
Nordic Journal of Computing 14(2008), 151–172.

ON THE COMPLEXITY OF VARIATIONS OF EQUAL
SUM SUBSETS

MARK CIELIEBAK
Institute of Theoretical Computer Science, ETH Zürich

8092 Zürich, Switzerland
mark@dreamboxx.com

STEPHAN EIDENBENZ
Los Alamos National Laboratory

CCS-5, MS M997, PO Box 1663, Los Alamos, NM87545
Los Alamos National Laboratory Publication No. LA-UR:04-4791

eidenben@lanl.gov

ARIS T. PAGOURTZIS
School of Electrical and Computer Engineering

National Technical University of Athens
Polytechnioupoli, 15780 Zografou, Athens, Greece

pagour@cs.ntua.gr

KONRAD SCHLUDE
Institute of Theoretical Computer Science, ETH Zürich

8092 Zürich, Switzerland
schlude@inf.ethz.ch

Abstract. The Equal Sum Subsets problem, where we are given a set of positive integers
and we ask for two nonempty disjoint subsets such that their elements add up to the same
total, is known to be NP-hard. In this paper we give (pseudo-)polynomial algorithms
and/or (strong) NP-hardness proofs for several natural variations of Equal Sum Subsets.
Among others we present (1) a framework for obtaining NP-hardness proofs and pseudo-
polynomial time algorithms for Equal Sum Subsets variations, which we apply to variants
of the problem with additional selection restrictions, (2) a proof of NP-hardness and a
pseudo-polynomial time algorithm for the case where we ask for two subsets such that the
ratio of their sums is some fixed rational r > 0, (3) a pseudo-polynomial time algorithm for
finding k subsets of equal sum, with k = O(1), and a proof of strong NP-hardness for the
same problem with k = Ω(n), (4) algorithms and hardness results for finding k equal sum
subsets under the additional requirement that the subsets should be of equal cardinality.

Our results are a step towards determining the dividing lines between polynomial time
solvability, pseudo-polynomial time solvability, and strong NP-completeness of subset-
sum related problems.

ACM CCS Categories and Subject Descriptors: F.2 [Analysis of Algorithms and Prob-
lem Complexity]

Key words: equal sum subsets, partition, knapsack problems, strong NP-completeness,
pseudo-polynomial algorithms

Received August 2004; revised July 2007; accepted October 2008. Communicated by Andrzej Lingas.

152 CIELIEBAK ET AL.

1. Introduction

In this paper, we study the complexity of variations of Equal Sum Subsets (ESS),
which is defined as follows: Given a set A of n positive integers, are there two
nonempty disjoint subsets X, Y ⊆ A such that their elements sum up to the same
total?

The problem Equal Sum Subsets is a relaxation of Partition in the sense that
we do not require the two subsets to cover all input numbers. Partition is a spe-
cial case of another well-known problem Subset Sum, where the goal is to find
one subset whose elements add up to a particular value; Subset Sum, in turn, is
a special case of Knapsack. Equal Sum Subsets can be also seen as a variation
of Bin Packing with exactly two bins, if we require that both bins should be filled
to the same level and not insist on necessarily using all the elements. An even
more related problem is a generalization of Knapsack, called Multiple Knapsack,
in which there are several knapsacks instead of only one. Partition, Subset Sum,
Knapsack, Multiple Knapsack, and Bin Packing, as well as many variations of
them, are all NP-hard problems with numerous applications in production plan-
ning and scheduling (see for instance [Martello and Toth 1990] for a survey).
They all admit pseudo-polynomial time algorithms that lead to polynomial time ap-
proximation schemes for the corresponding optimization versions [Ibarra and Kim
1975],[Lawler 1979], [Kellerer 1999],[Chekuri and Khanna 2005],[de la Vega and
Lueker 1981],[Karmarkar and Karp 1982].

Our particular interest in Equal Sum Subsets comes from computational biology,
namely from its connection to the PartialDigest problem. We briefly illustrate this
connection; more details can be found in [Cieliebak 2003]. In the Partial Digest
problem we are given a multiset D of distances and are asked to find coordinates
of points on a line such that D is exactly the multiset of all pair-wise distances of
these points. Partial Digest is a basic problem from DNA sequencing [Setubal
and Meidanis 1997],[Pevzner 2000]. Neither a polynomial-time algorithm nor a
proof of NP-completeness is known for this problem. In [Cieliebak et al. 2003] it
is shown that Partial Digest is NP-hard if some of the distances are missing in the
input, which is usually the case for real-life data; the proof of this result is done by
reduction from Equal Sum Subsets.

Regarding the complexity of Equal Sum Subsets, it is known that it is NP-
complete [Woeginger and Yu 1992] and that it admits a pseudo-polynomial al-
gorithm [Bazgan et al. 2002] as explained below. Bazgan, Santha and Tuza [Baz-
gan et al. 2002] study an optimization version of Equal Sum Subsets, which they
call Subset-Sums Ratio, in which the ratio of the sums of the two subsets should
be as close to 1 as possible. They give a pseudo-polynomial time algorithm for
Subset-Sums Ratio which leads to an FPTAS for the problem; the first part of that
algorithm is in fact a pseudo-polynomial algorithm for Equal Sum Subsets with
time complexity O(n2S), where S is the sum of all numbers in the input set A. It
should be also mentioned that Subset-Sums Ratio was first defined in [Woeginger
and Yu 1992] (stated as ‘computing the similarity number of a set’) and a simple
1.324-approximation algorithm was given there. To the best of our knowledge, no
other results concerning Equal Sum Subsets have appeared in the literature.

COMPLEXITY OF EQUAL SUM SUBSETS 153

As observed in [Bazgan et al. 2002], an interesting special case of Equal Sum
Subsets is defined if we restrict the sum of the n given numbers to be smaller
than 2n − 1; then at least two of the 2n − 1 non-empty subsets of the numbers
must have equal sum, hence, the decision version of Equal Sum Subsets becomes
trivial. In other words, the search version of Equal Sum Subsets for instances with
total sum < 2n − 1 is guaranteed to always have a solution and therefore belongs
to the class of function problems TFNP [Meggido and Papadimitriou 1991]; what
is quite intriguing is that, while it is unlikely that this problem is FNP-complete
(FNP is the function analog of NP), no polynomial-time algorithm for finding the
(undoubtedly existing) two equal sum subsets is known [Papadimitriou 1994].

In order to better understand Equal Sum Subsets as a combinatorial problem,
we study different natural variations of the problem, which we introduce in the
following. A summary of our results is shown in Table I.

1.1 Variations of two equal sum subsets

In some settings, it is required that the two subsets fulfil additional requirements.
One such requirement is that the subsets have to respect a given set of exclusions,
for instance if we want to find groups of people for medical experiments that fulfil
some interaction restrictions. This yields the following problem definition, where
sum (S) =

∑
x∈S x denotes the sum of all elements in set S .

Definition 1. (ESS with Exclusions) Given a set A of n positive integers and an
exclusion graph Gex = (A, Eex), are there two nonempty disjoint subsets X, Y ⊆ A
with sum (X) = sum (Y) such that each of the two sets is an independent set in Gex?

The problem ESS with Exclusions is obviously NP-complete, since Equal Sum
Subsets is its special case where the exclusion graph is empty. We give a pseudo-
polynomial time algorithm for this problem in Section 3.1, using a dynamic pro-
gramming approach similar-in-spirit to the one used for finding two equal sum
subsets (without exclusions) [Bazgan et al. 2002].

If we do not want to exclude elements, but on the contrary we want to ensure
that some numbers of the input occur in the subsets, then this yields the following
two problems: In ESS with Enforced Element we enforce one element of the
input numbers, say the last, to be in one of the subsets; in Alternating Equal Sum
Subsets we have for each input number a “partner”, and if a number occurs in
one set, then its partner has to be in the other set. This problem is the “partial”
equivalent of a variation of Partition [Garey and Johnson 1979, p. 223] which we
call Alternating Partition.

We show in Sections 3.2 and 3.3 that both problems above are NP-complete,
by reducing Alternating Partition to the former and Equal Sum Subsets to the
latter, respectively; we present pseudo-polynomial time algorithms for both prob-
lems. We would like to point out at this time that the reductions for showing NP-
completeness are not too involved; however, we present them in this work for two
reasons: first, to make the reader become familiar with our vector representation
for large numbers (see below); and second, because the technique used can serve

154 CIELIEBAK ET AL.

as a framework for obtaining NP-hardness proofs for several other variations of
Equal Sum Subsets. In fact, Cieliebak [Cieliebak 2003] has used this framework
to prove NP-completeness for several variants of Equal Sum Subsets where the
solution elements can be selected from two different sets, instead of one.

We then study the relaxation of Equal Sum Subsets that asks for two subsets
such that the ratio of their sums is exactly r, for some fixed rational r > 0. This
problem, that we refer to as Factor–r Sum Subsets, is very closely related to the
minimization version of Equal Sum Subsets studied in [Bazgan et al. 2002]. In
Section 4, we show that Factor–r Sum Subsets is NP-complete for any rational
factor r > 0, by giving two reductions from Exact 3–SAT: one that works for all
r > 0 with r � {1, 2, 1

2 }, and one that works for the cases r = 2 and r = 1
2 . The

case r = 1 is just Equal Sum Subsets. We also present a pseudo-polynomial time
algorithm for this problem too.

1.2 Variations of k equal sum subsets for k > 2

In the second part of the paper, we turn to the generalization of Equal Sum Subsets
where we do not ask for only two, but for k disjoint equal sum subsets from a given
set of numbers, for a given k > 2:

Definition 2. (k Equal Sum Subsets) Given a multiset of n positive integers A =
{a1, . . . , an}, are there k nonempty disjoint subsets S1, . . . , S k ⊆ {a1, . . . , an} such
that sum (S 1) = . . . = sum (S k)?

Observe that we allow multisets here, in contrast to Equal Sum Subsets, which
becomes trivial if any number occurs more than once in the input. Note also that if
we require that our subsets yield a full partition of the given numbers, our problem
would turn into a variation of Partition with k sets instead of 2.

We first show in Section 5.1 that k Equal Sum Subsets is NP-complete for any
integer k > 2, by giving a reduction from Alternating Partition. Then we study the
influence of parameter k on the complexity of k Equal Sum Subsets in more depth.
We have introduced parameter k for the number of equal size subsets as a fixed
constant that is part of the problem definition. An interesting variation is to allow
k to be a (fixed) function of the number of input elements n, e.g. k = n

q for some
constant q. In the sequel, we will always consider k as a function of n; whenever
k is a constant we simply write k = O(1). In Section 5.2, we present a dynamic
programming algorithm for k Equal Sum Subsetswith running time O(nS k

kk−1), where
n is the cardinality of the input set and S is the sum of all numbers in the input set;
the algorithm runs in pseudo-polynomial time for k = O(1). On the other hand, we
show that k Equal Sum Subsets is strongly NP-complete for k = Ω(n). We obtain
this result by giving a reduction from 3–Partition.

We then return to the case where k is a fixed constant. The definition of k Equal
Sum Subsets corresponds to the situation in which it is allowed to form subsets
that do not have the same number of elements. In some cases, this makes sense;
however, we may also wish to have the same number of elements in each subset.
Such problems occur for instance when we are given a set of, say, soccer players,

COMPLEXITY OF EQUAL SUM SUBSETS 155

together with values that represent their strength, and we want to compose teams
of equal strength and size to play a tournament. We study three variations of k
Equal Sum Subsets with equal cardinalities, where either the cardinality is a fixed
constant, i.e., part of the problem definition (k ESS of Cardinality c), or we specify
the cardinality of the subsets in the input (k ESS of Specified Cardinality), or we
only ask for subsets of equal cardinality, but do not specify their cardinality at all
(k ESS of Equal Cardinality).

In Section 5.3, we first observe that there is a simple polynomial time algorithm
for k ESS of Cardinality c that uses exhaustive search and runs in time O(nkc),
which is polynomial in n, since the two parameters k and c are fixed constants.
We then show that, on the other hand, k ESS of Specified Cardinality and k ESS
of Equal Cardinality are NP-complete. To establish this result, we give a reduc-
tion from Alternating Partition to the first problem; a similar reduction can be
used to prove NP-completeness for the second problem. In addition, we show that
none of these two problems can be strongly NP-complete, by presenting a dynamic
programming algorithm that solves them in pseudo-polynomial time.

2. Notation

We do not distinguish between sets and multisets in our notation, and denote a
multiset with elements 1, 1, 3, 5, 5, and 8 by {1, 1, 3, 5, 5, 8}. Subtracting an ele-
ment from a multiset will remove it only once (if it is there), thus {1, 1, 3, 5, 5, 8} −
{1, 4, 5, 5} = {1, 3, 8}. For a set or multiset S we denote by |S | the cardinality of S ,
e.g. |{1, 1, 3, 5, 5, 8}| = 6. We denote by sum (S) the sum of all elements in a set or
multiset S , i.e., sum (S) =

∑
x∈S x. E.g. sum ({1, 1, 3, 5, 5, 8}) = 23. For simplicity,

we slightly abuse standard terminology and call two subsets X, Y of a given mul-
tiset A = {a1, . . . , an} disjoint if there are disjoint (in the usual sense) subsets of
indices IX , IY ⊆ {1, . . . , n} such that X = ∪i∈IX {ai} and Y = ∪i∈IY {ai}; note that X
and Y may be multisets as well.

We introduce a vector representation for large numbers that will allow us to add
up numbers digit by digit, like polyadic numbers. The numbers are expressed
in the number system of some base Z. We denote by 〈a1, . . . , an〉 the number∑

1≤i≤n aiZn−i; we say that ai is the i-th digit of this number. In our proofs, we will
choose base Z large enough such that the additions that we will perform do not
lead to carry-overs from one digit to the next. Hence, we can add numbers digit by
digit. The same holds for scalar multiplications. For example, having base Z = 27
and numbers α = 〈3, 5, 1〉, β = 〈2, 1, 0〉, then α + β = 〈5, 6, 1〉 and 3 · α = 〈9, 15, 3〉.
We define the concatenation of two numbers by 〈a1, . . . , an〉 ◦ 〈b1, . . . , bm〉 :=
〈a1, . . . , an, b1, . . . , bm〉, i.e., α ◦ β = αZm + β, where m is the number of digits
in β. Let Δn(i) := 〈0, . . . , 0, 1, 0, . . . , 0〉 be the number that has n digits, all 0’s
except for the i-th position, where the digit is 1. Moreover, 1n := 〈1, . . . , 1〉 has n
digits, all 1’s, and 0n := 〈0, . . . , 0〉 has n zeros. Notice that 1n =

Zn−1
Z−1 .

156 CIELIEBAK ET AL.

Table I: A summary of our results. All results are new, except those of the first line which concern
our archetypical problem Equal Sum Subsets.

Equal Sum Subsets (ESS) Variations
Problem Hardness Result Complexity

Upper Bound

Equal Sum Subsets (ESS) NP-hard [Woeginger
and Yu 1992], pseudo-
poly algorithm [Bazgan
et al. 2002]

O(n2 · S)

ESS with Exclusions NP-hard, pseudo-poly
algorithm

O(n2 · S)

ESS with Enforced Element NP-hard, pseudo-poly
algorithm

O(n2 · S)

Alternating Equal Sum Subsets NP-hard, pseudo-poly
algorithm

O(n2 · S 2)

Factor–r Sum Subsets NP-hard, pseudo-poly
algorithm for any
rational r > 0

O(n2 · S 2)

k Equal Sum Subsets (k ESS) NP-hard, pseudo-poly
algorithm for any fixed
constant integer k > 2

O(nS k

kk−1)

strongly NP-hard for k =
Ω(n)

k ESS of Cardinality c in P for any fixed con-
stant integers k ≥ 2,
c ≥ 1

O(nkc)

k ESS of Specified Cardinality NP-hard, pseudo-poly
algorithm for any fixed
constant integer k ≥ 2

O(S k·nk+1

k2k−1)

k ESS of Equal Cardinality NP-hard, pseudo-poly
algorithm for any fixed
constant integer k ≥ 2

O(S k·nk+1

k2k−1)

3. Complexity of Equal Sum Subsets with Selection Constraints

3.1 Element exclusion

In this section, we study variations of Equal Sum Subsets where we add specific
requirements that a solution must fulfil. In particular, we study variations where the
two subsets take into account some exclusions or enforcement of specific elements
of the input.

We first study the problem ESSwith Exclusions, where we are additionally given
an exclusion graph (or its complement: a preference graph) and ask for two sub-

COMPLEXITY OF EQUAL SUM SUBSETS 157

sets of equal sum that take this graph into account (cf. Definition 1). Obviously,
ESS with Exclusions is NP-complete, since Equal Sum Subsets is the special case
where the exclusion graph is empty (Eex = ∅) and Equal Sum Subsets is NP-
complete [Woeginger and Yu 1992]. Here, we present a pseudo-polynomial algo-
rithm for the problem, using a dynamic programming approach similar-in-spirit to
the one used for finding two equal sum subsets (without exclusions) [Bazgan et al.
2002].

Theorem 1. ESS with Exclusions can be solved in pseudo-polynomial time O(n2 ·
S), where S = sum (A).

Proof. Let A = {a1, . . . , an} and Gex = (A, Eex) be an instance of ESS with
Exclusions. We assume w.l.o.g. that the input values are in increasing order, i.e.,
a1 ≤ . . . ≤ an.

We define Boolean variables F(k, t) for k ∈ {1, . . . , n} and t ∈ {1, . . . , S }. Variable
F(k, t) will be TRUE if there exists a set X ⊆ A such that X ⊆ {a1, . . . , ak}, ak ∈ X,
sum (X) = t, and X is independent in Gex. For a TRUE entry F(k, t), we store a
corresponding set X in a second variable X(k, t).

We compute the value of all variables F(k, t) by iterating over t and k. The
algorithm runs until it finds the smallest t ∈ {1, . . . , S } for which there are two
different indices k, � ∈ {1, . . . , n} such that F(k, t) = F(�, t) = TRUE; in this case,
sets X(k, t) and X(�, t) constitute a solution because sum (X(k, t)) = sum (X(�, t)) =
t, both sets are disjoint due to minimality of t, and both sets are independent in Gex.

We initialize the variables as follows. For all 1 ≤ k ≤ n, we set F(k, t) = FALSE,
for 1 ≤ t < ak and for

∑k
i=1 ai < t ≤ S ; moreover, we set F(k, ak) = TRUE and

X(k, ak) = {ak}. Observe that these equations define F(1, t), for 1 ≤ t ≤ S , and
F(k, 1), for 1 ≤ k ≤ n.

After initialization, the table entries for k > 1 and ak < t ≤ ∑k
i=1 ai can be

computed recursively: F(k, t) is TRUE if there exists an index � ∈ {1, . . . , k−1} such
that F(�, t − ak) is TRUE, and such that the subset X(�, t − ak) remains independent
in Gex when adding ak. The recursive computation is

F(k, t) =
k−1∨

�=1

[F(�, t − ak) ∧ ∀a ∈ X(�, t − ak), (a, ak) � Eex].

If F(k, t) is set to TRUE due to F(�, t−ak), then we set X(k, t) = X(�, t−ak)∪{ak}.
The key observation for showing correctness is that for each F(k, t) considered by
the algorithm there is at most one F(�, t − ak) that is TRUE, for 1 ≤ � ≤ k −
1; if there were two, say �1, �2, then X(�1, t − ak) and X(�2, t − ak) would be a
solution for the problem instance, and the algorithm would have stopped earlier—
a contradiction. This means that all subsets considered are constructed in a unique
way, and therefore, no information can be lost.

In order to determine the value F(k, t), the algorithm considers k−1 table entries.
As shown above, only one of them may be TRUE; for such an entry, say F(�, t−ak),
the (at most �) elements of X(�, t−ak) are checked to see if they exclude ak. Hence,

158 CIELIEBAK ET AL.

the computation of F(k, t) takes time O(n), and the total time complexity of the
algorithm is O(n2 · S). �

3.2 Element enforcement

If we do not want to exclude elements, but on the contrary, we want to ensure that
a specific element of the input occurs in one of the two equal sum subsets, then this
is the ESS with Enforced Element problem:

Definition 3. (ESS with Enforced Element) Given a set A = {a1, . . . , an} of n pos-
itive integers, are there two disjoint subsets X, Y ⊆ A with sum (X) = sum (Y) such
that an ∈ X?

We show that this problem is NP-complete by reduction from Alternating Par-
tition.

Theorem 2. ESS with Enforced Element is NP-complete.

Proof. The problem is obviously in NP. For the proof of NP-hardness, we
give a reduction from Alternating Partition, which is the following NP-complete
variation of Partition [Garey and Johnson 1979, p. 223]: Given n pairs of positive
integers (u1, v1), . . . , (un, vn), are there two nonempty disjoint sets of indices I and
J with I ∪ J = {1, . . . , n} such that

∑
i∈I ui +

∑
j∈J v j =

∑
i∈I vi +

∑
j∈J u j?

Consider an instance of Alternating Partition (u1, v1), . . . , (un, vn). Let S =∑n
i=1(ui + vi), ai = 〈ui〉 ◦ Δn(i) and bi = 〈vi〉 ◦ Δn(i), 1 ≤ i ≤ n, and let c = 〈S2 〉 ◦ 1n.

For these numbers, we use base Z = 2 · S · n, which is large enough such that no
carry-overs from one digit to the next occur in the following additions.

The ai’s, bi’s, and c are an instance of ESS with Enforced Element such that c,
which is the last element in the input, is the enforced element. We show that there
exists a solution for the Alternating Partition instance if and only if there exists a
solution for the ESS with Enforced Element instance.

Assume that index sets I and J are a solution for the Alternating Partition
instance. Then

∑
i∈I ui +

∑
j∈J v j =

∑
i∈I vi +

∑
j∈J u j =

S
2 . Let X = {c} and

Y = {ai | i ∈ I} ∪ {bj | j ∈ J}. Then

sum (Y) =
∑

i∈I

ai +
∑

j∈J

b j

=
∑

i∈I

(〈ui〉 ◦ Δn(i)) +
∑

j∈J

(〈v j〉 ◦ Δn(j))

= 〈
∑

i∈I

ui +
∑

j∈J

v j〉 ◦ (
∑

i∈I

Δn(i) +
∑

j∈J

Δn(j))

= 〈S
2
〉 ◦

n∑

i=1

Δn(i)

= 〈S
2
〉 ◦ 1n

= sum (X),

COMPLEXITY OF EQUAL SUM SUBSETS 159

thus, X and Y are a solution for the ESS with Enforced Element instance.
For the opposite direction, let X and Y be a solution for the ESS with Enforced

Element instance with c ∈ X. All numbers in the input have n + 1 digits. For each
index i ∈ {2, . . . , n + 1}, only three numbers, namely c, ai and bi, have a 1 in the
i’th digit, all other numbers in the input have a 0 in the i’th digit. For each digit
the sum over all elements in X and in Y yields the same result. Therefore, since
c ∈ X, exactly one of ai or bi can be in Y for each 1 ≤ i ≤ n. Moreover, X = {c},
since any other element would add a second 1 in some digit i, which then could
not be equalized by elements in Y . Summing up the first digit of all elements in Y
yields exactly the first digit of c, which is S

2 . Thus, I := {i ∈ {1, . . . , n} | ai ∈ Y}
and J := { j ∈ {1, . . . , n} | bj ∈ Y} yield a solution for the Alternating Partition
instance. �

We now show that ESSwith Enforced Element is not NP-complete in the strong
sense.

Theorem 3. ESSwith Enforced Element can be solved in pseudo-polynomial time
O(n2 · S), where S = sum (A).

Proof. We present a dynamic programming algorithm similar to the algorithm for
ESSwith Exclusions. We use the same Boolean variables without the requirement
of excluding elements. More specifically, F(k, t) will be TRUE if there exists a set
X ⊆ A such that X ⊆ {a1, . . . , ak}, ak ∈ X, and sum (X) = t.

We compute the value of all variables F(k, t) by iterating first over t ∈ {1, . . . , S },
where S = sum (A) and then over k ∈ {1, . . . , n}. The algorithm runs until it finds
the smallest t for which there is an index k � n such that F(k, t) = F(n, t) = TRUE;
in this case, the corresponding sets constitute a solution because they have the same
sum, they are disjoint due to minimality of t, and an is present in one of them. Note
that it is not hard to reconstruct these sets.

Initialization is done as before and the recursive computation is now much sim-
pler:

F(k, t) =
k−1∨

�=1

F(�, t − ak) .

As before, the computation of F(k, t) takes time O(n), and the total time com-
plexity of the algorithm is O(n2 · S). �

3.3 Alternating equal sum subsets

We now turn to the problem Alternating Equal Sum Subsets, which is the “par-
tial” equivalent of Alternating Partition, which we used in the previous proof. In
Alternating Equal Sum Subsets, we are given pairs of numbers and we require for
each element that we use in one set that its partner will be in the other set. Formally,
the problem is defined as follows:

160 CIELIEBAK ET AL.

Definition 4. (Alternating Equal Sum Subsets) Given n pairs of positive integers
(u1, v1), . . . , (un, vn), are there two nonempty disjoint sets of indices I and J such
that
∑

i∈I ui +
∑

j∈J v j =
∑

i∈I vi +
∑

j∈J u j?

We show that this problem is NP-complete by reduction from Equal Sum Sub-
sets.

Theorem 4. Alternating Equal Sum Subsets is NP-complete.

Proof. The problem is obviously in NP. For the proof of NP-hardness, we give
a reduction from Equal Sum Subsets. Given an instance of Equal Sum Subsets,
i.e., a set of numbers A = {a1, . . . , an}, we reduce it to an instance of Alternating
Equal Sum Subsets by setting B = 2 · ∑n

i=1 ai and mapping each number ai to
a pair (ui, vi), with ui = B + ai and vi = B. Note that we use offset B only for
technical reasons, since all input numbers for Alternating Equal Sum Subsets are
required to be positive. Clearly, if there are nonempty disjoint sets X, Y ⊆ A such
that sum (X) = sum (Y), then I := {i | ai ∈ X} and J := { j | aj ∈ Y} are disjoint
index sets such that

∑
i∈I ui +

∑
j∈J v j =

∑
i∈I vi +

∑
j∈J u j. Conversely, if there is a

solution for the Alternating Equal Sum Subsets instance, i.e., appropriate sets of
indices I and J, then the sets X = {ai | i ∈ I} and Y = {aj | j ∈ J} form obviously a
solution for the Equal Sum Subsets instance. �

We now show that Alternating Equal Sum Subsets admits a pseudo-polynomial
time algorithm.

Theorem 5. Alternating Equal Sum Subsets can be solved in pseudo-polynomial
time O(n2 · S 2), where S =

∑
1≤i≤n max{ui, vi}.

Proof. We present a dynamic programming algorithm similar to the algorithms
for ESS with Enforced Element (Thm. 3) and ESS with Exclusions (Thm. 1).

Let U = {u1, . . . , un} and V = {v1, . . . , vn}. We use Boolean variables F(k, t1, t2)
for k ∈ {1, . . . , n}, t1, t2 ∈ {1, . . . , S } which will be TRUE if there exist sets X, Y ⊆
{u1, . . . , uk} ∪ {v1, . . . , vk} such that:
◦ for all i ∈ {1, . . . , k − 1} it holds ui ∈ X ⇔ vi ∈ Y and vi ∈ X ⇔ ui ∈ Y ,

◦ either uk ∈ X ∧ vk ∈ Y or vk ∈ X ∧ uk ∈ Y ,

◦ sum (X) = t1 and sum (Y) = t2.
The algorithm computes the value of all variables F(k, t1, t2) by iterating first

over t1 ∈ {1, . . . , S }, then over t2 ∈ {1, . . . , S }, and finally over k ∈ {1, . . . , n}.
The algorithm runs until it finds a value t for which there is an index k such that
F(k, t, t) = TRUE; in this case, the corresponding sets constitute a solution and it is
not hard to reconstruct them from the table entries. The variables are initialized in
a way similar to the one in the proof of Thm. 1.

The recursive computation is as follows:

F(k, t1, t2) =
k−1∨

�=1

[F(�, t1 − uk, t2 − vk) ∨ F(�, t1 − vk, t2 − uk)].

COMPLEXITY OF EQUAL SUM SUBSETS 161

The computation of F(k, t1, t2) takes time O(n), and the total time complexity of
the algorithm is O(n2 · S 2). �

4. Complexity of Factor-r Sum Subsets

In this section, we study the Factor–r Sum Subsets problem, where we ask for two
subsets such that the ratio of their sums is r.

Definition 5. (Factor–r Sum Subsets) Given a multiset A of n positive integers,
are there two nonempty disjoint subsets X, Y ⊆ A such that sum (X) = r · sum (Y)?

For r = 1, the problem is exactly Equal Sum Subsets and therefore is NP-
complete [Woeginger and Yu 1992]. Here we show that Factor–r Sum Subsets
is NP-complete for any fixed rational r > 0. The proof of NP-hardness consists of
two different reductions from Exact 3–SAT, where the second reduction is just for
the cases r = 2 and r = 1

2 .

Lemma 1. Factor–r Sum Subsets is NP-hard for any rational r > 0 with r �
{1, 2, 1

2 }.

Proof. We present a reduction from Exact 3–SAT, which is an NP-complete
restriction of One–in–Three 3–SAT [Garey and Johnson 1979, p. 259] defined as
follows: Given a set of m clauses c1, . . . , cm over n Boolean variables x1, . . . , xn

such that each clause contains three positive literals, is there a (satisfying) assign-
ment for the variables that satisfies exactly one literal per clause?

Let r = p/q, where p and q are positive integers with no common divisor except
1 (coprimes) and p < q. (The case p > q is equivalent by interchanging sets X and
Y in the problem definition.) We consider several cases, depending on the values of
p and q. We only give a detailed proof for the first case; for the other cases the proof
is quite similar, so we just mention the construction of the necessary numbers.

Case 1: p > 3. Consider an instance of Exact 3–SAT with a set of n variables V =
{v1, . . . , vn} and a set of m clauses C = {c1, . . . , cm}. An instance of Factor–r Sum
Subsets is constructed as follows. For each variable vi a number ai =

∑
vi∈c j
Δm(j)

is defined. Value ai has m digits, and its non-zero digits correspond to clauses
where vi appears. Two additional numbers an+1 and an+2 are constructed which are
multiples of 1m: an+1 = (p − 1) · 1m and an+2 = q · 1m. For all numbers we use
base Z = q(p+ q+ 2)+ 1. This way we will avoid carry-overs from one digit to the
next when adding ai’s. Let A = {a1, . . . , an+2}. In the following, we show that there
is a solution for the Exact 3–SAT instance if and only if there are two nonempty
disjoint subsets X, Y ⊆ A such that sum (X) = r · sum (Y).

“only if”: Assume that there exists an exact satisfying assignment for the clauses in
C. This implies that there exists a subset R ⊆ {a1, . . . , an} such that sum (R) = 1m,
since for each clause cj there is exactly one of the three variables in cj set to TRUE,
say vk, and the corresponding ak has a 1 in the j-th digit. We define a set R to
contain exactly these ai’s; then sum (R) = 1m. Hence, by setting X = R ∪ {an+1}

162 CIELIEBAK ET AL.

and Y = {an+2}, we have sum (X) = p · 1m = r · q · 1m = r · sum (Y), thus X and Y
yield a solution for the Factor–r Sum Subsets instance.

“if”: For the opposite direction, assume that non-empty sets X, Y exist such that
sum (X) = r ·sum (Y); equivalently, q·sum (X) = p·sum (Y). Observe that summing
the i’th digit of all numbers in the input set A yields p + q + 2. Moreover, even
when multiplying each number in A by q we get only total q(p + q + 2) in the i’th
digit, and no carry-overs occur, since we choose base Z sufficiently large. Since
q · sum (X) = p · sum (Y), we have qxi = pyi, where xi and yi are the i’th digit
of sum (X) resp. sum (Y), for 1 ≤ i ≤ n. This implies that for each digit i either
xi = yi = 0, or q divides yi and p divides xi (since p and q are coprimes). Observe
that not all digits can be 0, since we have assumed that X and Y are non-empty.

We now show that xj = p and yj = q for every non-zero digit j: Since p divides
x j and q divides yj, there exist two positive integers k and � such that xj = k · p
and yj = � · q. Then qxj = pyj implies that k = �. Moreover, we have p + q + 2 ≥
x j + y j = k(p+ q), hence 2 ≥ (k − 1)(p + q), and this inequality can only hold for k
= 1, since q > p > 3 and k is positive. Thus, xj = p and yj = q.

Since only five numbers in A have non-zero value in the j’th digit, and the corre-
sponding values are 1, 1, 1, p−1 and q, we can only achieve xj = p if X = {an+1}∪R,
where R is a subset of A such that sum (R) has a 1 in the j’th digit. Thus, the only
way to get yj = q is to have Y = {an+2}. Since an+1 has value p−1 in every digit, no
digits in sum (X) can be 0, hence also in sum (Y). Thus, the variables corresponding
to numbers in R form an exact satisfying assignment for the given clauses.

We now sketch the proof for the remaining combinations of values of p and q:
Case 2: p = 3, q > 4. Numbers a1, . . . , an are constructed as in Case 1, an+1 =

3 · 1m, and an+2 = (q − 1) · 1m.

Case 3: p = 3, q = 4. Numbers a1, . . . , an are constructed as in Case 1, an+1 =

3 · 1m, and an+2 = 2 · 1m.

Case 4: p = 2, q > 3. Numbers a1, . . . , an are constructed as in Case 1, and only
one additional number an+1 = (q − 1) · 1m is used.

Case 5: p = 2, q = 3. For each variable vi let ai =
∑

vi∈c j
3 · Δm(j), i.e., ai has a

digit 3 in each position that corresponds to a clause that contains vi. We also set
an+1 = 1m. Note that sum (A) = 10 · 1m. As in Case 1, the direction “only if” is
easy: any exact satisfying assignment for the clauses in C corresponds to numbers
ai that add up to 3·1m, which together with an+1 constitute X. For the “if” direction,
we observe that the only way to have the required ratio is by having two sets X and
Y such that sum (X) = 4 · 1m and sum (Y) = 6 · 1m; this implies an+1 ∈ X, and
for each j ∈ {1, . . . ,m} there is exactly one further number ai ∈ X that has non-
zero digit j. Hence, the variables corresponding to X − {an+1} constitute an exact
satisfying assignment.

Case 6: p = 1, q > 2. Numbers a1, . . . , an are constructed as in Case 1, and there
is only one additional number an+1 = q · 1m. �

Lemma 2. Factor–r Sum Subsets is NP-hard for r = 2 and r = 1
2 .

COMPLEXITY OF EQUAL SUM SUBSETS 163

Proof. We use a restricted, but still NP-hard version of Exact 3–SAT for a re-
duction to Factor–r Sum Subsets for the case r = 2 (of course, the case r = 1

2 is
identical). In the following, let always r = 2. Given an Exact 3–SAT instance with
variables v1, . . . , vn and clauses c1, . . . , cm with only positive literals, let G = (V, E)
be the graph with vertices V = {v1, . . . , vn} (i.e., each variable corresponds to a ver-
tex) and, for i, j ∈ {1, . . . , n}, edges (vi, v j) ∈ E if and only if vi and vj both occur
in a clause ck, for some k ∈ {1, . . . ,m}. The Exact 3–SAT variation in which the
corresponding graph G is connected is still NP-hard, because we could use a poly-
nomial algorithm for this variation to solve the unrestricted Exact 3–SAT problem
by applying the algorithm to each component of the corresponding graph.

We reduce Exact 3–SAT with a connected graph to Factor–r Sum Subsets as
follows. We construct an instance A of Factor–r Sum Subsets by defining one
number ai for each variable vi by ai :=

∑
vi∈c j
Δn(j), where we set the j-th digit to

1 if vi appears as a literal in clause cj. We let the base Z of these numbers be 7.
Observe that among all ai’s there are exactly three ones in each digit.

Assume that we are given an exact satisfying assignment for the variables of
the Exact 3–SAT instance. We then construct sets X, Y ⊆ A, where Y contains
all numbers ai for which the corresponding variable vi has been set to TRUE, and
X contains all remaining numbers. Thus, sum (Y) = 〈1, 1, . . . , 1〉 and sum (X) =
〈2, 2, . . . , 2〉, and therefore, X and Y yield a solution for the Factor–r Sum Subsets
instance.

For the opposite direction, assume that we are given a solution X and Y for the
Factor–r Sum Subsets instance with sum (X) = 2 · sum (Y). Since each digit is set
to 1 in exactly three of the numbers ai, and since no carry-overs can occur when
summing up the ai’s because base Z is sufficiently large, sum (Y) must contain only
ones and zeros in its digits, and sum (X) contains only twos and zeros. Since the
sets are not empty, at least one digit must be set to 1. We assign the value TRUE
to a variable vi with corresponding number ai if ai ∈ Y , and we assign the value
FALSE, if ai ∈ X. Thus, if a clause cj = (v f , vg, vh) exists, then either one of the
three numbers af , ag, or ah is in Y and the other two numbers are in X, or neither
X nor Y contain af , ag, or ah. In the latter case, we know that sum (X) and sum (Y)
would contain a 0 at position j.

However, the numbers sum (X) and sum (Y) cannot contain any zero digits be-
cause of the connectedness of graph G. In order to see this, assume for the sake of
contradiction that sum (Y) contains some digits that are 0. Then sum (X) must have
digits with value 0 at the same positions. Consider the set S of all variables that
occur in clauses which correspond to zero digits in sum (X) and sum (Y). Then the
subgraph of G with only the vertices corresponding to variables from set S must
be a component in the graph G without any edges to other vertices: If such an
edge existed, it would imply that the corresponding digit is not set to 0 in either
sum (X) or sum (Y). To see this, consider an edge e = (vf , vg) arising from clause
c j = (v f , vg, vh) with vf ∈ S and vg � S . Then ag ∈ X ∪ Y , but af (and ah) must be
in X ∪ Y as well, in order to achieve the factor 2 in the j-th digit.

Thus, there can be no zeroes in any digit in sum (X) or sum (Y), and our assign-
ment is a solution for the Exact 3–SAT instance. �

164 CIELIEBAK ET AL.

Since Factor–r Sum Subsets is obviously in NP, Lemmata 1 and 2 and the NP-
completeness of Equal Sum Subsets yield the following theorem.

Theorem 6. Factor–r Sum Subsets is NP-complete for any rational r > 0.

However, Factor–r Sum Subsets is not NP-complete in the strong sense:

Theorem 7. Factor–r Sum Subsets can be solved in pseudo-polynomial time O(n2 ·
S 2), where S = sum (A).

Proof. We present a dynamic programming algorithm that combines techniques
used in the pseudo-polynomial algorithm for Equal Sum Subsets by Bazgan, San-
tha and Tuza [Bazgan et al. 2002] and the algorithm for Alternating Equal Sum
Subsets (Thm. 5).

We use Boolean variables F(k, t1, t2) for k ∈ {1, . . . , n}, t1, t2 ∈ {1, . . . , S } which
will be TRUE if there exist disjoint subsets X, Y ⊆ A such that sum (X) = t1,
sum (Y) = t2, and ak ∈ X ∪ Y .

The algorithm fills the table in the same order as in the proof of Thm. 5 using the
following recursion:

F(k, t1, t2) =
k−1∨

�=1

[F(�, t1 − ak, t2) ∨ F(�, t1, t2 − ak)].

The algorithm stops once it finds a value t for which there is an index k such that
F(k, t, rt) is TRUE; the corresponding sets constitute a solution which is easy to
find.

The computation of each entry F(k, t1, t2) takes time O(n), hence the total time
complexity of the algorithm is O(n2 · S 2). �

Remark 1. The above complexity bound does not depend on r, therefore the result
holds even if r is given as part of the input.

5. Complexity of k Equal Sum Subsets

5.1 NP-completeness of k equal sum subsets

We now turn to the generalization of Equal Sum Subsetswhere we ask for k subsets
of equal sum, instead of two. This is the problem k Equal Sum Subsets (Defini-
tion 2). We first show its NP-hardness by reduction from Alternating Partition.

Theorem 8. k Equal Sum Subsets is NP-complete for any k > 2.

Proof. The problem is obviously in NP. To show NP-hardness we reduce Alter-
nating Partition to it. We transform a given Alternating Partition instance with
pairs (u1, v1), . . . , (un, vn) into a k Equal Sum Subsets instance as follows. For each

COMPLEXITY OF EQUAL SUM SUBSETS 165

pair (ui, vi) we construct two numbers u′i = 〈ui〉◦Δn(i) and v′i = 〈vi〉◦Δn(i). In addi-
tion, we construct k − 2 (equal) numbers c1, . . . , ck−2 with ci = 〈 12

∑
i(ui + vi)〉 ◦ 1n.

We set base Z = (n + 1) · k ·∑i(ui + vi), which is chosen sufficiently large to en-
sure that no carry-overs from one digit to the next occur in any of the following
additions.

Assume that we are given a solution for the Alternating Partition instance, i.e.,
two index sets I and J such that

∑
i∈I ui +

∑
j∈J v j =

∑
i∈I vi +

∑
j∈J u j. We construct

k equal sum subsets S1, . . . , S k as follows. For i = 1, . . . , k−2, we let Si = {ci}; for
the remaining two subsets, we let u′i ∈ S k−1, if i ∈ I, and v′i ∈ S k−1, if i ∈ J, and we
let u′i ∈ S k, if i ∈ J, and v′i ∈ S k, if vi ∈ I. Obviously, all S i sum up to the same sum
〈 12
∑

i(ui + vi)〉 ◦ 1n, thus we have a solution for the k Equal Sum Subsets instance.
For the opposite direction, assume that we are given a solution for the k Equal

Sum Subsets instance, i.e., k equal sum subsets S1, . . . , S k. Since each of the n
rightmost digits is set to 1 in exactly k numbers, we can assume w.l.o.g. that Si =

{ci} for i = 1, . . . , k − 2. The remaining two subsets naturally form an alternating
partition, as u′i and v′i can never be in the same subset for any i = 1, . . . , n, and all
numbers u′i and v′i must occur in one of the remaining two subsets in order to match
the ones in the n rightmost digits of the other subsets.�

5.2 k equal sum subsets for k = O(1) and k = Ω(n)

We now study the impact of the size of parameter k on the complexity of k Equal
Sum Subsets. In particular, the following two theorems show that the problem can
be solved in pseudo-polynomial time if k is a constant, while it becomes strongly
NP-hard if k is linear in n.

Theorem 9. The problem k Equal Sum Subsets with input A = {a1, . . . , an} can be
solved in time O(n·S k

kk−1), where S = sum (A). For k = O(1), this time complexity is
pseudo-polynomial.

Proof. We present a dynamic programming algorithm for k Equal Sum Sub-
sets that uses basic ideas of well-known dynamic programming algorithms for Bin
Packingwith fixed number of bins (for the definition see [Garey and Johnson 1979,
p. 226]).

For an instance A = {a1, . . . , an} of k Equal Sum Subsets, let S = sum (A). We
define Boolean variables F(i, s1, . . . , sk), where i ∈ {1, . . . , n} and sj ∈ {0, . . . , �S

k �},
for 1 ≤ j ≤ k. Variable F(i, s1, . . . , sk) will be TRUE if there are k disjoint subsets
X1, . . . , Xk ⊆ {a1, . . . , ai} with sum (Xj) = s j, for 1 ≤ j ≤ k. Given this, there is
a solution for the k Equal Sum Subsets instance if and only if there exists a value
s ∈ {1, . . . , �Sk �} such that F(n, s, . . . , s) = TRUE.

Clearly, F(1, s1, . . . , sk) is TRUE if and only if either si = 0, for 1 ≤ i ≤ k,
or there exists index j such that sj = a1 and si = 0, for all 1 ≤ i ≤ k, i � j.
For i ∈ {2, . . . , n} and sj ∈ {0, . . . , �S

k �}, variable F(i, s1, . . . , sk) can be expressed
recursively as

166 CIELIEBAK ET AL.

F(i, s1, . . . , sk) = F(i − 1, s1, . . . , sk) ∨∨

1≤ j≤k, s j−ai≥0

F(i − 1, s1, . . . , s j−1, s j − ai, s j+1, . . . , sk).

The Boolean value of all variables can be determined in time O(nS k

kk−1), since there
are n�Sk �k variables, and computing each variable takes at most time O(k). This
yields the claim. �

The previous theorem shows that there is a pseudo-polynomial time algorithm for
k Equal Sum Subsets if k is a fixed constant. We now show that this it is unlikely
that the problem admits a pseudo-polynomial algorithm if k is a fixed function of
the cardinality n of the input set. In fact, we prove that k Equal Sum Subsets is
strongly NP-complete if k = Ω(n).

Theorem 10. k Equal Sum Subsets is NP-complete in the strong sense for k = n
p ,

for any fixed integer p ≥ 2.

Proof. The problem is obviously in NP. To prove strong NP-hardness, we give
a reduction from 3–Partition, which is NP-complete in the strong sense [Garey
and Johnson 1979, pp. 99–100] and defined as follows: Given 3n positive integers
q1, . . . , q3n and an integer h such that

∑3n
i=1 qi = nh and h

4 < qi <
h
2 , for i ∈

{1, . . . , 3n}, are there n disjoint triples of qi’s such that each triple adds up to h?
Let Q = {q1, . . . , q3n} and h be an instance of 3–Partition. If all elements in Q

are equal, then there is a trivial solution. Otherwise, let r = 3 · (p − 2) + 1 and

ai = 〈qi〉 ◦ 0r, for 1 ≤ i ≤ 3n,

bj = 〈h〉 ◦ 0r, for 1 ≤ j ≤ 2n, and

d�,m = 〈0〉 ◦ Δr(�), for 1 ≤ � ≤ r, 1 ≤ m ≤ n.

Here, we use base Z = 6nh for all numbers. Let A be the multiset that contains all
numbers ai, bj and d�,m. Multiset A is an instance of k Equal Sum Subsets. The
cardinality of A is n′ = 3n+ 2n+ r · n = 5n+ (3 · (p− 2)+ 1) · n = 3pn. Since r is a
constant, the numbers ai and bj are polynomial in h, and numbers d�,m are bounded
by a constant. We now prove that there is a solution for the 3–Partition instance if
and only if there are k = n′

p = 3n disjoint subsets of A with equal sum.

“only if”: Assume that there is a solution for the 3–Partition instance, i.e., n triples
T1, . . . , Tn that each sum up to h. This induces n subsets of A with sum 〈h〉 ◦ 0r,
namely S k = {ai | qi ∈ Tk}. Together with the 2n subsets that contain exactly one
of the bj’s each, we have 3n subsets of equal sum 〈h〉 ◦ 0r.

“if”: Assume that there is a solution S1, . . . , S 3n for the k Equal Sum Subsets
instance (recall that for our instance k = 3n.) Let S j be any set in this solution.

COMPLEXITY OF EQUAL SUM SUBSETS 167

Then sum (S j) has a zero in the r rightmost digits, since for each of these digits
there are only n numbers in A for which this digit is non-zero, which are not enough
to have one of them in each of the 3n sets S j. Thus, only numbers ai and bj can
occur in the solution; moreover, we only need to consider the first digit of these
numbers, as the other are zeros.

Since not all numbers ai are equal, and the solution consists of n′
q = 3n disjoint

sets, there must be at least one bj in one of the subsets in the solution. Thus, for
1 ≤ j ≤ 3n, we have sum (S j) ≥ h. On the other hand, the sum of all ai’s and of
all bj’s is exactly 3n · h, therefore sum (S j) = h, for all 1 ≤ j ≤ 3n, which means
that all ai’s and all bj’s must appear in the solution. More specifically, there must
be 2n sets in the solution such that each of them contains exactly one of the bj’s,
and each of the remaining n sets in the solution consists only of ai’s, such that the
corresponding qi’s add up to h. Thus, the latter sets immediately yield a solution
for the 3–Partition instance. �

5.3 k equal sum subsets with equal cardinalities

In this section, we study k Equal Sum Subsets in the setting where we do not only
require the subsets to be of equal sum, but to be of equal cardinality as well. This
yields the following three problem definitions, depending on whether the cardinal-
ity is part of the problem definition (k ESS of Cardinality c), part of the input (k
ESS of Specified Cardinality), or not specified at all (k ESS of Equal Cardinal-
ity).

Definition 6. (k ESS of Cardinality c) Given a multiset A of n positive integers,
are there k nonempty disjoint subsets S1, . . . , S k ⊆ A with sum(S 1) = . . . =
sum(S k) such that each Si has cardinality c?

Definition 7. (k ESS of Specified Cardinality) Given a multiset A of n positive in-
tegers and a positive integer c, are there k nonempty disjoint subsets S1, . . . , S k ⊆ A
with sum(S 1) = . . . = sum(S k) such that each Si has cardinality c?

Definition 8. (k ESS of Equal Cardinality) Given a multiset A of n positive inte-
gers, are there k nonempty disjoint subsets S1, . . . , S k ⊆ A with sum(S 1) = . . . =
sum(S k) such that all S i’s have the same cardinality?

We show that the the first problem can be solved in polynomial time (note that
in this case, the cardinality c is a fixed constant), while the other two problems are
NP-complete.

Theorem 11. The problem k ESS of Cardinality c can be solved in time O(nkc).

Proof. We use exhaustive search: We simply compute all N =
(
n
c

)
subsets of the

input set A that have cardinality c; then we consider all
(

N
k

)
possible combinations

of k subsets, and for each one we check if it consists of disjoint subsets of equal

168 CIELIEBAK ET AL.

sum. This algorithm needs time O(nkc), which is polynomial in n because c and k
are constants. �

Next, we show that k ESS of Specified Cardinality, where the size of the subsets
is given as part of the input, is NP-complete, by modifying the reduction from
Alternating Partition used in the proof of Thm. 8 to show NP-completeness of k
Equal Sum Subsets.

Theorem 12. k ESS of Specified Cardinality is NP-complete for any k ≥ 2.

Proof. The problem is obviously in NP. To show NP-hardness, we transform a
given Alternating Partition instance (u1, v1), . . . , (un, vn) into a k ESS of Specified
Cardinality instance as follows. Let S =

∑n
i=1(ui + vi). For each pair (ui, vi) we

construct two numbers u′i = 〈ui〉 ◦ Δn(i) and v′i = 〈vi〉 ◦ Δn(i). In addition, we
construct k − 2 (equal) numbers b1, . . . , bk−2 with bi = 〈 S2 〉 ◦ Δn(n). Finally, for
each bi we construct n − 1 numbers di, j = 〈0〉 ◦ Δn(j), for 1 ≤ j ≤ n − 1. We set
the base of the numbers to (n + 1) · k · S in order to ensure that no carry-overs from
one digit to the next occur in any additions in the following proof. The set A that
contains all u′i’s, v′i’s, bi’s, and di j’s, together with chosen cardinality c := n, is our
instance of k ESS of Specified Cardinality.

Assume first that we are given a solution for the Alternating Partition instance,
i.e., two index sets I and J. We construct k equal sum subsets S1, . . . , S k as follows.
For i = 1, . . . , k − 2, we set S i = {bi, di,1, . . . , di,n−1}; for the remaining two subsets,
we let u′i ∈ S k−1, if i ∈ I, and v′j ∈ S k−1, if j ∈ J, and we let u′j ∈ S k, if j ∈ J, and

v′i ∈ S k, if i ∈ I. Clearly, all these sets have n elements, and their sum is 〈S2 〉 ◦ 1n.
Hence, the sets S i yield a solution for the k ESS of Specified Cardinality instance.

For the opposite direction, assume that we are given a solution for the k ESS of
Specified Cardinality instance, i.e., k equal sum subsets S1, . . . , S k of cardinality
n. In this case, all numbers participate in the sets Si, since there are exactly k · n
numbers in the input A. The elements in each set Si sum up to 〈S2 〉◦1n by definition.
Since the first digit of each bi equals S

2 , we may assume w.l.o.g. that for each
i ∈ {1, . . . , k−2}, set S i contains bi and does not contain any number with non-zero
first digit, i.e., it does not contain any u′j or any v′j. Then all u′i ’s and v′i ’s, and
only these numbers, are in the remaining two subsets. This yields immediately a
solution for the Alternating Partition instance, as the two subsets yield the same
sum 〈S2 〉 ◦ 1n, and since u′i and v′i can never be in the same subset, as both have the
(i + 1)-th digit non-zero. �

Note that the above reduction works in a similar fashion for the problem k ESS of
Equal Cardinality. This requires to employ a method where additional extra digits
are used in order to force the equal sum subsets to include all augmented numbers
that correspond to numbers in the Alternating Partition instance; a similar method
has been used by Woeginger and Yu [Woeginger and Yu 1992] to establish the NP-
completeness of Equal Sum Subsets (called Equal-Subset-Sum there).

We finally show that the problems k ESS of Specified Cardinality and k ESS of
Equal Cardinality are not strongly NP-complete for fixed constant k, by describ-

COMPLEXITY OF EQUAL SUM SUBSETS 169

ing a dynamic programming algorithm for the two problems that needs pseudo-
polynomial time.

Theorem 13. The problems k ESS of Specified Cardinality and k ESS of Equal
Cardinality with input A = {a1, . . . , an} can be solved in time O(S k·nk+1

k2k−1), where
S = sum (A). For k = O(1), this time is pseudo-polynomial.

Proof. The algorithm is very similar-in-spirit to the dynamic programming algo-
rithm from Thm. 9. In fact, it suffices to add to our variables k more dimensions
corresponding to cardinalities of the subsets. More precisely, we define Boolean
variables F(i, s1, . . . , sk, c1, . . . , ck), where i ∈ {1, . . . , n}, sj ∈ {0, . . . , �S

k �}, for
1 ≤ j ≤ k, and cj ∈ {0, . . . , �n

k �}, for 1 ≤ j ≤ k. Variable F(i, s1, . . . , sk, c1, . . . , ck)
will be TRUE if there are k disjoint subsets X1, . . . , Xk ⊆ {a1, . . . , ai} such that
sum (Xj) = s j and |Xj| = c j, for 1 ≤ j ≤ k. There are k subsets of equal sum
and equal cardinality c if and only if there exists a value s ∈ {1, . . . , �Sk �} such that
F(n, s, . . . , s, c, . . . , c) = TRUE. Moreover, there are k subsets of equal sum and
equal (non-specified) cardinality if and only if there exists a value s ∈ {1, . . . , �Sk �}
and a value d ∈ {1, . . . , �nk �} such that F(n, s, . . . , s, d, . . . , d) = TRUE.

Clearly, F(1, s1, . . . , sk, c1, . . . , ck) = TRUE if and only if either si = 0 and ci = 0,
for 1 ≤ i ≤ k, or there exists an index j such that sj = a1, c j = 1, and si = 0 and
ci = 0 for all 1 ≤ i ≤ k, i � j.

For i ∈ {2, . . . , n}, s j ∈ {0, . . . , �S
k �}, and cj ∈ {0, . . . , �n

k �}, the truth value of
variable F(i, s1, . . . , sk, c1, . . . , ck) can be expressed recursively as

F(i, s1, . . . , sk, c1, . . . , ck) = F(i − 1, s1, . . . , sk, c1, . . . , ck) ∨
∨

1≤ j≤k, s j−ai≥0, cj>0

F(i − 1, s1, . . . , s j − ai, . . . , sk, c1, . . . , c j − 1, . . . , ck).

The Boolean value of all variables can be determined in time O(S
k·nk+1

k2k−1), since
there are n · �Sk �k · � n

k �k variables, and computing each variable takes at most O(k)
time. This yields the claim. �

Remark 2. A theorem similar to Thm. 10 can be shown for both k ESS of Specified
Cardinality and k ESS of Equal Cardinality, namely that they are NP-complete
in the strong sense for k = Ω(n).

6. Conclusions and Open Questions

We studied several variations of the Equal Sum Subsets problem: We gave (pseudo-
)polynomial time algorithms and proved NP-completeness for several variations of
Equal Sum Subsets where the choice of elements is restricted. Furthermore, we
proved analogous results for the variation where we specify a rational factor be-
tween the sum of the two subsets. Our techniques can be used to obtain similar
results for even more variations of Equal Sum Subsets, for example for ESS of

170 CIELIEBAK ET AL.

Different Cardinality, where we ask for two equal sum subsets of different car-
dinality, and for ESS from Two Sets, where we ask for two subsets of equal sum
that are drawn from two different sets; for detailed proofs of NP-completeness of
those problems and of further variants the reader is referred to [Cieliebak et al.
2002] and [Cieliebak 2003]. Let us also note that it is not hard to devise pseudo-
polynomial time algorithms for all those problems by appropriately adapting algo-
rithms presented in this work.

We also studied the case where we ask for k > 2 equal sum subsets, and showed
that the problem becomes strongly NP-hard if the number of subsets is linear in n
(the size of the input), while it can be solved in pseudo-polynomial time if we ask
for only a constant number of subsets. In the latter case (constant k), if we require
in addition that all subsets be of equal cardinality, then the problem is polynomial-
time solvable if the cardinality is also constant, while it is NP-hard otherwise (but
not in the strong sense).

Our studies call forth several questions in the realm of Equal Sum Subsets that
are still open:
◦ The problem k Equal Sum Subsets is solvable in pseudo-polynomial time

for constant k, while it is strongly NP-complete for k linear in n. What is
the exact borderline between pseudo-polynomial time solvability and strong
NP-completeness?

◦ The dynamic programming algorithms for k Equal Sum Subsets and its vari-
ations run in pseudo-polynomial time if k = O(1). However, their running
times are highly exponential in k. Moreover, there exists a gap between the
time complexity of the pseudo-polynomial time algorithm for Equal Sum
Subsets [Bazgan et al. 2002], which is O(n2S), and the complexity of the
algorithm described in Theorem 9 for k Equal Sum Subsets which is O(nS2)
for k = 2 (note that the algorithm works for any k ≥ 2). Thus, the existence
of faster algorithms for k Equal Sum Subsets in the general case, or at least
for small constant values of k, is a clear possibility. Finding such algorithms
is an interesting open problem.

◦ We have only studied problems where the subsets need to have sums of ratio
exactly 1 (or, more generally, r > 0). There are natural optimization versions
related to the studied problems; for instance such a version of k Equal Sum
Subsetsmight ask to find k subsets of a given set A such that the ratio between
the greatest and the smallest sum, among the k subsets, is minimized. This
problem has been studied only for k = 2 by Woeginger and Yu [Woeginger
and Yu 1992], who gave a 1.324-approximation algorithm, and by Bazgan,
Santha and Tuza [Bazgan et al. 2002], who presented an FPTAS. As far as
we know the approximability of the problem for k > 2 is open.
A closely related problem is Multiple Knapsack, which is the generaliza-
tion of Knapsack in which multiple knapsacks are given instead of only one.
Chekuri and Khanna [Chekuri and Khanna 2005] have recently shown the
existence of an FPTAS for Multiple Knapsack, while a PTAS for the case
of identical bins (Uniform Multiple Knapsack) had been earlier given by

COMPLEXITY OF EQUAL SUM SUBSETS 171

Kellerer [Kellerer 1999]. One might be tempted to use one of those approx-
imation schemes as a ‘black box’ in order to obtain an FPTAS for the opti-
mization version of k Equal Sum Subsets; however it is not obvious how to
do this in polynomial time, since one might need to check all possible sum
values in order to find a solution close enough to the optimal (it is not hard to
see that a mere binary search would not work).

◦ Going back to the case of two subsets, one might wonder whether the tech-
niques used in [Bazgan et al. 2002] (see above) can be adapted in a straight-
forward manner in order to derive an FPTAS for the problem that asks for
two sets with ratio as close to r as possible, for any fixed ratio r > 0 (this
can be seen as the optimization version of Factor–r Sum Subsets). Unfor-
tunately, there seems to be no easy way to do this for the following reasons.
A fundamental ingredient of the FPTAS proposed in [Bazgan et al. 2002] is
a pseudo-polynomial dynamic programming algorithm that solves the opti-
mization problem exactly. That algorithm, similar to our algorithm for ESS
with Exclusions, fills two tables, one with Boolean entries and one with en-
tries that are sets of elements. The correctness of the algorithm depends cru-
cially on the fact that the first time two subsets of equal sum are found, the
algorithm can immediately stop returning an optimal solution. However, this
would not work for Factor–r Sum Subsets, since in this case there can be two
subsets of equal sum which certainly (for r � 1) do not constitute a feasible
solution but may participate in a feasible solution; hence, both subsets should
be stored, possibly resulting to an exponential blow-up of the space needed.
It therefore remains open whether one can obtain an FPTAS for this problem
by devising a more involved adaptation of the above mentioned FPTAS, or
by using different techniques.

◦ In the context of optimization variations it is worth investigating whether
there is any generic algorithmic technique that can be used to obtain ap-
proximation schemes for such problems. Pruhs and Woeginger [Pruhs and
Woeginger 2004] have developed such a tool for a wide class of subset selec-
tion problems; unfortunately, their technique applies only to problems where
one subset is sought. The question is whether a similar technique can be
developed, appropriate for problems that ask for two or more subsets with
specific properties.

Acknowledgements

We would like to thank Peter Widmayer for his encouragement and fruitful dis-
cussions. We would also like to thank the anonymous referees for suggestions and
comments that substantially improved the quality of the presentation.

Preliminary versions of several results in this article have appeared in “Com-
posing Equipotent Teams” (by M. Cieliebak, S. Eidenbenz, and A. Pagourtzis),
Proceedings of the 14th International Symposium on Fundamentals of Compu-
tation Theory (FCT 2003), Malmö, Sweden, in [Cieliebak et al. 2002], and in
M. Cieliebak’s Ph.D. Thesis [Cieliebak 2003].

172 CIELIEBAK ET AL.

Aris Pagourtzis acknowledges support from National Technical University of
Athens through the Basic Research Support program PEVE 2007.

Finally, special thanks go to our children Kira Magdalena, Jano Leonardo, Tayra,
Yaris, Lyas, Malin, Vassiliki, Aryiri Maria, Theofanis, Simon, and Roger, for the
joy they have brought to our lives and for several sleepless nights that provided us
with additional time to complete this work.

References

Bazgan, C., Santha, M., and Tuza, Zs. 2002. Efficient approximation algorithms for the Subset–Sum
Equality problem. Journal of Computer and System Sciences 64, 2, 160–170.

Chekuri, C. and Khanna, S. 2005. A Polynomial Time Approximation Scheme for the Multiple
Knapsack Problem. SIAM Journal on Computing 35, 3, 713–728.

Cieliebak, M. 2003. Algorithms and Hardness Results for DNA Physical Mapping, Protein Identifi-
cation, and Related Problems. PhD thesis, ETH Zürich, Department of Computer Science.

Cieliebak, M., Eidenbenz, S., Pagourtzis, A., and Schlude, K. 2002. Equal Sum Subsets: Complexity
of Variations. Tech. Report 370, ETH Zurich, Department of Computer Science.

Cieliebak, M., Eidenbenz, S., and Penna, P. 2003. Noisy Data Make the Partial Digest Problem NP-
hard. In Proc. of the 3rd Workshop on Algorithms in Bioinformatics (WABI 2003), 111–123.

de la Vega, W. F. and Lueker, G. S. 1981. Bin packing can be solved within 1+ε in linear time.
Combinatorica 1, 4, 349–355.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman.

Ibarra, O. H. and Kim, C. E. 1975. Fast Approximation Algorithms for the Knapsack and Sum of
Subset Problems. Journal of the ACM 22, 4, 463–468.

Karmarkar, N. and Karp, R. M. 1982. An Efficient Approximation Scheme for the One-
Dimensional Bin-Packing Problem. In Proc. 23rd Annual Symposium on Foundations of Com-
puter Science, (FOCS 1982). IEEE, 312–320.

Kellerer, H. 1999. A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem.
In Proc. RANDOM-APPROX 1999, Volume 1671 of Lecture Notes in Computer Science.
Springer, 51–62.

Lawler, E. L. 1979. Fast Approximation Algorithms for Knapsack Problems. Mathematics of
Operation Research 4, 4, 339–356.

Martello, S. and Toth, P. 1990. Knapsack Problems. John Wiley & Sons.
Meggido, N. and Papadimitriou, C. H. 1991. On total functions, existence theorems, and computa-

tional complexity. Theoretical Computer Science 81, 317–324.
Papadimitriou, C. H. 1994. On the complexity of the parity argument and other inefficient proofs of

existence. Journal of Computer and System Sciences 48, 498–532.
Pevzner, P. A. 2000. Computational Molecular Biology: An Algorithmic Approach. MIT Press.
Pruhs, K. and Woeginger, G. J. 2004. Approximation Schemes for a Class of Subset Selection

Problems. In Proc. of LATIN 2004, Volume 2976 of LNCS, 203–211.
Setubal, J. andMeidanis, J. 1997. Introduction to Computational Molecular Biology. PWS Boston.
Woeginger, G. J. and Yu, Z. L. 1992. On the equal–subset–sum problem. Information Processing

Letters 42, 6, 299–302.

