > 2 to elect a class as the leader, using operation ElectClass() defined
as follows: if inside SEC there are only robots from the same class, this class is chosen
as the leader; if all robots are on SEC , then the leader is the first class T according
to the ordering.

Lemma 5.11. Let the configuration at time t be plain and still, SA(R) be simple,
s > 2, and all robots be on SEC . Then there exists a time t∗ > t when the robots
reach a configuration H such that

1. only robots from one equivalence class T are inside SEC;
2. at least two robots are inside SEC and no robot is at c; and
3. H is plain with s > 2; it is still, or stillBut(T ′), with T ′ ⊆ T , and where

each robot is safely acting on either c or the median point of its radius.
Lemma 5.12. Let the configuration at time t be plain, no robot be at c, at least

two robots be inside SEC, and all robots inside SEC be from the same class T , SA(R)
be simple, and s > 2. Furthermore, let the configuration be still, or stillBut(T ′),
with T ′ ⊆ T , where each acting robots is safely acting on either c or the median point
of its radius. Then there exists a time t∗ > t when the robots reach a configuration H
such that either

1. H is dense at c and all acting robots are safely acting on c, or
2. SA(R \ {c}) is simple and R is irregular periodic; inside SEC there are at

least two robots, they are all from T , and one of them, say, r, is at c; and H
is plain, still or stillBut(T ′′), with T ′′ ⊆ T \ {r}, and with all robots in T ′′

safely acting on c.
If there are robots from more than one class inside SEC, we use the total ordering

to sequentially move to SEC every class but one, until we reach a situation considered
in Lemma 5.12. Each of the classes inside SEC is selected in turn, according to
the total ordering, in an operation called SelectClassInside(); the robots in the

858 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

selected class move toward SEC.
Lemma 5.13. Let the configuration at time t be plain, no robot be at c, SA(R) be

simple, s > 2, and robots from more than one class be inside SEC ; furthermore, let
the configuration be still, or stillBut(T ′), where T ′ ⊆ T , with T the smallest class
inside SEC at time t, and robots in T ′ performing moveTo(SEC). Then there exists a
time t∗ > t when the robots reach a plain and still configuration H such that in H no
robot is at c, SA(R) is simple, s > 2, and only robots from one class are inside SEC.

Summarizing, by Lemmas 5.11–5.13, we have the following.
Lemma 5.14. Let the configuration at time t be plain and still, no robot be at c,

SA(R) be simple, and s > 2. Then there exists a time t∗ > t when the robots reach a
configuration H such that either

1. H is dense at c and all acting robots are safely acting on c, or
2. SA(R \ {c}) is simple and R is irregular periodic; inside SEC there are at

least two robots, they are all from the same class T , and one of them, say, r,
is at c; and H is plain, still or stillBut(T ′), with T ′ ⊆ T \ {r}, and with
all robots in T ′ safely acting on c.

5.4. A robot at the center of SEC and SA(R \ {c}) is simple. Let us
now consider the case when there is exactly one robot r at the center c of SEC,
and SA(R \ {c}) (the string of angles of all robots except r) is simple. Let s be
the cardinality of StS+(R \ {c})∪StS−(R \ {c}) (therefore, s denotes the number of
starting positions of LMS(R \ {r}, c)).

In this case, the algorithm (reported in Routine4) distinguishes three possible
cases, according to the number NI of robots that are inside SEC.

If r is the only robot inside SEC, then r chooses an arbitrary robot q on the SEC
and moves cautiously toward it.

Lemma 5.15. Let the configuration at time t be still, one robot r be at c, SA(R\
{c}) be simple, and NI = 1. Then there exists a time t∗ > t when the robots reach a
still configuration H such that

1. H is regular biangular, or
2. H is dense, or
3. H is plain with no robot at c, SA(R) is mixed, and only one robot is inside

SEC.
Proof. If r is the only robot inside SEC, by hypothesis it is at c. According to

Routine4 only r is allowed to move: it cautiously moves toward a robot q that is on
SEC. Note that as soon as r moves, the configuration becomes mixed; by Routine5

during this movement of r, all other robots stay still. The lemma follows the first
time r stops.

If there are only two robots r and r′ inside SEC (with r at c), then r′ moves
cautiously toward c.

Lemma 5.16. Let the configuration at time t be still, one robot r be at c, SA(R\
{c}) be simple, and NI = 2. Then there exists a time t∗ > t when the robots reach a
still configuration H that is either regular biangular or dense at c.

Proof. If r and r′ are the only robots inside SEC, according to Routine4 only r′

is allowed to move: it cautiously moves toward r. Note that during the movements of
r′, no other robot is allowed to perform a nonnull movement. Let t′ > t be the first
time r′ stops after a nonnull movement. At time t′, (i) r′ stopped on a critical point
where a regular biangular configuration is formed; or (ii) r′ reached r at c; or (iii)
r′ stopped inside SEC on a point such that no biangular configuration is created. In
cases (i) and (ii) the lemma holds. In case c, the conditions of the lemma are still met,

GATHERING MOBILE ROBOTS 859

Routine 4 Subroutine for one robot r at c; SA(R \ {c}) is simple.

NI := Number of robots inside SEC;
Case NI

• NI = 1 %r is the only robot inside SEC%

q := Any arbitrary robot on SEC ;
5: If I Am at c Then moveCautiously(q).

• NI = 2
r′ := Robot inside SEC not at c;
If I Am r′ Then moveCautiously(c).

• NI > 2 %More than two robots are inside SEC%

10: If R Is irregular periodic Then
If I am inside SEC Then moveTo(c).

Else
s := |StS+(R \ {c}) ∪ StS−(R \ {c})|
Case s

15: • s = 1
l :=SelectOneInside(SA(R\ {c}));
If I am l Then moveCautiously(c)

• s = 2
T := SelectTeamInside(SA(R\ {c}));

20: If |T | = 1 Then
l := Robot in T ;
If I am l Then moveCautiously(c).

Else %Two robots in T%

(l′, l′′) := Robots in T ;
25: If I am l′ or l′′ Then movePairwiseCautiously(l′, l′′, c)

• s > 2
If I am inside SEC Then moveTo(c).

with r′ closer to r. Hence, by Assumption Dis, condition (i) or (ii) will eventually
hold, and the lemma will follow.

Based on the previous lemma, we can now extend Lemma 5.7, showing that a
still configuration is always reached.

Lemma 5.17. Let the configuration at time t be plain, no robot be at c, SA(R)
be simple, s = 2, only robots of one team T be inside SEC, with T = {l′, l′′}, and
at least one robot of T be inside SEC. Furthermore, let the configuration be still,
or stillBut(l), l ∈ T , with l either acting on the median point on Rad(l) and
|CP((l′, c), (l′′, c))| = 1 or performing movePairwiseCautiously(l′, l′′, c). Then there
exists a time t∗ > t when the robots reach a still configuration H such that either

1. H is biangular, or
2. H is dense at c.

Proof. By Lemma 5.7, we already know that within finite time the robots reach
a still configuration H′ such that H′ is regular biangular and still, or H′ is dense at c
and still, or in H′ one robot of the team, say, l′, is at c, SA(R \ {c}) is simple, l′′ is
the only other robot inside SEC, and H′ is plain and still or stillBut(l′′), with l′′

safely acting on c. In the first two cases the lemma holds. Thus, it suffices to prove
that, under the conditions of the last case, the robots will reach a still configuration
that is either regular biangular or dense at c.

860 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

According to Routine4, l′′ is the only robot allowed to perform a nonnull move-
ment. If H′ is still, then by Lemma 5.16 and Property 7, the lemma follows. If H′

is stillBut(l′′), then l′′ is acting on c. Let t′ be the time when l′′ends this move.
At time t′, either l′′ reached l′ at c, or l′′ stopped inside SEC on a point such that
no biangular configuration is formed. In the first case the lemma holds. In the latter
case, the lemma follows by Lemma 5.16.

Hence, the lemmas proven for case s = 2 (Lemmas 5.6–5.9 and 5.17) can be
summarized by the following theorem.

Theorem 5.18. Let the configuration at time t be plain and still, no robot be at
c, SA(R) be simple, and s = 2. Then there exists a time t∗ > t when the robots reach
a still configuration H such that

1. H is biangular, or
2. H is dense at c, or
3. in H one robot is at c, SA(R \ {c}) is simple, and no other robot is inside

SEC.

If more than two robots are inside SEC and R is irregular periodic (either this is
an initial configuration, or this configuration has been created from the case s > 2 in
section 5.3.3), all robots inside SEC move toward c.

Lemma 5.19. Let the configuration at time t be plain, NI > 2, with NI the
number of robots inside SEC, with one robot r at c, SA(R \ {c}) be simple, R be
irregular periodic, and all robots inside SEC be from the same class T . Furthermore,
let the configuration be still, or stillBut(T ′), with T ′ ⊆ T , with all acting robots
performing moveTo(c). Then there exists a time t∗ > t when the robots reach a
configuration H such that H is dense at c and either still or stillBut(T ′′), T ′′ ⊆ T ,
where all acting robots are safely acting on c.

Proof. By hypothesis and by Routine4, the robots that perform a nonnull move-
ment can only act on c. Without loss of generality, let r′ be the first robot to stop
after a nonnull movement, say, at time t′ > t. Since the movements of all robots can
be only along their radii, during these movements the configuration remains plain and
SA(R \ {c}) does not change; hence, it is still simple. By Lemma 2.5, at time t′,
either (i) r′ reaches r at c, or (ii) r′ stops inside SEC at a point closer to c.

In all cases, at time t′ all other robots are either still or safely acting on c. In
case (i) the lemma holds. In case (ii), SA(R\ {c}) is again simple and R is irregular
periodic; hence, the hypotheses of the lemma are still met with r′ at a closer distances
to c. Hence, by Assumption Dis, condition (i) will eventually hold. Thus the lemma
will eventually hold.

Based on the previous lemma, we can now extend Lemma 5.12, showing that a
dense configuration is always reached.

Lemma 5.20. Let the configuration at time t be plain, no robot be at c, at least
two robots be inside SEC, all robots inside SEC be from the same class T , SA(R) be
simple, and s > 2. Furthermore, let the configuration be still, or stillBut(T ′), with
T ′ ⊆ T , where each acting robot is safely acting on either c or the median point of its
radius. Then there exists a time t∗ > t when the robots reach a configuration H that
is dense at c, and where all acting robots are safely acting on c.

Proof. By Lemma 5.12, in finite time the robots reach a configuration H′ such
that either (i) H′ is dense at c and all acting robots are safely acting on c, or (ii)
SA(R \ {c}) is simple and R is irregular periodic; inside SEC there are at least two
robots, they are all from T , and one of them, say, r, is at c; and H′ is plain, still or
stillBut(T ′′), with T ′′ ⊆ T \ {r}, and with all robots in T ′′ safely acting on c. In

GATHERING MOBILE ROBOTS 861

case (i) the lemma trivially holds. In case (ii), the lemma holds by Lemma 5.19.

Hence, the lemmas proven for the case s > 2 (Lemmas 5.11–5.13 and 5.20) can
be summarized by the following theorem.

Theorem 5.21. Let the configuration at time t be plain and still, no robot be at
c, SA(R) be simple, and s > 2. Then there exists a time t∗ > t when the robots reach
a configuration H that is dense at c, with all acting robots safely acting on c.

The last case considered by Routine4 is when more than two robots are inside
SEC and R is not irregular periodic: in this case, the routine behaves similarly to
Routine3, described in the previous section. The only difference is that in this case the
robot at c does not move, and all the operations are done with respect to SA(R\{c}).
In particular, Routine4 distinguishes three cases, depending on the value of s, the
cardinality of StS+(R \ {c}) ∪ StS−(R \ {c}).

1. If s = 1, then Routine4 elects a unique robot l that is inside SEC by calling
SelectOneInside(). l moves cautiously toward c, while all the other robots
do not move.

2. If s = 2, then a team is elected by calling routine SelectTeamInside()

(SelectTeamInside() here selects a team that has at least one robot inside
SEC). If |T | = 1, then the only robot in T moves cautiously toward c, while
the others wait; otherwise, the two robots in T move pairwise cautiously
toward c, and the others stay still.

3. If s > 2, then SA(R \ {c}) is periodic (and all the considerations in sec-
tion 5.3.3 apply also here). In this case, all robots inside SEC move toward
c.

The following lemma handles the first case.

Lemma 5.22. Let at time t the robots be in a still configuration H such that
NI > 2, with one robot r at c, SA(R \ {c}) be simple and R not irregular periodic,
and s = 1. Then there exists a time t∗ > t when the robots reach a still configuration
H′ that is either biangular or dense.

Proof. Since s = 1, there is a unique direction for LMS(R\{c}), and it is possible
to establish a total ordering of all robots in R \ {r}. SelectOneInside() elects the
first robot, say, l, that is inside SEC (by hypothesis, inside SEC there are at least
two robots from R \ {r}). According to Routine4, only l is allowed to move, while
all other robots stay still during the cautious movement of l toward c. Let t′ > t be
the first time when l stops after a nonnull movement. Since l moves radially, during
its movements SA(R \ {c}) stays simple and R not irregular periodic, and s = 1. At
time t′, (i) l reaches r at c, or (ii) a biangular configuration is formed, or (iii) l stops
on a point such that no biangular configuration is formed. In cases (i) and (ii) the
lemma follows. In the last case (iii), the hypotheses of the lemma are still met, with
l closer to c; hence, by Assumption Dis, condition (i) or (ii) will eventually hold, and
the lemma will hold.

Let us now consider the case when s = 2.

Lemma 5.23. Let at time t the robots be in a still configuration such that NI > 2,
with NI the number of robots inside SEC , with one robot r at c; and let SA(R\ {c})
be simple and R not irregular periodic, with s = 2. Then there exists a time t∗ > t
when the robots reach a configuration H such that

1. H is biangular and still, or
2. H is dense at c and still, or
3. H is dense at c and stillBut(l′), where l′ is a robot safely acting on c.

Proof. The robots can be logically grouped into teams of at most two robots, and

862 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

it is possible to establish a total ordering of those teams (as described in section 5.3.2).
In particular, SelectTeamInside() invoked within Routine4 elects the first team
T that has at least one robot inside SEC. We distinguish two cases, based on the
cardinality of T .

1. If T is composed of just one robot, l, then, according to Routine4, l is the
only robot allowed to move, while the others wait. Let t′ > t be the first
time when l stops after a nonnull movement toward c. Note that, since l
moves radially, during its movements SA(R \ {c}) stays simple and R not
irregular periodic, s = 2, and T = {l} is again the first team with at least
one robot inside SEC. At time t′, (i) l reaches r at c, or (ii) a biangular
configuration is formed, or (iii) l stops on a point such that no biangular
configuration is formed. In cases (i) and (ii) the lemma follows. In the last
case (iii), the hypotheses of the lemma are still met, with l closer to c; hence,
by Assumption Dis, condition (i) or (ii) will eventually hold, and the lemma
will hold.

2. If T = {l′, l′′} is composed of two robots, by Routine4, the only move oper-
ation they can perform is movePairwiseCautiously(l′, l′′, c). Without loss
of generality, let l′ be the first to stop after a nonnull movement, say, at
time t′ > t. During l′’s movement only l′′ is allowed to move, by performing
movePairwiseCautiously(l′, l′′, c). Since the movements of both robots can
be only along Rad(l′) and Rad(l′′), respectively, during these movements the
configuration remains plain and SA(R\{c}) does not change; hence, it is still
simple, s = 2, and the robots in T are the only ones allowed to move; this is
also true if only l′ moves during this time. By Properties 11 and 10, at time
t′, (i) l′ and l′′ are on a pair of critical points such that the configuration is
biangular and they are both still, or (ii) l′ and l′′ are both on c and they are
both still, or (iii) l′ is on c, or (d) l′ is at a point closer to c, and where no
biangular configuration exists. In the last two cases, robot l′′ is either still or
performing movePairwiseCautiously(l′, l′′, c).
In case (i), (ii), and (iii) the lemma holds. In case (d) the hypotheses of the
lemma are still met and the distance of the team from c has decreased. Hence,
by Assumption Dis, condition (i), (ii), or (iii) will eventually hold. Thus the
lemma will eventually hold.

Lemma 5.24. Let the configuration at time t be plain, NI > 2, with NI the
number of robots inside SEC , with one robot r at c, SA(R\{c}) be simple and R not
irregular periodic, and s > 2. Furthermore, let the configuration be still, or still-

But(T), with T ⊆ R the robots inside SEC at time t, with all acting robots performing
moveTo(c). Then there exists a time t∗ > t when the robots reach a configuration H
such that H is dense at c and all acting robots are safely acting on c.

Proof. In this case, according to Routine4, all robots that are inside SEC execute
moveTo(c) on their radii. Note that, since SA(R\{c}) is simple and R is not irregular
periodic at time t, no collision can occur during these movements. Moreover, by
Lemma 2.5, no biangularity can occur. Without loss of generality, let r′ be the first
robot to stop after a nonnull movement, say, at time t′ > t. Since the movements
of all robots can be only along their radii, during these movements the configuration
remains plain and SA(R \ {c}) does not change; hence, it is still simple, s > 2, and
the robots in T are the only ones allowed to move. At time t′, either (i) r′ reaches r
at c, or (ii) r′ stops before reaching c, on a point closer to c.

In both cases, at time t′ all other robots are either still or executing moveTo(c).

GATHERING MOBILE ROBOTS 863

In case (i) the lemma holds. In case (ii), the hypotheses of the lemma are still met
and the distance of r′ from c has decreased. Hence, by Assumption Dis, condition (i)
will eventually hold. Thus the lemma will eventually hold.

Summarizing, by Lemmas 5.22–5.24, we have the following theorem.

Theorem 5.25. Let at time t the robots be in a plain and still configuration
such that NI > 2, with one robot r at c, SA(R \ {c}) be simple, and R not irregular
periodic. Then there exists a time t∗ > t when the robots reach a configuration H such
that either

1. H is biangular and still, or
2. H is dense at c and still, or stillBut(T), with T ⊂ R \ {r}, and all acting

robots are safely acting on c.

5.5. No robot at the center of SEC and SA(R) is mixed. Let us consider
now the case when no robot is at the center of SEC , and SA(R) is mixed. Recall
that if SA(R) is mixed, then there is at least one radius of SEC where more than one
robot lies. Therefore, by definition of SA(R), the lexicographically minimal string
of angles always starts with an angle whose width is zero. Moreover, on each radius
with at least two robots, at least one is already inside SEC .

Routine 5 Subroutine: No robot at c, SA mixed.

Case s
• s = 1

l := SelectOneInside();
q := robot on the radius of l closest to l;

5: If I am l Then moveCautiously(q).
• s = 2

(l′, l′′) := SelectTeamInside();
If I am l′ or l′′ Then movePairwiseCautiously(l′, l′′, c).

• s > 2
10: T :=SelectClassInside();

If I am in T Then moveTo(c)

As usual, we consider different cases depending on the value of s. Let s = 1 and
SA(R) be mixed (note that this situation could be originated from the one described
in Lemma 5.15). In this case we elect the first robot l in the total order implied by
LMS(R): l moves cautiously toward q, the robot closest to l that lies on Rad(l).

Lemma 5.26. Let at time t the robots be in a still configuration such that no
robot is at c, SA(R) is mixed, and s = 1. Then there exists a time t∗ > t when the
robots reach a still configuration H that is either biangular or dense.

Proof. By hypotheses, it is possible to establish a total ordering of the robots;
SelectOneInside() returns the first robot l in this ordering. Since SA(R) is mixed,
at least one other robot lies on Rad(l), and l is the robot on Rad(l) closest to c; let q
be the robot closest to l on Rad(l). According to Routine5, l is the only one allowed
to move: it moves cautiously toward q. Let t′ be the first time when l stops after
a nonnull move; during l’s movements, no other robot can move. Moreover, since l
moves radially, SA(R) stays mixed, with s = 1, and l remains the first robot in the
total order implied by LMS(R). Thus, at time t′, (i) l reaches q, or (ii) a biangular
configuration is created, or (iii) l stops on a point on Rad(l) where no biangularity
occurs. In cases (i) and (ii) the lemma follows. In case (iii), the hypotheses of the

864 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

lemma are still met, with l closer to q; therefore, by Assumption Dis, condition (i) or
(ii) will eventually hold, and the lemma follows.

Let us now consider the case when s = 2. The robots can be grouped in teams
of at most two robots, and it is possible to establish a total ordering on the teams, as
described in section 5.3.2.

Lemma 5.27. Let the configuration at time t be plain, no robot be at c, SA(R)
be mixed, s = 2, and T be the first team in the total order implied by SA(R). Then,
T = {l′, l′′} is composed of two distinct robots, both inside SEC. Furthermore, let
the configuration be still, or stillBut(l), l ∈ T , with l performing movePairwise-

Cautiously(l′, l′′, c). Then there exists a time t∗ > t when the robots reach a config-
uration H such that

1. H is biangular and still, or
2. H is dense at c and still, or
3. in H one robot of T , say, l′, is at c; SA(R) is mixed; and H is plain and still

or stillBut(l′′), with l′′ performing movePairwiseCautiously(l′, l′′, c).
Proof. Let T be the team selected by SelectTeamInside(). By Lemma 2.1, by

definition of LMS(R), and by the ranking defined in section 5.3.2 used to form the
teams of robots, it follows that the first team in the total ordering is composed of two
distinct robots, l′ and l′′, both inside SEC. Moreover, since SA(R) is mixed, they are
both inside SEC, and the closest robots to c on Rad(l′) and Rad(l′′), respectively.

By Routine5 and by hypothesis, the only move operation l′ and l′′ can perform is
movePairwiseCautiously(l′, l′′, c), while all the others are waiting. Without loss of
generality, let l′ be the first to stop after a nonnull movement, say, at time t′ > t. Since
the movements of both robots can only be along Rad(l′) and Rad(l′′), respectively,
and there are no robots on l′c and l′′c, any collision (hence creation of unintended
dense points) is avoided; hence, during these movements the configuration remains
plain and SA(R) does not change. Therefore, it is still mixed, s = 2, and the robots in
T are the only ones allowed to move. By Property 11, at time t′, (i) l′ and l′′ are on a
pair of critical points such that the configuration is biangular, and they are both still,
or (ii) l′ and l′′ are both still and on c, or (iii) l′ is on c, or (iv) no robot is on c, l′ is at
a point closer to c and where no biangular configuration exists. In the last two cases,
at time t′, robot l′′ is either still or performing movePairwiseCautiously(l′, l′′, c).

In cases (i) and (ii) the lemma holds. In case (iii), SA(R \ {c}) is mixed. More-
over, l′′ is either still or moving toward c executing operation movePairwiseCautiou-

sly(l′, l′′, c): in both cases the lemma holds. In case (iv) the hypotheses of the lemma
are still met and the distance of the team from c has decreased. Hence, by Assumption
Dis, condition (i), (ii), or (iii) will eventually hold. Thus the lemma will eventually
hold.

Finally, let us consider the case when s > 2. The robots can be grouped in
equivalence classes, and it is possible to establish a total ordering on these classes, as
described in section 5.3.3.

Lemma 5.28. Let the configuration at time t be plain, no robot be at c, SA(R) be
mixed, s > 2, and T be the first class of equivalence in the order implied by LMS(R).
Then all robots of T are inside SEC. Furthermore, let the configuration be still, or
stillBut(T ′), with T ′ ⊆ T , with all acting robots safely acting on c. Then there
exists a time t∗ > t when the robots reach a configuration H such that either

1. H is dense at c and all acting robots are safely acting on c, or
2. SA(R \ {c}) is mixed and R is irregular periodic; one of the robots from T ,

say, r, is at c; and H is plain, still or stillBut(T ′′), with T ′′ ⊆ T \ {r},

GATHERING MOBILE ROBOTS 865

and all acting robots are safely acting on c.
Proof. Let T be the class selected by SelectClassInside() at time t. Since

SA(R) is mixed, by Lemma 2.1, by definition of LMS(R), and by the equivalence
classes defined in section 5.3.3, it follows that all the robots of the first class are inside
SEC. Moreover, since SA(R) is mixed, all of them are the closest robots to c on their
respective radii.

By Routine5 and by hypothesis, the only move operation the robots in T can
perform is moveTo(c). Without loss of generality, let r be the first robot to stop after
a nonnull movement, say, at time t′ > t. During r’s movement only robots in T are
allowed to move, by performing moveTo(c). Since the movements of all robots can
be only along their radii, during these movements any collision is avoided since there
are no robots on ric for all ri ∈ T ; thus the configuration remains plain and SA(R)
does not change; hence, it is still simple, s > 2, and the robots in T are the only ones
allowed to move. At time t′, (i) two robots from T reach simultaneously c and they
are both still or (ii) one robot in T reaches c, or (iii) no robot is on c, and r is at a
point closer to c.

In all cases, at time t′ all other robots in T are either still or safely acting on c.
In case (i) the lemma holds. In case (ii), SA(R \ {c}) is mixed and R is irregular
periodic; hence, the lemma follows. In case (iii) the hypotheses of the lemma are still
met and the distance of r from c has decreased. Hence, by Assumption Dis, condition
(i), (ii), or (iii) will eventually hold. Thus the lemma will eventually hold.

5.6. A robot at the center of SEC and SA(R \ {c}) is mixed. First
notice that when SA(R\{c}) is mixed, in addition to the robot r at the center, there
is at least one other robot r′ inside SEC.

If R is irregular periodic, Routine6 elects the first class in this order; only these
robots are allowed to move toward c.

Routine 6 Subroutine for one robot r at c, SA(R \ {c}) mixed.

If R Is irregular periodic Then
T :=SelectClassInside();
If |T | = 2 and I am in T Then moveCautiously(c).
If |T | > 2 and I am in T Then moveTo(c).

5: Else
s := |StS+(R \ {c}) ∪ StS−(R \ {c})|
Case s

• s = 1
l := SelectOneInside();

10: If I am l Then moveCautiously(c).
• s = 2

(l1, l2) := SelectTeamInside();
If I am l1 or l2 Then movePairwiseCautiously(l1, l2, c).

• s > 2
15: If More than one robot on my radius and I am the closest to c Then

moveTo(c)

Lemma 5.29. Let the configuration at time t be plain, with one robot r at c,
SA(R\{c}) be mixed, and R be irregular periodic. Furthermore, let the configuration
be still, or stillBut(T), with T the smallest class inside SEC and with all acting
robots safely acting on c. Then there exists a time t∗ > t when the robots reach a

866 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

configuration H such that H is dense at c and either still or stillBut(T ′), T ′ ⊆ T ,
where all acting robots are safely acting on c.

Proof. Following the considerations made in section 5.3.3, the robots can be
grouped into equivalence classes, and it is possible to establish a total ordering on the
classes. By Lemma 2.1, by definition of LMS(R\{c}), and by the equivalence classes
defined in section 5.3.3, it follows that all the robots of the first class are inside SEC.
Moreover, each of them is the closest robot to c on its radius. Note also that having
|T | = 1 implies that there is no equivalent robot for the only robot in T ; that is, R
cannot be periodic and hence cannot be irregular periodic. Routine6 distinguishes
two cases.

1. If |T | = 2, then in T there are two robots: one of them is the one at c,
while the other, say, r, is allowed to cautiously move toward c. Let t′ be the
first time when r stops after a nonnull movement. During r’s movement no
other robot is allowed to move. Since SA(R \ {c}) is mixed, there are no
robots on rc; hence, during these movements any collision is avoided; thus
the configuration remains plain and SA(R \ {c}) does not change; hence, it
is still mixed, and R is irregular periodic, with r the only robot allowed to
move. At time t′, (i) r reaches c, or (ii) r stops on a point such that the
configuration becomes biangular, or (iii) only one robot is on c, and r is at a
point closer to c where no biangular configuration is reached.

2. If |T | > 2, by Routine6 and by hypothesis, the only move operation the robots
in T can perform is moveTo(c); by Lemma 2.5, the configuration cannot
become biangular during these movements. Without loss of generality, let
r be the first robot to stop after a nonnull movement, say, at time t′ > t.
During r’s movement only robots in T are allowed to move, by performing
moveTo(c). Since SA(R \ {c}) is mixed, there are no robots on ric for all
ri ∈ T ; furthermore, the movements of all robots can be only along their radii;
hence, during these movements any collision is avoided; thus the configuration
remains plain and SA(R \ {c}) does not change; hence, it is still mixed, R
is irregular periodic, and the robots in T are the only ones allowed to move.
At time t′, either (iv) one robot in T reaches c, or (v) only one robot is on c,
and r is at a point closer to c.

In all cases, at time t′ all other robots in T are either still or safely acting on
c. In cases (i), (ii), and (iv) the lemma holds. In cases (iii) and (v), the hypotheses
of the lemma are still met and the distance of r from c has decreased. Hence, by
Assumption Dis, condition (i), (ii), or (iv) will eventually hold. Thus the lemma will
eventually hold.

Furthermore, we can now extend Lemma 5.27, proving that a still configuration
is always reached.

Lemma 5.30. Let the configuration at time t be plain, no robot be at c, SA(R)
be mixed, s = 2, and T be the first pair in the total order implied by SA(R). Then,
T = {l′, l′′} is composed of two distinct robots, both inside SEC. Furthermore, let
the configuration be still, or stillBut(l), l ∈ T , with l performing movePairwise-

Cautiously(l′, l′′, c). Then there exists a time t∗ > t when the robots reach a still
configuration H such that either

1. H is biangular, or
2. H is dense at c.

Proof. By Lemma 5.27, the only case that has to be considered is when only
one among l′ and l′′ reaches c, say, l′, while the other is acting on c. Let t′ be

GATHERING MOBILE ROBOTS 867

the first time when l′ reaches c. Note that, at time t, R is periodic; at time t′, R
becomes irregular periodic, with the class returned by SelectClassInside() having
two robots, and SA(R\{c}) mixed. Hence, by Routine6, l′′ is the only robot allowed
to move at time t′: it cautiously moves toward c. Let t′′ be the first time l′′ stops after
a nonnull movement. We have three possible cases at time t′′: (i) l′′ is not at c at a
position forming a biangular configuration; (ii) l′′ is at c; (iii) l′′ is inside SEC not at
c and the configuration is not biangular. In cases (i) and (ii) the lemma immediately
follows. In case (iii), according to Routine6, only l′′ is allowed to move: it can only
cautiously move toward c. Moreover, all other robots do not move during the cautious
movements of l′′. The lemma follows by previous Lemma 5.29.

Similarly, we extend Lemma 5.28.

Lemma 5.31. Let the configuration at time t be plain, no robot be at c, SA(R) be
mixed, s > 2, and T be the first class of equivalence in the order implied by LMS(R).
Then all robots of T are inside SEC. Furthermore, let the configuration be still, or
stillBut(T ′), with T ′ ⊆ T , with all acting robots performing moveTo(c). Then there
exists a time t∗ > t when the robots reach a configuration H that is dense at c and
still, or stillBut(T ′′), with T ′′ ⊆ T \ {r} and r ∈ T the robot at c, and with all
acting robots safely acting on c.

Proof. By Lemma 5.28, the only case we have to analyze is when, at time t′ > t,
only one robot r from T reaches c, while all the others in T are safely acting on c.
At time t′, SA(R \ {c}) is clearly mixed, and R is irregular periodic with |T | > 2.
Therefore, the lemma follows by Lemma 5.29.

The last case we need to consider is when R is not irregular periodic; in this case,
Routine6 distinguishes several cases according to the value of s.

If s = 1, the first robot in the total ordering implied by LMS(R\ {c}) is elected
as a leader and moves cautiously toward the center.

Lemma 5.32. Let at time t the robots be in a still configuration H such that one
robot r is at c, SA(R \ {c}) be mixed and R not irregular periodic, and s = 1. Then
there exists a time t∗ > t when the robots reach a still configuration H′ that is either
biangular or dense at c.

Proof. Following the considerations in section 5.3.1, in this case there is a unique
direction for LMS(R \ {c}), and it is possible to establish a total ordering of all
robots in R\{r}. SelectOneInside() elects the first robot, say, l: since SA(R\{c})
is mixed, l is inside SEC. This case is similar to the case s = 1 of Routine4, with
the only difference that here SA(R \ {c}) is mixed; however, by Lemma 2.1 and by
definition of LMS(R), l is the closest robot to c on its radius; hence no collisions
(hence, unintended dense points) can be created during its movement toward c. The
lemma follows similarly to Lemma 5.22.

Let us now consider the case when s = 2. Using the team ordering introduced in
section 5.3.2, Routine6 elects a leader team; the robots in this team move pairwise-
cautiously toward c.

Lemma 5.33. Let the configuration at time t be plain, one robot be at c, SA(R\
{c}) be mixed and R not irregular periodic, s = 2, and T be the first pair in the total
order implied by SA(R \ {c}). Then, T = (l′, l′′) is composed of two distinct robots.
Furthermore, let the configuration be still, or stillBut(l), l ∈ T , with l performing
movePairwiseCautiously(l′, l′′, c). Then there exists a time t′ > t when the robots
reach a configuration H such that

1. H is biangular and still, or
2. H is dense at c and still, or

868 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

3. H is dense at c with one robot of the team, say, l′, at c; and H is still-

But(l′′), with l′′ performing movePairwiseCautiously(l′, l′′, c).
Proof. Let T be the team selected by SelectTeamInside(). By Lemma 2.1, by

definition of LMS(R\ {c}), and by the ranking defined in section 5.3.2 used to form
the teams of robots, it follows that the first team in the total ordering is composed of
two distinct robots, l′ and l′′. Moreover, they are the closest robots to c on Rad(l′) and
Rad(l′′), respectively. Note that this case is similar to the case handled in Routine5,
when s = 2, |T | = 2. The only difference is that here there is already a robot at c.
The proof follows the same reasoning as that of Lemma 5.27.

Finally, if s > 2, from each radius with more then one robot on it, the robot
closest to c is chosen to move toward c. By Lemma 2.5, no biangularity can occur
during these movements.

Lemma 5.34. Let the configuration at time t be plain, one robot r be at c,
SA(R \ {c}) be mixed and R not irregular periodic, and s > 2. Furthermore, let the
configuration be still, or stillBut(T), with T ⊆ R, with all acting robots performing
moveTo(c). Then there exists a time t′ > t when the robots reach a configuration H
such that H is dense at c and all acting robots are safely acting on c.

Proof. In this case, all robots that are inside SEC, and that are the closest to c on
their radius, execute moveTo(c). Note that this case is similar to the one handled by
Routine4when s > 2. The only difference is that here SA(R\{c}) is mixed. However,
since Routine6 allows to move only the robots that are inside SEC and that are the
closest to c on their radius, no collision can occur. Moreover, by Lemma 2.5, no
biangularity can occur. The proof follows similarly to the proof of Lemma 5.24.

5.7. Correctness of Algorithm GoGather. Finally, in this section we prove
the overall correctness of Algorithm GoGather (refer also to Figure 5.3).

Theorem 5.35. From any initial configuration H, within a finite number of
cycles, the robots reach a configuration that is biangular (regular or irregular) and
still, or dense and still, or dense with all acting robots safely acting on the dense
point.

Proof. Consider the partition of the set of all possible initial configurations into
classes, as shown in Figure 5.4. The proof will consider different cases, depending
on which class the initial configuration H belongs to. First observe that, since H is
initial, it is still and plain by definition.

Case 1. [Biangular (regular or irregular)] The theorem trivially holds.
Case 2.I.A.i. [No robot is at c, SA(R) is simple, and s = 1] By Theorem 5.5, Lemma

5.15, and Lemma 5.26, in a finite number of cycles the robots reach a still
configuration that is biangular or dense, and the theorem follows.

Case 2.I.A.ii. [No robot is at c, SA(R) is simple, and s = 2] By Theorem 5.18,
Lemma 5.15, and Lemma 5.26, in a finite number of cycles the robots reach
a configuration that is either still and biangular or still and dense, and the
theorem follows.

Case 2.I.A.iii. [No robot is at c, SA(R) is simple, and s > 2] By Theorem 5.21, in a
finite number of cycles the robots reach a configuration that is dense with all
acting robots safely acting on c, and the theorem follows.

Case 2.II.A.i. [One robot is at c, SA(R \ {c}) is simple, and NI ≤ 2, with NI the
number of robots inside SEC] By Lemmas 5.15 and 5.26 (when NI = 1),
and by Lemma 5.16 (when NI = 2), in a finite number of cycles the robots
reach a still configuration that is either biangular or dense, hence the theorem
follows.

GATHERING MOBILE ROBOTS 869

1: Biangular regular or irregular
2: Nonbiangular

2.I: No robot at c

2.I.A: SA simple
2.I.A.i: s = 1
2.I.A.ii: s = 2
2.I.A.iii: s > 2

2.I.B: SA mixed
2.I.B.i: s = 1
2.I.B.ii: s = 2
2.I.B.iii: s > 2

2.II: One at c

2.II.A: SA(R \ {c}) simple
2.II.A.i: NI ≤ 2
2.II.A.ii: NI > 2

2.II.A.ii.(a): R irregular periodic

2.II.A.ii.(b): R not irregular periodic
2.II.A.ii.(b1): s = 1
2.II.A.ii.(b2): s = 2
2.II.A.ii.(b3): s > 2

2.II.B: SA(R \ {c}) mixed
2.II.B.i: R irregular periodic

2.II.B.ii: R not irregular periodic
2.II.B.ii.(a): s = 1
2.II.B.ii.(b): s = 2
2.II.B.ii.(c): s > 2

Fig. 5.4. All possible initial configurations.

Case 2.II.A.ii.(a). [One robots is at c, SA(R \ {c}) is simple, NI > 2, and R is
irregular periodic] By Lemma 5.19, in a finite number of cycles the robots
reach a configuration that is dense at c, with all acting robots safely acting
on c.

Case 2.II.A.ii.(b). [One robots is at c, SA(R \ {c}) is simple, NI > 2, and R is not
irregular periodic] By Theorem 5.25, in a finite number of cycles the robots
reach a configuration that is either still and biangular or dense at c with all
acting robots safely acting on c.

Cases 2.I.B.i and 2.I.B.ii. [No robot is at c, SA(R) is mixed, with s ≤ 2] By Lemma
5.26 (when s = 1), and by Lemma 5.30 (when s = 2), in a finite number of
cycles the robots reach a still configuration that is either biangular dense at

870 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

c, and the theorem follows.
Case 2.I.B.iii. [No robot is at c, SA(R) is mixed, and s > 2] By Lemma 5.31, in a

finite number of cycles the robots reach a configuration that is dense at c,
with all acting robots (if any) safely acting on c, and the lemma follows.

Case 2.II.B.i. [One robot is at c, SA(R \ {c}) is mixed, and R is irregular periodic]
By Lemma 5.29 in a finite number of cycles the robots reach a configuration
that dense at c, with all acting robots (if any) safely acting on c.

Case 2.II.B.ii.(a). [One robot at c, SA(R \ {c}) is mixed, R is not irregular periodic,
and s = 1] By Lemma 5.32, in a finite number of cycles the robots reach a
still configuration that is either biangular or dense at c.

Case 2.II.B.ii.(b). [One robot is at c, SA(R\{c}) is mixed, R is not irregular periodic,
and s = 2] By Lemma 5.33, in a finite number of cycles the robots reach a
configuration that is still and biangular, or dense at c with all acting robots
(if any) safely acting on c.

Case 2.II.B.ii.(c). [One robot is at c, SA(R\{c}) is mixed, R is not irregular periodic,
and s > 2] By Lemma 5.34, in a finite number of cycles the robots reach a
configuration that is dense at c with all acting robots (if any) safely acting
on c.

By Assumption Dis and by Theorems 5.1, 5.2, and 5.35, the next theorem follows.

Theorem 5.36. Algorithm GoGather allows n ≥ 5 asynchronous oblivious
disoriented robots to gather within finite time starting from any initial plain configu-
ration.

6. Open problems. We have considered robots that are anonymous, asyn-
chronous, oblivious, silent, and disoriented; and we have presented the first deter-
ministic algorithm for the Gathering Problem of such robots that works for any
initial configuration. The outstanding research question is now whether it is possible
to solve gathering with even weaker robots.

As in [8, 27, 52, 56], we have assumed that each robot is within the visibility
range of the others. The setting when this is not necessarily the case is referred to
as limited visibility. Gathering protocols do exist with limited visibility, but only in
models stronger than the one studied in this paper [3, 26, 29, 41, 45, 44, 49, 57]. The
question of whether gathering can be solved when the robots with limited visibility are
also oblivious, disoriented, and asynchronous, as considered here, is still unanswered.

The model can be weakened also by considering the possibility of faults and of
inaccuracies. Solutions exist considering robots’ failures and when movements and
sensors’ measurements are inaccurate; however, they assume stronger models (e.g.,
semisynchronous) [1, 12, 55, 30] or a simpler problem (Converge) [12] or restricted
environments (the one-dimensional space) [12]. In particular, no studies exist when
the computations are subject to imprecisions. An important open research direction
is to consider perturbations in the operating behavior of the robots or their sensors
and to design fault-tolerant solutions to the Gathering Problem for the model
considered here.

In all existing investigations on the Gathering Problem, the focus has been on
computability (i.e., feasibility), while the complexity of the solutions has never been an
issue; indeed, there is a general absence of cost measures. An interesting fundamental
research question is the definition of cost measures and their use in the analysis of the
complexity of the solution protocols. A step in this direction has been taken recently,
analyzing the number of rounds for the (simpler) Converge problem in the case of
synchronous robots [19].

GATHERING MOBILE ROBOTS 871

Appendix A. Proofs of basic properties.

Proof of Lemma 2.1. Without loss of generality, let us assume that LMS(P, c) =
〈α0, . . . , αn−1〉. By contradiction, let us assume that SA+(P, c)[k] = SA−(P, c)[k] =
LMS(P, c). Then 〈α0, . . . , αn−1〉 = 〈αn−1, . . . , α0〉; that is, LMS(P, c) is a palin-
drome. Let j be the first index such that αj > α0 (such an index exists by hypothesis);
that is, αn−i−1 = αi = α0, 0 ≤ i ≤ j− 1. It follows that 〈αn−j , αn−j+1, . . . , αn−1, α0,
α1, . . . , αn−j−1〉 〈lex 〈α0, α1, . . . , αn−1〉 = LMS(P, c), which is a contradiction.

Proof of Lemma 2.2. Let us consider the first team defined by the total order
(refer to Figure 2.3). Notice that this team consists of two distinct robots, rk and rw.
Consider also the smallest arc of circumference between them (call it arc); let arc′

be the greatest arc of circumference between them. If the angle between rk and rw
with respect to c is 180◦, then clearly the removal of any other team will leave SEC
unchanged; since n ≥ 5, there exists at least one other team composed of two distinct
robots, hence the lemma follows.

Otherwise, since n ≥ 5, there is at least a team on arc′. If there is also a team on
arc, then the removal of rk and rw will leave SEC unchanged, and the lemma follows
(refer to Figure 2.3(b)).

If no robot is on arc, then, since n ≥ 5, there are at least two teams on arc′. The
first of these two teams (i.e., the second team in the total order) must be composed
of two distinct robots, r1 and r2 (refer to Figure 2.3(c)); while the second one (the
first team on the arc of circumference defined by r1 and r2 that does not contain rk
and rw) can be composed of either one single robot or of two distinct robots. In any
case, the removal of r1 and r2 leaves SEC unchanged, and the lemma follows.

Proof of Lemma 2.3. Consider two successive starting points x, y of LMS(P, c) in
SA(P, c), where x = pi is the starting point of SA+(P, c)[i] and y = pj is the starting
point of SA+(P, c)[j]; and let W = 〈αi, αi+1, . . . , αj−1〉; in other words, the first |W |
elements of LMS(P, c) are precisely W . Since x is chosen arbitrarily, it follows that
LMS(P, c) = W k. Hence (1) holds, and (2) immediately follows.

Proof of Lemma 2.4. If all points are on SEC (P), then for any robot p, by
Property 3, the points in EQ(p) form a n

k -gon with all vertices on SEC. Thus, the
lemma follows.

Proof of Lemma 2.5. Let PSEC be the set of points obtained by moving all points
in P on SEC (P). Since P is periodic, PSEC is rotational symmetric with symmetry
center c. Hence, by Property 4, c is the Weber point of PSEC . Let P ′ be now the set
of points obtained from PSEC by moving any of the points in PSEC towards c; again,
by Property 2, c is the Weber point of P ′. The claim follows since the Weber point is
unique and by Property 4: moving some of the point toward it cannot make the set
of points biangular, if it was not so before.

Proof of Lemma 2.6. Let us assume that P = p0, . . . , pn−1 is regular biangular.
Then, by Property 4, its center of biangularity b is also the Weber point of P . More-
over, by Property 2, b stays the center of biangularity of P even if any point p ∈ P
is moved on p′, with p′ ∈ p, b. In particular, b does not change if p is moved on b. In
this case, P becomes irregular biangular with center b. The unicity of b follows from
the unicity of the Weber point.

Proof of Property 5. If P is biangular with one gap, then by definition there exist
α and β such that SA(P, b) = 〈(α, β)n

2 −1, γ〉, where γ = α+β. This means that there
exists a subset S ⊂ P of the points, with |S| = n/2, such that S is equiangular, and
SA+(S, b) = 〈γ n

2 〉.
Proof of Property 6. Let P be biangular with two gaps. Then, by definition, there

872 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

exist angles α and β such that

1. SA+(P, b) = W1 = 〈θ, (β, α)n
2 −2, β〉 where θ = 2α+ β; or

2. SA+(P, b) = W2 = 〈γ, (α, β)k1 , γ, (α, β)k2 〉 with k1 + k2 = n/2 − 2 where
γ = α+ β ; or

3. SA+(P, b) = W3 = 〈γ, (α, β)k1 , α, γ, (β, α)k2 , β〉, with k1+k2 = n/2−3 where
γ = α+ β.

Let us consider the three possible cases separately.

1. W1 = 〈θ, (β, α)n
2 −2, β〉 = 〈β, (α+β+α), (β, α)

n
2 −2〉 = 〈2γ, γ n

2 −2〉 = 〈δ, γ n
2 −2〉

where γ = α+β and δ = 2γ. This means that there exists a subset S ⊂ P of
the points, with |S| = n/2− 1, such that S is equiangular with one gap, and
SA+(S, b) = 〈δ, γ n

2 −2〉.
2. W2 = 〈γ, (α, β)k1 , γ, (α, β)k2 〉 = γ

n
2 . This means that there exists a sub-

set S ⊂ P of the points, with |S| = n/2, such that S is equiangular, and
SA+(S, b) = γ

n
2 .

3. In this last case, we have W3 = 〈γ, (α, β)k1 , α, γ, (β, α)k2 , β〉 = 〈β, (α +
β), α, (β, α)k1 , (β+α), (β, α)k2 〉 = 〈2γ, γk1 , γ, γk2〉 = 〈δ, γ n

2 −2〉. That is, there
exists a subset S ⊂ P of the points, with |S| = n/2−1, such that S is equian-
gular with one gap, and SA+(S, b) = 〈δ, γ n

2 −2〉.
Appendix B. Testing for biangularity. The following routine is used to

determine whether a set of points P is biangular with at most two gaps when the
two angles are not given, and if so find the set B of all centers. Note that, for n
robots, this routine needs O(2n) time to compute the biangularity tests, and hence
the computation of the critical points by a robot needs at least O(2n) time.

Appendix C. Proofs from section 5.3.2.

Proof of Claim 1. We distinguish two cases.

(1.1) One of the two robots in T , say, l′′, is not still at time t. By hypothesis,
either l′′ is acting on l′′m, the median point on Rad(l′′), or l′′ is performing
movePairwiseCautiously(l′, l′′, c).

(a) If l′′ is acting on l′′m, then by hypothesis, at time t,

|CP((l′, c), (l′′, c))| = 1;

Routine3 allows l′ to move toward c by movePairwiseCautiously(l′, l′′, c),
while all the other robots stay still (on SEC). Let t′ be the first time when
this happens: since by hypothesis the only critical point on the way is c, the
destination point of l′ can only be c. Moreover, within finite time, say at
t′′, l′′ stops before or at l′′m. Let t′′′ > t′′ be the first time l′′ becomes active
again. If l′ is already at c at time t′′′, then by Routine4 only l′′ is allowed
to move; it moves cautiously toward c, and condition (iii) of the claim holds,
with l′′ acting on c. Otherwise, Routine3 allows to move only l′ and l′′;
they move toward c by performing movePairwiseCautiously(l′, l′′, c). Note
that the movements of l′ and l′′ can only be along Rad(l′) and Rad(l′′),
respectively; hence, during these movements the configuration remains plain,
SA(R) does not change (it stays simple), s = 2, and the robots in T are
the only ones allowed to move. Since there are no critical points on their
way to c, by Assumption Dis, within finite time, either both of them reach
c simultaneously (condition (ii) holds), or one of them reaches c first, while
the other is acting on c (condition(iii)).

GATHERING MOBILE ROBOTS 873

Routine 7 Tests for regular biangularity and irregular biangularity.

1. Testing for biangularity (P).
Clearly |P | = n must be even. The testing is easily accomplished as follows:

for each S ⊂ P , with |S| = n/2, determine if both S and P \ S are
equiangular and their center of equiangularity c is the same; if so,
P is biangular and B = {c}. Since, by Lemma 2.6, the center of
biangularity is unique, the testing can stop as soon as the first set is
found.

2. Testing for biangularity with one gap (P).
Clearly |P | = n must be odd. For each S ⊂ P , with |S| = �n/2�, determine

if it is equiangular; by property 5, such a condition is necessary. If
such a S is found, let c be its center of equiangularity; it is now
trivial to verify whether P is biangular with a gap with respect to c.
If so, P is biangular with a gap, and c ∈ B. All sets so found are
clearly biangular with one gap; the necessity expressed by property
5 ensures that all such sets are found, and thus B contains all the
centers of biangularity with one gap of P .

3. Testing for biangularity with two gaps (P).
Clearly |P | = n must be even. The testing can be accomplished in two

successive phases as follows. In the first phase, for each S ⊂ P , with
|S| = n/2, determine if it is equiangular; if so, let c be its center of
equiangularity; it is now trivial to verify whether P is biangular with
two gaps with respect to c, and if so, c ∈ B. In the second phase,
for each S ⊂ P , with |S| = n/2− 1, determine if both S and P \ S
are equiangular with one gap and if they share the same center of
equiangularity c; if so, c ∈ B. All sets so found are clearly biangular
with two gaps; the necessity expressed by property 6 ensures that all
such sets are found, and thus B contains all the centers of biangularity
with two gaps of P .

4. Testing for irregular biangularity (P).
Clearly |P | = n must be even. For each p ∈ P test whether p is the

center of biangularity with one gap for P \ {p}. If so, P is irregular
biangular and B = {p}. Since, by Lemma 2.6, the center of irregular
biangularity is unique, the testing can stop as soon as the first such
point is found.

(b) If l′′ is performing movePairwiseCautiously(l′, l′′, c), then by Routine3

only l′ and l′′ are allowed to move bymovePairwiseCautiously(l′, l′′, c). Let
t′ > t be the first time l′′ stops. Since the movements of l′ and of l′′ can
be only along Rad(l′) and Rad(l′′), respectively, during these movements the
configuration remains plain and SA(R) does not change; hence, it is still
simple, s = 2. By Properties 10 and 11, at time t′ one of the conditions of
the claim holds.

(1.2) Both robots in T are still. By Routine3, only l′ and l′′ are allowed to move, by
performing movePairwiseCautiously(l′, l′′, c). Without loss of generality,
let l′ be the first robot to stop after a non null movement at a time t′ > t.
The proof follows as in previous Case (1.1).b.

Proof of Claim 2. Let N ′(t) and N ′′(t) be the number of critical points ahead

874 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

of l′ and l′′, respectively, at time t. Recall that, by Property 10, when executing
movePairwiseCautiously(l′, l′′, c) at time t, l′ (resp., l′′) will perform a nonnull
movement only if |N ′(t)| ≥ |N ′′(t)| (resp., |N ′′(t)| ≥ |N ′(t)|). We distinguish three
cases, depending on which robot, if any, is acting on c.

(2.1) Let l′′ be not still at time t. By hypothesis, l′′ is either acting on l′′m, the me-
dian point on Rad(l′′), or is performing movePairwiseCautiously(l′, l′′, c).
In the first case, by hypothesis, at time t, |CP((l′, c), (l′′, c))| = 1. According
to Routine3, l′ does not move until l′′ enters SEC, say at time t′ > t, by
executing moveTo(l′′m). As soon as l′′ enters SEC, the Claim hold. In the
second case, l′′ is heading toward c by performing movePairwiseCautiou-

sly(l′, l′′, c). First note that in this case, at time t, |CP((l′, c), (l′′, c))| > 1:
in fact, by Routine3, starting from the rim of the SEC l′′ can never execute
movePairwiseCautiously(l′, l′′, c) if |CP((l′, c), (l′′, c))| = 1. Also, since by
hypothesis l′′ is not still, by Property 10, N ′′(t) ≥ N ′(t); and, by definition of
movePairwiseCautiously(l′, l′′, c), l′ will not move as long asN ′′(t) > N ′(t).
Two cases arise, depending on the values of N ′(t) and N ′′(t).

(a) N ′′(t) = N ′(t) > 1 at time t. In this case, the algorithm forces both l′ and
l′′ to perform movePairwiseCautiously(l′, l′′, c). By Properties 10 and 11,
the two robots are forced to move toward c in lock-step, and within finite time
both robots will be inside SEC and still on a pair of critical points, and the
claim holds. Note that at this time, the configuration can be either regular
biangular or not.

(b) N ′′(t) > N ′(t) > 1 at time t. In this case, by Properties 10 and 11, l′′ is
the only robot allowed to move, by movePairwiseCautiously(l′, l′′, c). The
claim holds as soon as l′′ enters SEC .

(2.2) Let l′ be not still at time t; by hypothesis, l′ is (a) either acting on l′m, the me-
dian point on Rad(l′), while l′′, on SEC, is still and |CP((l′, c), (l′′, c))| = 1; or
(b) it is heading toward c by performing movePairwiseCautiously(l′, l′′, c),
with l′′ on SEC and still.
In case (a), note that, if l′ stops while l′′ is on SEC, by Routine3, l′ will wait
until l′′ enters SEC. Let t′ ≥ t be the first time when l′′ becomes active: l′′ is
obliged to perform moveTo(l′′m), with l′′m the median point of Rad(l′′). Now,
let t′′ > t′ be the first time when l′′ enters SEC. At this time, either l′ is still,
or it is acting on l′m. In the first case, the claim follows. In the second case,
the first time either l′ or l′′ stop, the claim follows as well.
In case (b), l′ is performing movePairwiseCautiously(l′, l′′, c). According to
Routine3, at time t, |CP((l′, c), (l′′, c))| > 1: in fact, if |CP((l′, c), (l′′, c))| =
1, l′ can never execute movePairwiseCautiously(l′, l′′, c). Also, since by
hypothesis l′ is not still, by Property 10, N ′(t) ≥ N ′′(t); and, by definition
of movePairwiseCautiously(l′, l′′, c), l′′ will not move as long as N ′(t) >
N ′′(t). The proof follows similarly to previous cases (2.1).a and (2.1).b.

(2.3) Both robots are still at time t. Three cases arise, depending on the value of
|CP((l′, c), (l′′, c))|.
(a) If |CP((l′, c), (l′′, c))| = 1, then the only critical point for both l′ and l′′

is c. In this case, Routine3 does not allow l′ to move until l′′ enters SEC.
Moreover, l′′ can only perform moveTo(l′′m). Therefore, the first time when
l′′ starts executing the move operation, the claim holds.

(b) If |CP((l′, c), (l′′, c))| > 1, let us assume without loss of generality that

GATHERING MOBILE ROBOTS 875

N ′(t) ≥ N ′′(t). IfN ′(t) = N ′′(t) > 1 then the proof follows as in previous case
(2.1).a. If N ′(t) > N ′′(t) > 1, then the proof follows similarly to previous
case (2.1).b. Finally, if N ′(t) > N ′′(t) = 1, then |CP((l′, c), (l′′, c))| > 1.
In this case, the algorithm forces both l′ and l′′ to perform movePairwise-

Cautiously(l′, l′′, c). By Properties 10 and 11, l′ is the only one allowed to
move (toward c) as long as no regular biangular configuration is formed (l′′

could be on a critical point on SEC) and N ′ > 1. By Assumption Dis, within
finite time, say, at t′, N ′(t′) = N ′′(t) = 1. At this time Routine3 forces l′

to not move (at time t′, l′′ is on the SEC), and forces l′′ to move toward the
median point on Rad(l′′). The first time l′′ enters SEC, the claim holds.
Note that, in all the above arguments, the movements of both robots can be
only along Rad(l′) and Rad(l′′), respectively; hence, during these movements
the configuration remains plain, SA(R) does not change (it stays simple),
s = 2, and the robots in T are the only ones allowed to move.

Appendix D. Proofs From section 5.3.3.

Proof of Lemma 5.11. If all robots are on SEC, a unique class T of n
k robots is

elected by ElectClass(); by Lemma 2.4, SEC remains invariant if the robots of this
class are removed.

By Routine3, the only robots that can move are those in T : the first move a
robot from the class performs while they are all on SEC, is on the midpoint of its
radius; hence, in this move no robot can reach c. Let t be the first time a robot from
T leaves SEC; if more than one robots does so, the lemma follows. If only one robot
does so, say, r, the other robots from T can move either toward c (they observed when
r was on the midpoint of its radius, or on the way toward it) or the median point
of the radius where they lie (they observed when r was on SEC). Note that, if there
is only one robot from the class inside SEC, by Routine3, it does not move until at
least another robot from T enters SEC. As soon as the first of them leaves SEC, by
Lemma 2.5 and since the movements are only on radii of SEC, s does not change, and
the lemma holds.

Proof of Lemma 5.12. Notice that T coincides with the class selected by
ElectClass() at time t. Let us denote by A the set of robots that are acting at
time t. By hypothesis, at time t each robot in A is acting on either c or the median
point of its radius; let us denote by Am the subset of A that contains the robots
that are acting on the median point of their radius. First note that, by definition of
Routine3, the robots that are acting on c move independently from the robots that
are acting on the median points of their radii; in particular, only the robots that are
acting on c can reach it; furthermore, by Lemma 2.5 and since the movements are
only on radiii of SEC, no regular biangular configuration can be formed while those
robots are moving toward c, and a dense point can only be created at c.

Let us consider now the time t′ > t when the first of the robots in Am stops
(before or at the median point on its radius); at this time, the distance of r′ from c
has decreased. We distinguish three cases:

1. If at t′ no robot is at c, since all robots move radially between time t and t′,
SA(R) stays simple with s > 2, and the period of SA(R) does not change.
When r′ starts acting again, by Routine3 it will be safely acting on c.

2. If at t′ c is dense, then by Algorithm GoGather, r′ starts safely acting on
c.

3. If at t′ one robot is at c, since all robots move radially between time t and
t′, then SA(R \ {c}) is simple, and R is irregular periodic. By Routine4, r′

876 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

starts safely acting on c.

Hence, in all three cases, |Am| decreases by one unit. Since, by Routine3 and
Routine4, all movements are only on radii of SEC, and, by Lemma 2.5 no regu-
lar biangular configuration can be created during any movement of the robots, cases
1, 2, and 3 above hold for every robot in Am. Hence, the lemma follows the first time
the last robot in Am stops.

Proof of Lemma 5.13. We proceed by induction on the number m ≥ 1 of classes
with at least one robot inside SEC. The lemma trivially holds for m = 1. Let it hold
for 1 ≤ m ≤ k classes, and consider the case when inside SEC there are robots from
k + 1 classes. According to Routine3, only robots from the same class T are allowed
to move—the class chosen by SelectClassInside(). We now prove that in finite
time the number of classes inside SEC becomes k; this is done by induction on the
number TIN of robots in T that are inside SEC.

Let TIN = 1; let r ∈ T be the only robot of T inside SEC. By Routine3, r is the
only robot allowed to move by executing moveTo(SEC), and if it is already moving,
by hypothesis it is moving toward SEC. Let t′ > t be the first time when r stops after
a nonnull movement. Since the movement of r is only along the radius where it lies,
during r’s movement the configuration remains plain and SA(R) does not change;
hence, it is still simple and s > 2. When r stops, either (i) r is on SEC, or (ii) r is at
a point closer to SEC . In case (i), at time t′ there are k classes inside SEC. In case
(ii), the hypotheses of the lemma are still met and the distance of r from SEC has
decreased. Hence, by Assumption Dis, case (i) will eventually hold and there will be
only k classes inside SEC.

Let us assume the lemma holds for TIN = h, and consider the case when the
number of robots from T that are inside SEC is h + 1. Let T ∗ ⊆ T be the set of
robots that first stop after executing moveTo(SEC) with a nonnull movement, and let
t′ > t be the first time when this happens; note that |T ∗| ≥ 1. Since the movements
of robots in T ∗ are only along the radii where they lie, during their movement the
configuration remains plain andSA(R) does not change; hence, it is still simple and
s > 2. When robots in T ∗ stops, either (iii) at least one of them reached SEC, or (iv)
none of them reached SEC . In case (iii), at time t′ there are at most h robots from T ∗

inside SEC; hence, by induction, in finite time there are k classes inside SEC. In case
(iv), since the hypotheses of the lemma are still met and the distance of the robots in
T ∗ from SEC has decreased, by Assumption Dis, case (iii) will eventually hold and
there will be only k classes inside SEC.

Hence the lemma follows.

Acknowledgments. We would like to thank the many researchers who have
shared with us their ideas, comments, suggestions, and (conflicting) conjectures on
this problem over the years. We especially would like to thank Elmo Welzl and Peter
Widmayer for many helpful discussions.

REFERENCES

[1] N. Agmon and D. Peleg, Fault-tolerant gathering algorithms for autonomous mobile robots,
SIAM J. Comput., 36 (2006), pp. 56–82.

[2] L. Anderegg, M. Cieliebak, and G. Prencipe, Efficient algorithms for detecting regular
point configurations, in Proceedings of the 9th Italian Conference on Theoretical Computer
Science (ICTCS), Lecture Notes in Comput. Sci. 3701, Springer, Berlin, 2005, pp. 23–35.

GATHERING MOBILE ROBOTS 877

[3] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, A distributed memoryless point convergence
algorithm for mobile robots with limited visibility, IEEE Trans. Robotics Automat., 15
(1999), pp. 818–828.

[4] C. Bajaj, The algebraic degree of geometric optimization problems, Discrete Comput. Geom.,
3 (1988), pp. 177–191.

[5] F. Bullo, J. Cortes, and S. Martinez, Distributed algorithms for robotic networks, in Ency-
clopedia of Complexity and Systems Science, R. Meyers, ed., Springer-Verlag, New York,
2009, pp. 7712–7728.

[6] I. Chatzigiannakis, M. Markou, and S. Nikoletseas, Distributed circle formation for
anonymous oblivious robots, in Proceedings of the 3rd International Workshop on Exper-
imental and Efficient Algorithms (WEA), Lecture Notes in Comput. Sci. 3059, Springer,
Berlin, 2004, pp. 159–174.

[7] S. G. Chaudhuri and K. Mukhopadhyaya, Gathering asynchronous transparent fat robots, in
Proceedings of the 6th International Conference on Distributed Computing and Internet
Technology (ICDCIT), Lecture Notes in Comput. Sci. 5966, Springer, Berlin, 2010, pp. 170–
175.

[8] M. Cieliebak, Gathering non-oblivious mobile robots, in Proceedings of the 6th Latin Ameri-
can Conference on Theoretical Informatics (LATIN), Lecture Notes in Comput. Sci. 2976,
Springer, Berlin, 2004, pp. 577–588.

[9] M. Cieliebak and G. Prencipe, Gathering autonomous mobile robots, in Proceedings of the
9th International Colloquium On Structural Information And Communication Complexity
(SIROCCO), Mont Saint-Michel, France, 2002, pp. 57–72.

[10] E. J. Cockayne and Z. A. Melzak, Euclidean constructibility in graph-minimization prob-
lems, Math. Mag., 42 (1969), pp. 206–208.

[11] R. Cohen and D. Peleg, Convergence properties of the gravitational algorithms in asyn-
chronous robot systems, SIAM J. Comput., 34 (2005), pp. 1516–1528.

[12] R. Cohen and D. Peleg, Convergence of autonomous mobile robots with inaccurate sensors
and movements, in Proceedings of the 23rd Symposium on Theoretical Aspects of Com-
puter Science (STACS), Springer, Berlin, 2006, pp. 549–560.

[13] R. Cohen and D. Peleg, Local spreading algorithms for autonomous robot systems, Theoret.
Comput. Sci., 399 (2008), pp. 71–82.

[14] A. Cord-Landwehr, B. Degener, M. Fischer, M. Hüllmann, B. Kempkes, A. Klaas,

P. Kling, S. Kurras, M. Mrtens, F. Meyer auf der Heide, C. Raupach, K. Swierkot,

D. Warner, C. Weddemann, and D. Wonisch, Collision-less gathering of robots with
an extent, in Proceedings of the 37th International Conference on Current Trends in The-
ory and Practice of Computer Science (SOFSEM), Lecture Notes in Comput. Sci. 6543,
Springer, Berlin, 2011, pp. 178–189.

[15] A. Cord-Landwehr, B. Degener, M. Fischer, M. Hüllmann, B. Kempkes, A. Klaas,

P. Kling, S. Kurras, M. Mrtens, F. Meyer auf der Heide, C. Raupach, K. Swierkot,

D. Warner, C. Weddemann, and D. Wonisch, A new approach for analyzing conver-
gence algorithms for mobile robots, in Proceedings of the 38th International Colloquium on
Automata, Languages and Programming (ICALP), Lecture Notes in Comput. Sci. 6756,
Springer, Berlin, 2011, pp. 650–661.

[16] J. Czyzowicz, L. Gasieniec, and A. Pelc, Gathering few fat mobile robots in the plane,
Theoret. Comput. Sci., 410 (2009), pp. 481–499.

[17] S. Das, P. Flocchini, N. Santoro, and M. Yamashita, On the computational power of
oblivious robots: Forming a series of geometric patterns, in Proceedings of the 29th Annual
ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2010,
pp. 267–276.

[18] X. Défago and S. Souissi, Non-uniform circle formation algorithm for oblivious mobile robots
with convergence toward uniformity, Theoret. Comput. Sci., 396 (2008), pp. 97–112.

[19] B. Degener, B. Kempkes, T. Langner, F. Meyer auf der Heide, P. Pietrzyk, and

R. Wattenhofer, A tight runtime bound for synchronous gathering of autonomous robots
with limited visibility, in Proceedings of the 23rd ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA), ACM, New York, 2011, pp. 139–148.

[20] S. Devismes, F. Petit, and S. Tixeuil, Optimal probabilistic ring exploration by semi-
synchronous oblivious robots, in Proceedings of the 16th Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO), Lecture Notes in Comput. Sci. 5869,
Springer-Verlag, Berlin, 2009, pp. 195–208.

[21] Y. Dieudonné, S. Dolev, F. Petit, and M. Sega, Deaf, dumb, and chatting asynchronous
robots, in Proceedings of the 13th International Conference on Principles of Distributed
Systems (OPODIS), Springer, Berlin, 2009, pp. 71–85.

878 CIELIEBAK, FLOCCHINI, PRENCIPE, AND SANTORO

[22] Y. Dieudonné, O. Labbani-Igbida, and F. Petit, Circle formation of weak mobile robots,
ACM Trans. Autonomous and Adaptive Systems, 3 (2008), pp. 1–20.

[23] S. Durocher and D. Kirkpatrick, The projection median of a set of points, Comput. Geom.,
42 (2009), pp. 364–375.

[24] A. Efrima and D. Peleg, Distributed models and algorithms for mobile robot systems, in
Proceedings of the 33rd International Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM), Lecture Notes in Comput. Sci. 4362, Springer-Verlag,
Berlin, 2007, pp. 70–87.

[25] P. Flocchini, G. Prencipe, and N. Santoro, Computing by Mobile Robotic Sensors, in
Theoretical Aspects of Distributed Computing in Sensor Networks, S. Nikoletseas and
J. Rolim, eds., Monogr. Theoret. Comput. Sci., Springer-Verlag, Berlin, 2011, pp. 655–693.

[26] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, Gathering of robots with limited
visibility, Theoret. Comput. Sci., 337 (2005), pp. 147–168.

[27] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, Arbitrary pattern formation by
asynchronous oblivious robots, Theoret. Comput. Sci., 407 (2008), pp. 412–447.

[28] J. Fredslund and M. Matarić, A general algorithm for robot formations using local sensing
and minimal communication, IEEE Trans. Robotics Automation, 18 (2002), pp. 837–846.

[29] A. Ganguli, J. Cortés, and F. Bullo, Multirobot rendezvous with visibility sensors in non-
convex environments, IEEE Trans. Robotics, 25 (2009), pp. 340–352.

[30] N. Gordon, Y. Elor, and A. M. Bruckstein, Gathering multiple robotic agents with
crude distance sensing capabilities, in Proceedings of the 6th International Conference
on Ant Colony Optimization and Swarm Intelligence, Lecture Notes in Comput. Sci. 5217,
Springer, Berlin, 2008, pp. 72–83.

[31] N. Heo and P. K. Varshney, Energy-efficient deployment of intelligent mobile sensor net-
works, IEEE Trans. Systems Man CyberNetics A Systems Humans, 35 (2005), pp. 78–92.

[32] A. Howard, M. J. Mataric, and G. S. Sukhatme, An incremental self-deployment algorithm
for mobile sensor networks, Autonomous Robots, 13 (2002), pp. 113–126.

[33] Y. Ikemoto, Y. Hasegawa, T. Fukuda, and K. Matsuda, Gradual spatial pattern formation
of homogeneous robot group, Inform. Sci., 171 (2005), pp. 431–445.

[34] T. Izumi, S. Souissi, Y. Katayama, N. Inuzuka, X. Défago, K. Wada, and M. Yamashita,
The gathering problem for two oblivious mobile robots with unreliable compasses, SIAM J.
Comput., 41 (2012), pp. 26–46.

[35] A. Kansal, W. Kaiser, G. Pottie, M. Srivastava, and G. S. Sukhatme, Reconfiguration
methods for mobile sensor networks, ACM Trans. Sensor Networks, 3 (2007), pp. 22–23.

[36] Y. Katayama, Y. Tomida, H. Imazu, N. Inuzuka, and K. Wada, Dynamic compass models
and gathering algorithms for autonomous mobile robots, in Proceedings of the 14th Col-
loquium on Structural Information and Communication Complexity (SIROCCO), Lecture
Notes in Comput. Sci. 4474, Springer, Berlin, 2007, pp. 274–288.

[37] R. Klasing, E. Markou, and A. Pelc, Gathering asynchronous oblivious mobile robots in a
ring, Theoret. Comput. Sci., 390 (2008), pp. 27–39.

[38] D. R. Kowalski and A. Malinowski, How to meet in anonymous network, Theoret. Comput.
Sci., 399 (2008), pp. 141–156.

[39] Y. Kupitz and H. Martini, Geometric aspects of the generalized Fermat-Torricelli problem,
Intuitive Geometry, 6 (1997), pp. 55–127.

[40] J. Lee, S. Venkatesh, and M. Kumar, Formation of a geometric pattern with a mobile
wireless sensor network, J. Robotic Systems, 21 (2004), pp. 517–530.

[41] J. Lin, A. S. Morse, and B. D. O. Anderson, The multi-agent rendezvous problem. Part 1:
The synchronous case, SIAM J. Control Optim., 46 (2007), pp. 2096–2119.

[42] J. Lin, A. S. Morse, and B. D. O. Anderson, The multi-agent rendezvous problem. Part 2:
The asynchronous case, SIAM J. Control Optim., 46 (2007), pp. 2120–2147.

[43] Z. Lin, B. Francis, and M. Maggiore, Getting mobile autonomous robots to rendezvous, in
Workshop on Control of Uncertain Systems, Lecture Notes in Control and Information
Sciences 329, Springer-Verlag, Berlin, 2006, pp. 119–137.

[44] S. Mart́ınez, Practical multiagent rendezvous through modified circumcenter algorithms, Au-
tomatica J. IFAC, 45 (2009), pp. 2010–2017.

[45] S. Mart́ınez, F. Bullo, J. Cortes, and E. Frazzoli, On synchronous robotic networks—
parts I and II, IEEE Transactions on Automatic Control, 52 (2007), pp. 2199–2226.

[46] Y. Oasa, I. Suzuki, and M. Yamashita, A robust distributed convergence algorithm for au-
tonomous mobile robots, in Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, IEEE, Washington, DC, 1997, pp. 287–292.

GATHERING MOBILE ROBOTS 879

[47] L. E. Parker, Current state of the art in distributed autonomous mobile robotics, in Distributed
Autonomous Robotic Systems 4, L. E. Parker, G. Bekey, and J. Barhen, eds., Springer,
Berlin, 2000, pp. 3–12.

[48] G. Prencipe, Impossibility of gathering by a set of autonomous mobile robots, Theoret. Com-
put. Sci., 384 (2007), pp. 222–231.

[49] S. Souissi, X. Défago, and M. Yamashita, Using eventually consistent compasses to gather
memory-less mobile robots with limited visibility, ACM Trans. Autonomous Adaptive Sys-
tems, 4 (2009), pp. 1–27.

[50] O. Soysal, E. Bahçeci, and E. Şahin, Aggregation in swarm robotic systems: Evolution and
probabilistic control, Turkish J. Electrical Engineering, 15 (2007), pp. 199–225.

[51] K. Sugihara and I. Suzuki, Distributed algorithms for formation of geometric patterns with
many mobile robots, J. Robotics Systems, 13 (1996), pp. 127–139.

[52] I. Suzuki and M. Yamashita, Distributed anonymous mobile robots: Formation of geometric
patterns, SIAM J. Comput., 28 (1999), pp. 1347–1363.

[53] E. Weiszfeld, Sur le point pour lequel la somme des distances de n points donnés est minimum,
Tohoku Math., 43 (1936), pp. 355–386.

[54] E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in
Computer Science, Springer, Berlin, 1991, pp. 359–370.

[55] Défago X, M. Gradinariu, S. Messika, and P. Raipin-Parvédy, Fault-tolerant and self-
stabilizing mobile robots gathering, in Proceedings of the 20th International Symposium
on Distributed Computing (DISC), Lecture Notes in Comput. Sci. 4167, Springer, Berlin,
2006, pp. 46–60.

[56] M. Yamashita and I. Suzuki, Characterizing geometric patterns formable by oblivious anony-
mous mobile robots, Theoret. Comput. Sci., 411 (2010), pp. 2433–2453.

[57] J. Yu, M. LaValle, and D. Liberzon, Rendezvous without coordinates, in Proceedings of the
47th IEEE Conference on Decision and Control, IEEE Control Systems Society, Piscataway,
NJ, 2008, pp. 1803–1808.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

