
Gathering Non–Oblivious Mobile Robots

Mark Cieliebak

Institute of Theoretical Computer Science
ETH Zurich

cieliebak@inf.ethz.ch

Abstract. We study the Gathering Problem, where we want to gather
a set of n autonomous mobile robots at a point in the plane. This point
is not fixed in advance. The robots are very weak, in the sense that they
have no common coordinate system, no identities, no central coordina-
tion, no means of direct communication, and no synchronization. Each
robot can only sense the positions of the other robots, perform a de-
terministic algorithm, and then move towards a destination point. It is
known that these simple robots cannot gather if they have no additional
capabilities. In this paper, we show that the Gathering Problem can
be solved if the robots are non-oblivious, i.e., if they are equipped with
memory.

1 Introduction

We consider a distributed system whose entities are autonomous mobile robots,
where the robots can freely move in the two-dimensional plane. The coordination
mechanism for these robots is totally decentralized, i.e., the robots are completely
autonomous and no central control is used. The research interest is to establish a
minimal set of capabilities the robots need to have to be able to perform a certain
task, like forming a pattern. In this paper, we study the problem of gathering the
robots at a point. This problem is known as Gathering Problem (or rendez-
vous, or point-formation problem) and is obviously one of the most primitive
tasks that a set of robots might perform. The Gathering Problem has been
studied intensively in the literature, in particular in the realm of distributed
computing [2, 4, 5, 7, 8], but also in robotics [3] and artificial intelligence [6].

We study the Gathering Problem for a set of weak robots: the robots
are anonymous (i.e., identical), they have no common coordinate system, and
they have no means of direct communication. All robots operate individually,
according to the following cycle: Initially, they are in a waiting state. They wake
up independently and asynchronously, observe the other robots’ positions, and
compute a point in the plane. They start moving towards this points, but may
not reach it (e.g. because of limits to the robot’s motion energy). Then they
become waiting again. Details of the model are given in Section 2. For these
robots, the Gathering Problem is defined as follows:

Definition 1. Given n robots r1, . . . , rn, arbitrarily placed in the plane, with no
two robots at the same position, make them gather at one point.



2 Mark Cieliebak

If the robots are asked only to move “very close” to each other, this task
is easily solved: each robot computes the center of gravity1 of all robots, and
moves towards it. However, in the Gathering Problem we ask the robots to
meet at exactly one point.

If the robots are oblivious, i.e., if they do not remember previous observations
and calculations, then the Gathering Problem is unsolvable [7, 8]. On the
other hand, the problem can be solved if we change the nature of the robots: If
we assume a common coordinate system, gathering is possible even with limited
visibility [5]; if the robots are synchronous and movements are instantaneous,
then the Gathering Problem has a simple solution [8] and can be achieved
even with limited visibility [2]; finally, the problem can be solved for more than
two robots if the robots can detect how many robots are at a certain point
(multiplicity detection) [4]. Recently, the Gathering Problem was studied in
the presence of faulty robots; assuming a strong model of synchronizity, then the
non–faulty robots can gather if at most one third of the robots are faulty [1].

In this paper, we show that the Gathering Problem is solvable for n ≥ 2
non–oblivious robots. First, we present in Section 4 an algorithm that gathers
n = 2 robots. At the beginning, two robots move on a line `, which connects their
initial positions, away from each other. As soon as both robots have observed
the configuration at least once (hence, they know `), they start moving on lines
perpendicular to ` until, again, both have seen both perpendicular lines. Finally,
they meet on ` in the center between the two perpendicular lines.

For more than two robots, we distinguish in Section 5 how many robots are
on the smallest enclosing circle SEC of the positions of all robots in the initial
configuration. If there are more than two robots on SEC , then each robot moves
on a circle around the center of SEC until all robots have seen SEC . Hereby,
we use the fact that the smallest enclosing circle of the robots positions does
not change. Then all robots gather at the center of SEC . On the other hand, if
there are only two robots on SEC , then the robots that are not on SEC move
perpendicular to the line ` connecting the two robots on SEC , while the robots
on SEC move on line ` away from each other. The smallest enclosing circle
increases, but ` remains invariant. As soon as all robots have seen line ` and the
configuration, they gather at the intersection between ` and a line k, which is
the median perpendicular line of the robots, if n is odd, or the center between
the two median perpendicular lines, if n is even.

2 Autonomous Mobile Robots

A robot is a mobile computational unit provided with sensors, and it is viewed
as a point in the plane. Once activated, the sensors return the set of all points in
the plane occupied by at least one robot. This forms the current local view of the
robot. The local view of each robot also includes a unit of length, an origin (which
we assume w.l.o.g. to be the position of the robot in its current observation),

1 For n points p1, . . . , pn in the plane, the center of gravity is c = 1

n

Pn

i=1
pi.



Gathering Non–Oblivious Mobile Robots 3

and a coordinate system (e.g. Cartesian). There is no a priori agreement among
the robots on the unit of length, the origin, or the coordinate systems.

A robot is initially in a waiting state (Wait). Asynchronously and indepen-
dently from the other robots, it observes the environment (Look) by activating
its sensors. The sensors return a snapshot of the world, i.e., the set of all points
that are occupied by at least one other robot, with respect to the local coordinate
system. The robot then calculates its destination point (Compute) according to
its deterministic algorithm (the same for all robots), based only on its local view
of the world. It then moves towards the destination point (Move); if the destina-
tion point is the current location, the robot stays still. A move may stop before
the robot reaches its destination. The robot then returns to the waiting state.
The sequence Wait - Look - Compute - Move forms a cycle of a robot.

The robots are fully asynchronous, i.e., the amount of time spent in each
state of a cycle is finite but otherwise unpredictable. In particular, the robots
do not have a common notion of time. As a result, robots can be seen by other
robots while moving, and thus computations can be made based on obsolete
observations. The robots are anonymous, meaning that they are a priori indis-
tinguishable by their appearance, and they do not have any kind of identifiers
that can be used during the computation. Finally, the robots have no means of
direct communication: any communication occurs in a totally implicit manner,
by observing the other robots’ positions.

There are two limiting assumptions concerning infinity: The amount of time
required by a robot to complete a cycle is not infinite, nor infinitesimally small;
and the distance traveled by a robot in a cycle is not infinite, nor infinitesimally
small (unless it brings the robot to the destination point). As no other assump-
tions on space exist, the distance traveled by a robot in a cycle is unpredictable.
All times and distances are under control of the adversary. We assume in our
algorithms that the adversary is fair, in the sense that he respects the previous
assumptions, and that no robot sleeps forever, since otherwise no algorithm can
guarantee to gather the robots.

For the remainder of this paper, we assume that the robots are non–oblivious,
meaning that each robot is equipped with infinite memory, and its computation
in each cycle can be based on its observations and computation results from
previous cycles.

3 Notation

In general, r indicates any robot in the system; when no ambiguity arises, r is
used also to represent the point in the plane occupied by that robot. A configu-
ration of the robots at a given time instant t is the set of positions in the plane
occupied by the robots at time t.

We say that a point p is on a circle if it is on the circumference of the circle,
and that p is inside the circle if it is strictly inside the circle. Given three distinct
points p, q and c, we denote by ^(p, c, q) the convex angle (i.e., the angle that is



4 Mark Cieliebak

PSfrag replacements

c

Fig. 1. Smallest enclosing circle SEC
for 8 points.

PSfrag replacements

c

C

q `x`y

x y

`s

Fig. 2. Proof of Lemma 2. Center of
SEC cannot be at q.

at most 180◦) between p and q, centered in c. The Euclidean distant between p

and q is denoted by dist(p, q).
Given a set of n distinct points P in the plane, the smallest enclosing circle

of the points is the circle with minimum radius such that all points from P are
inside or on the circle (see Figure 1). We denote it by SEC (P ), or SEC if set
P is unambiguous from the context. The smallest enclosing circle of a set of n

points is unique and can be computed in polynomial time [9].
The smallest enclosing circle of P remains invariant if we move some of the

points from P that are inside SEC such that they remain inside SEC ; moreover,
the maximum angle between any two adjacent points on SEC w.r.t. the center of
SEC is 180◦, since otherwise there would be a smaller circle enclosing all points.
The following lemma shows that the smallest enclosing circle remains invariant
even if we move the points along the rim of SEC , as long as no angle of more
than 180◦ between adjacent points occurs.

Lemma 1. Let P = {p1, . . . , pk} be k points on a circle C with center c. If the
maximum angle between any two adjacent points w.r.t c is at most 180◦, then C

is the smallest enclosing circle of the points.

Proof (sketch). The idea of the proof is as follows (cf. Figure 2): Assume that
the center of SEC (P ) would be at some point q 6= c. Then there are two adjacent
points x, y ∈ P such that their angle w.r.t. c is minimum (and at most 180◦), and
such that q is within the sector of C that is beyond c and delimited by the lines
`x and `y from x and y, respectively, through c (bottom sector in Figure 2). Let
` be the perpendicular line that bisects the angle between x and y (dashed line `

in Figure 2). If x and q are not on the same side of `, then dist(x, c) ≤ dist(x, q);
otherwise, y and q are not on the same side of `, and dist(y, c) ≤ dist(y, q). In
both cases, the radius of C is at most the radius of SEC(P ). Thus, since the
smallest enclosing circle is unique, we have C = SEC (P ). ut

4 Gathering Two Robots

In this section, we present an algorithm that solves the Gathering Problem

for two robots. The idea of our algorithm, which is similar to the algorithm



Gathering Non–Oblivious Mobile Robots 5

Algorithm 1 Gathering two robots

If first observation Then

x0 := my position; y0 ← other robot’s position;
`← line through x and y; d0 := distance between x and y;
state← 1; move on ` by distance d0

100
away from y;

5: If state = 1 Then

If other robot is at y0 Then do nothing;
Else

xperp ← my position; y1 := other robot’s position;
d1 := distance between xperp and y1;

10: If other robot is on ` Then state← 2; move perpendicular to ` by d1

100
;

Else

yperp ← intersection between ` and line through other robots position
perpendicular to `; dperp ← distance between xperp and yperp;

state← 3; move perpendicular to ` by distance
dperp

100
;

If state = 2 Then

15: If other robot is on ` Then do nothing
Else

yperp ← intersection between ` and line through other robots position per-
pendicular to `; dperp ← distance between xperp and yperp;
state← 3; do nothing;

If state = 3 Then

20: If other robot is on the line perpendicular to ` through yperp and less than dperp

away from ` Then move perpendicular to ` to distance dperp;
Else

g← center point between xperp and yperp;
state← 4; do nothing;

If state = 4 Then

25: If I am not at g Then move to g Else state← STOP ; do nothing;
End.

presented in [8], is as follows: The two robots move away from each other until
both have seen the configuration at least once. Then they know the connecting
line ` through their initial positions. In a next phase, they both move on lines
that are perpendicuar to `, again until both have seen the other robot at least
once on its perpendicular line. Then they both know ` and its intersection with
the two perpendicular lines, hence, they can gather on ` in the center between
the perpendicular lines.

Lemma 2. Two robots can gather at a point.

Proof. Both robots perform Algorithm 1. Here, we use ← to assign a value to a
variable that is stored in the permanent memory of the robot (and is available
in subsequent cycles), while we use := to assign values to variables that are only
used in the current cycle.

We now prove that this algorithms gathers the two robots. Let r and s be the
two robots. The following proofs are presented from the point of view of one robot
r; analogous proofs yield the same propositions for the other robot. We denote



6 Mark Cieliebak

PSfrag replacements

first move
state = 1

state = 2

state = 3

state = 3

state = 4

r srperp sperp

`init

g

Fig. 3. Illustration of the algorithm for two robots. Distances are not drawn to scale.

the variables of robot r and s with superscript r and s, respectively. Let `init

be the line through the initial positions of the robots, before any of the robots
made its first movement. A schematic illustration of the robots’ movements can
be found in Figure 3.

1. If robot r is the first robot that leaves `init, then both robots agree on `, i.e.,
`r = `s = `init.

Proof. If r leaves `init while s is still on the line, then r is in state 1 and
`r = `init. Moreover, r has seen s in two different positions on `init, thus, s

has moved on `init before r leaves `init. Hence, s has seen `init already, and
we have `s = `init.

2. Both robots eventually leave `init.

Proof. Assume that robot r wakes up first. Then it moves by
dr

0

100 and enters
state 1. As soon as s has moved at least once, r moves away from `init by

either
dr

1

100 , if s is still on `init, or by
dr

perp

100 , if s has left `init. Hence, as soon as
r has observed the first movement of s, it leaves `init. If robot s has left `init

at that time already, we are done. Otherwise, we know from Item 1 that s

is in state 1, since it knows already `init, but it is still on `init. Hence, when
s wakes up the next time, it observes that r has left `init, and s moves away

from `init by
ds

perp

100 .

3. Every subsequent movement of robot r after it left line `init is perpendicular
away from `init, until it reaches state 4.

Proof. When r moves away from `init for the first time, it is in state 1. By
construction, this movement is perpendicular away from `init, starting in

xperp, by either distance
dr

1

100 or
dr

perp

100 . Afterwards, robot r moves only if it
is in state 3, and there the movements are by definition perpendicular to
`init. It remains to show that r always moves away from `init. Since dr

perp

never changes, it is sufficient to show that
dr

1

100 < dr
perp. To see this, let dinit

be the distance between the initial positions of the robots. When the robots

wake up first, each of them makes one movement by at most
dr

0

100 and
ds

0

100 ,
respectively, on `init, away from the other robot. Afterwards, all movements

are perpendicular to `init. Hence, we have dinit ≤ dr
1 ≤ dinit +

dr

0

100 +
ds

0

100 .



Gathering Non–Oblivious Mobile Robots 7

With dr
0 ≤ dinit +

ds

0

100 and ds
0 ≤ dinit +

dr

0

100 , straight–forward analysis shows
that dr

1 ≤
10
9 dinit. This yields the claim, since dr

perp is obviously greater than
dinit.

4. Both robots eventually agree on point g, and gather there.

Proof. Due to Item 2, both robots eventually leave line `init, say at positions
rperp and sperp. Let r be the robot that leaves `init first. Then r stores value

rperp in xr
perp, moves by

dr

1

100 away from `init, and enters state 2, where
it remains until s will have left `init. When s wakes up the next time, it
observes that r has left `init, and moves perpendicular away from `init, too.
Moreover, it stores sperp in xs

perp, and rperp in ys
perp, since robot r has moved

only perpendicular to `init due to Item 3. The next time robot r wakes up,
it observes that s has left `init, too, and stores yr

perp = sperp (again, since s

moved only perpendicular to `init). Hence, both robots agree on the points
rperp and sperp where they left `init, on distance dperp between these points,
and on the center point g. Moreover, both robots move on their perpendicular
line until at least one of them, say s, has reached distance dperp from `init

(state 3). When this is observe by the other robot r, it enters state 4 and
moves straight towards g, hence, r leaves its perpendicular line. When s

wakes up the next time, it observes that r has left its perpendicular line,
and s starts moving towards g, too. Eventually, both robots reach g and
gather there.

ut

5 Gathering n > 2 Robots

We now show how to gather more than two robots. We split the algorithm up into
two separate cases, depending on the number of robots on the smallest enclosing
circle SEC in the initial configuration: if there are at least three robots on SEC ,
we make all robots move on circles around the center of SEC until all robots
know SEC (which does not change during the movements); then we gather the
robots at the center of SEC . This is shown in the following Lemma 3. On the
other hand, if there are exactly two robots on SEC , then we adapt the algorithm
for two robots from Section 4 to gather all robots at the line connecting the two
robots on SEC . This is shown in Lemma 4.

Lemma 3. If there are more than 2 robots on the smallest enclosing circle in
the initial configuration, then the robots can gather at a point.

Proof. Given a configuration of the robots, we define a movement angle γ and a
movement direction moveDir for each robot r as follows (cf. Figure 4): Let c be
the center of the smallest enclosing circle of all robots. Let C be the circle with
center c such that r is on C. If there is no other robot on C, then let γ = 1

360n

and moveDir be an arbitrary direction on C, say clockwise. If there are exactly
two robots on C, then let s be the other robot. [By assumption, C is not the



8 Mark Cieliebak

PSfrag replacements
r

s
t

c

SEC

Fig. 4. Idea of Algorithm 2. Arrows indicate movement directions of the robots.

smallest enclosing circle of the robots.] Let α and β be the two angles between r

and s w.r.t. c. Assume w.l.o.g. α ≤ β. Let γ = α
360n

, and let moveDir be in the
direction of angle β. If there are more than two robots on C, then let s and t be
the two robots on C that are adjacent to r. Let α be the angle between r and s

w.r.t. c, and β be the angle between r and t w.r.t c. Assume w.l.o.g. that α ≤ β.
Then α < 180◦. If α ≤ 178◦, then let γ = α

360n
and moveDir = t. If 178◦ < α,

then γ = 180◦
−α

360n
and moveDir = t.

If robot r observes the configation of all robots, it can order the other robots
in a unique way, for instance by using the coordinates of the robots positions in
the local coordinate system of robot r. We assume w.l.o.g. that robot r has index
1 in this ordering. Recall that different robots may have different coordinate
systems, hence, the robots do not agree on this ordering. We will ensure in our
algorithm that the basic configuration remains invariant; in particular, robots
will stay on the same circle with center c, and no two robots on the same circle
will interchange their position. Each robot stores the positions of all robots that
it observes in its first cycle in an array posns, where posnsj denotes the position
of robot rj . Hence, in later cycles robot r can compare the current position
of a robot rj with the position of rj observed in its first cycle. This allows r to
determine whether rj has made at least one movement at some time. In addition,
robot r maintains a vector hasMoved, such that hasMovedj is set to true if r

has observed at least once that robot rj has moved.
The algorithm that the robots perform is shown in Algorithm 2, and an

illustration can be found in Figure 4. We prove that the robots gather at c, the
center of the smallest enclosing circle of the robots initial positions, by showing
the following items:

1. Every robot makes at most n moves by angle γ in its direction moveDir.

Proof. A robot only moves in direction moveDir in states 2 and 3. If it is in
state 2, then it moves once in direction moveDir, sets hasMoved1 = true,
and changes into state 3. In state 3, it moves in direction moveDir if a
value hasMovedj has changed from false to true (i.e., if another robot has
moved). This can happen at most n− 1 times, once for each other robot.

2. The angles between two adjacent robots on the same circle changes at most
by 1◦.

Proof. We have γ ≤ 180◦

360n
by definition, and each robot moves at most n

times by its angle γ. Hence, the movement of a single robot changes the



Gathering Non–Oblivious Mobile Robots 9

Algorithm 2 Gathering with more than 2 robots on SEC

If this is my first observation Then

n← number of robots;
SEC ← smallest enclosing circle of all robots; c← center of SEC ;
If I am at c Then

5: d := minimum distance of any other robot to c;
state← 2; move away from c by distance d

2
;

Else

If some robot is at c Then state← 1; do nothing;
Else state← 2; do nothing;

10: If state = 1 Then

If a robot is at c Then do nothing;
Else state← 2; do nothing;

If state = 2 Then

posns← all robots positions, with posns1 my own position;
15: ∀j : hasMovedj ← false; hasMoved1 ← true;

γ ← my movement angle; moveDir← my movement direction;
state← 3; move by angle γ in direction moveDir;

If state = 3 Then

If a robot decreased its distance from c Then state← 4; do nothing;
20: Else

∀j such that robot rj changed its position w.r.t posnsj : hasMovedj ← true;
If ∀j : hasMovedj = true Then state← 4; do nothing;
If at least one value hasMovedj changed to true in this step Then

move by angle γ in direction moveDir;
25: Else do nothing;

If state = 4 Then

If I am not at c Then move to c Else state← STOP ; do nothing;
End.

angle between itself and its neighbors by at most nγ ≤ 1
2

◦

. Thus, even if
two adjacent robots move in opposite directions, the angle between them
changes by at most 1◦.

3. No two robots on the same circle interchange their position.

Proof. Let v, w, x and y be adjacent robots (in this ordering) on the same
circle with center c. Assume by contradiction that w and x interchange
their positions. We show that this cannot happen even if w and x move
towards each other. The other cases, where either x and w move in the same
direction, or they move away from each other, can be shown analogous. If w

and x move towards each other, then ^(w, c, x) > ^(v, c, w) and ^(w, c, x) >

^(x, c, y). By construction, we have γw ≤
^(w,c,x)

360n
: if ^(v, c, w) ≤ 178◦,

then γw = ^(v,c,w)
360n

; on the other hand, if ^(v, c, w) > 178◦, then γw =
180◦

−^(w,c,x)
360n

≤ ^(w,c,x)
360n

. Analogously, γx ≤
^(w,c,x)

360n
. Robot w moves at

most by angle n · γw towards x, and robot x moves at most by angle n · γx

towards w (due to Item 1). Hence, the new angle between w and x is at least



10 Mark Cieliebak

^(w, c, x) − nγw − nγx ≥ ^(w, c, x)(1 − 1
180 ) >

^(w,c,x)
2 > 0◦, i.e., the two

robots do not interchange their position.

4. SEC remains invariant until at least one robot has reached its state 4.

Proof. Until some robots reach their state 4, all robots move on circles with
center c. Hence, the smallest enclosing circle can only change if the maximum
angle between the robots on SEC becomes larger than 180◦ (cf. Lemma 1).
By previous Item 2, the angle between adjacent robots changes by at most
1◦; thus, if all adjacent robots on SEC in the initial configuration have angle
at most 178◦, the smallest enclosing circle cannot change. If in the initial
configuration there is exactly one angle between adjacent robots on SEC
that is greater than 178◦, say between robots x and y, then this is for both
x and y the maximum adjacent angle. Hence, the moving direction of x is
towards y by definition, and the moving direction of y is towards x. Thus,
the angle between x and y decreases, and no angle of more that 180◦ can
occur.
For the case that there are 2 angles of more than 178◦, first assume that
there is no robot on SEC that has an angle of more than 178◦ to both
neighbors (see Figure 5). Then there are two disjoint pairs of robots x, y and
u, v such that the angle between x and y is greater than 178◦, and the angle
between u and v is greater than 178◦. By construction, x moves towards y

and y towards x, decreasing the angle between them. Likewise, u and v move
towards each other. Hence, no angle greater than 180◦ occurs.
Now assume that there is one robot r on SEC such that both angles α

and β to its two neighbors s and t, respectively, are greater than 178◦ (see
Figure 6). Assume that α ≤ β. Both s and t move towards r. By definition,
the movement angle for robot r is γ = 180◦

−α
360n

, and r moves towards t. Hence,
the angle between r and t decreases. On the other hand, even if s does not
move at all, and even if r moves by maximum angle nγ towards t, then the
new angle between s and r is at most α + nγ ≤ 180◦. Hence, SEC does not
change.

5. If a robot reaches its state 4, then all robots agree on SEC and c.

Proof. A robot r reaches its state 4 only if hasMovedr
j = true for all 1 ≤

j ≤ n. This yields the claim, since hasMovedr
j is set to true only if robot rj

has made a move, i.e., if it was awake and had observed the configuration,
including SEC and c.

6. At least one robot eventually reaches its state 4.

Proof. Let r be the first robot to wake up. Then r observes the initial con-
figuration of the robots. If there is a robot at c in the initial configuration,
then this robot moves away from c in its first cycle. Afterwards, every robot
that wakes up moves on its circle by its movement angle γ. Assuming a fair
schedule where no robot sleeps for an infinite time, after some finite time
every robot has woken up at least once. If some other robot but r reaches
its state 4, then the claim is true. Otherwise, as soon as robot r wakes up



Gathering Non–Oblivious Mobile Robots 11

PSfrag replacements
x

y

u

v

α β
SEC

Fig. 5. Proof of Lemma 3,
Item 4, for angles
α, β > 178◦. Angles
are not drawn to scale.

PSfrag replacements
r

s t

α β
SEC

Fig. 6. Proof of Lemma 3,
Item 4, for angles α, β >

178◦. Angle between the
dashed lines is nγ. Angles
are not drawn to scale.

PSfrag replacements

x y `

m

SEC

Fig. 7. Idea of algorithm
for two robots on SEC.
Line m is the median per-
pendicular line.

the next time, it observes that all other robots have moved since its first
observation (i.e., hasMovedr

j = true for all 1 ≤ j ≤ n), and r enters state 4.

7. All robots eventually reach their state 4.

Proof. Due to Item 6, at least one robot r reaches its state 4. In its next cycle,
this robot moves towards c, i.e., it decreases its distance from c. Hence, all
other robots that wake up afterwards observe this decrease of the distance,
and enter their state 4. Assuming a fair schedule where no robot sleeps
forever yields the claim.

8. All robots gather at c and stop there.

Proof. This is obvious, since all robots agree on c due to Item 5, all robots
reach their state 4 due to Item 7, and each robot that is in state 4 moves
towards c.

ut

We now show how to solve the Gathering Problem if only two robots are on
the smallest enclosing circle in the initial configuration.

Lemma 4. If n > 2, and there are exactly 2 robots on the smallest enclosing
circle in the initial configuration, then the robots can gather at a point.

Proof (sketch). Let x and y be the two robots on smallest enclosing circle, and
let ` be the line through x and y. Our algorithm works as follows (see Figure 7).
First, all robots move “a little bit” until each robot has moved at least once.
Here, both x and y move on ` away from each other. Every other robots r moves
on a line perpendicular to `, without reaching the next robot (if any) on the
same line. The movement of x and y changes the smallest enclosing circle (in
fact, it increases the radius of the circle), but x and y remain the only robots
on this circle. Hence, each of the other robots moves always on the same line
perpendicular to `. As soon as all robots have made one move, they all know



12 Mark Cieliebak

` and all perpendicular lines. If the number of robots n is odd, then all robots
gather at the intersection of ` and the median perpendicular line. Otherwise,
they gather at the intersection of ` and the center line between the two median
perpendicular lines.

ut

We summarize our result in the following theorem, which follows immediately
from Lemmas 2, 3 and 4.

Theorem 1. The Gathering Problem can be solved for n ≥ 2 non–oblivious
robots.

6 Conclusion

We have presented an algorithm that gathers a set of n non–oblivious mobile
robots. Thus, it is sufficient to equip the robots with memory to make the Gath-

ering Problem become solvable. Moreover, our results indicates that memory
is a more powerful capability than multiplicity detection, since we have shown
that two robots with memory can gather, while two robots with multiplicity
detection cannot [8].

Our algorithm makes generous use of memory, as it stores, among others, the
exact positions of all robots. It would be interesting to see whether this could
be significantly reduced. What is the minimum amount of memory necessary to
solve the Gathering Problem?

References

1. N. Agmon and D. Peleg. Fault–tolerant gathering algorithms for autonomous mobile
robots. In ACM–SIAM Symposium on Discrete Algorithms (SODA 2004), to appear.

2. H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Transaction
on Robotics and Automation, 15(5):818–828, 1999.

3. T. Balch and R. C. Arkin. Behavior-based formation control for multi-robot teams.
IEEE Transaction on Robotics and Automation, 14(6):926–939, 1998.

4. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots gather-
ing problem. In Proc. of the 30th Intern. Colloquium on Automata, Languages and
Programming (ICALP 2003), pages 1181–1196, 2003.

5. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of autonomous
mobile robots with limited visibility. In Proc. of the 18th International Symposium
on Theoretical Aspects of Computer Science (STACS 2001), pages 247–258, 2001.

6. M. J. Matarić. Designing emergent behaviors: From local interactions to collective
intelligence. In From Animals to Animats 2: Int. Conf. on Simulation of Adaptive
Behavior, pages 423–441, 1993.

7. G. Prencipe. Distributed Coordination of a Set of Autonomous Mobile Robots. PhD
thesis, Università di Pisa, 2002.

8. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of
geometric patterns. Siam Journal of Computing, 28(4):1347–1363, 1999.

9. E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New
Results and New Trends in Computer Science, pages 359–370. Springer, 1991.


