
spMMMP at GermEval 2018 Shared Task: Classification of Offensive
Content in Tweets using Convolutional Neural Networks and Gated

Recurrent Units

Dirk von Grünigen∗
Fernando Benites
Pius von Däniken
Mark Cieliebak

Zurich University of Applied Sciences (ZHAW)
CH-8400 Winterthur

dirk@vongruenigen.com
{benf,vode,ciel}@zhaw.ch

Ralf Grubenmann∗
SpinningBytes AG
Albanistrasse 20

CH-8400 Winterthur
rg@spinningbytes.com

Abstract

In this paper, we propose two differ-
ent systems for classifying offensive lan-
guage in micro-blog messages from Twit-
ter (”tweet”). The first system uses an en-
semble of convolutional neural networks
(CNN), whose outputs are then fed to a
meta-classifier for the final prediction. The
second system uses a combination of a
CNN and a gated recurrent unit (GRU) to-
gether with a transfer-learning approach
based on pretraining with a large, automat-
ically translated dataset.

1 Introduction

Sentiment Analysis was a major focus for text an-
alytics in the last few years. Recently it became
clear that only differentiating between positive and
negative opinions is insufficient for some practical
applications. Nowadays many website maintain-
ers are requested to remove offensive content and
monitor the discussions on their websites and so-
cial networks. This creates an overwhelming need
for automated classification and removal of posts
which could cause legal issues.

Although there are resources and research on
some languages, e.g. English (Davidson et al.,
2017; Waseem and Hovy, 2016), most languages
have little or no resources on the matter. The Ger-
mEval Shared Task 2018 aims to tackle the problem
of offensive language within micro-blog posts from
Twitter (”tweets”) written in German.

In this report, we propose two classifiers for iden-
tifying offensive content in tweets. Our experi-
ments show that using embeddings created from

∗Equal Contribution

large amounts of unsupervised in-domain data has a
beneficial impact on the results. We rely on state-of-
the-art convolutional neural networks (CNNs) and
ensemble strategies, which have shown to achieve
competitive results on sentiment analysis (e.g. De-
riu et al. (2016)).

2 Task Description

The organizers of the shared task provided a dataset
with 5009 samples. Each sample contains a tweet
and two types of labels, one for each sub-task: The
first label is for the binary-classification task (”Task
I”) and hence only distinguishes between offensive
and non-offensive content. The second label dis-
criminates between four different classes, of which
3 are different types of offensive content: abuse,
insult and profanity and the fourth label for non-
offensive. The second subtask is very unbalanced,
with the labels distributed as: 3321 non-offensive,
1022 abusive, 595 insult and 71 profanity.

3 System Descriptions

In the following two sections, we describe our two
proposed systems. System I is built on an ensem-
ble of convolutional neural networks (CNN) whose
outputs are consumed by a meta-classifier for the fi-
nal prediction. This system is optimized to work as
a classifier for the binary classification task (”Task
I”). System II is based on the CNN+GRU archi-
tecture proposed by Zhang and Luo (2018). An
important component of both systems is the use of
diversified and enriched word embeddings to grasp
the semantic context of the words. Both approaches
are cutting-edge for specific but related text classi-
fication tasks and are therefore well suited to the
problem domain, although they have not been di-

130

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018

rectly compared to date.

4 System I

Deep learning models based on convolutional neu-
ral networks (CNN) are state-of-the-art for a num-
ber of text classification tasks, in particular in sen-
timent analysis (Kim, 2014; Kalchbrenner et al.,
2014; Severyn and Moschitti, 2015a; Severyn and
Moschitti, 2015b; Johnson and Zang, 2015), which
is closely related to the domain of detecting of-
fensive content in text. The system proposed by
Mahata et al. (2018) has proven to perform excep-
tionally well in the domain of classifying medica-
tion intake from tweets. Based on this, we also
trained multiple shallow CNNs and combine them
into an ensemble in a similar fashion.

4.1 Preprocessing

The data is processed by lowercasing the tweet
and normalizing numbers and removing ”|LBR|”
tokens, which signify a newline in a tweet. De-
pending on the embeddings used further down the
process, as detailed in Section 4.3, we used differ-
ent tokenization strategies. For vanilla word2vec
and fastText embeddings, we used the NLTK
TweetTokenizer (Bird et al., 2009). On the
other hand, for the subword byte-pair embed-
dings (Sennrich et al., 2016), we used the Google
sentencepiece1 tool.

As the last step, we applied the hashtag splitting
procedure described below to split up hashtags into
their distinctive parts, since hashtags can convey
a lot of the intention of a tweet. Finally, we con-
verted the tokenized tweets into a list of indices,
which was used to select the corresponding word
embeddings. Furthermore, we enriched the word-
embeddings with word-based polarity values.

Word Polarity Values: In offensive texts in
tweets, often very polarising words are used (e.g.
racial slurs or insults). To take advantage of this
fact, we incorporated polarity values for each word
in the used dataset. For that purpose, we employed
three different resources: A multi-domain senti-
ment lexicon for German from the IGGSA web-
site2, the list of insults in German from the website
hyperhero.com3 and a list of racial slurs in Ger-
man from the website hatebase.org4. The polarity

1https://github.com/google/sentencepiece
2https://sites.google.com/site/iggsahome/downloads
3http://hyperhero.com/de/insults.htm
4https://www.hatebase.org/search results

values in the lexicon range from -1.0 (negatively
polarising) to +1.0 (positively polarising). The av-
erage of all polarity values provided for each word
in the lexicon provided to the system an additional
feature. This sentiment lexicon was extended with
the words from the list of German insults from the
website hyperhero.com and from the list of racial
slurs from hatebase.org to it. Further, we assigned
a negative polarity (i.e. −1.0) value to these addi-
tional words. We then generated a one-hot encoded
vector with 11 polarity-classes for each word in
the dataset by discretizing the continuous polarity
values. These vectors were stacked on top of each
of the word embedding vectors before being passed
to the convolutional network.

Hashtag Splitting: Hashtags are problematic in
tweets, since sometimes they are composed of mul-
tiple words (e.g. ”#ThisIsASingleHashtag”) and
hence would be out-of-vocabulary for the word em-
beddings most of the time. But they are crucial to
understand the real meaning behind a tweet: For
example the meaning of a tweet with the hashtag
”#sarcasm” might be understood completely dif-
ferent without adding this hashtag. To tackle this
problem, we implemented a hashtag splitting pro-
cedure using the CharCompound5 tool (Tuggener,
2016). It is a simple but elegant solution, which
uses ngram probabilities and returns different splits
for each word with a certainty value for each split.
We applied the splitting procedure recursively to
the hashtags to ensure that we split all compounds.
We set the certainty threshold to 0.8 and stopped
when no split with a certainty greater or equal to
this threshold could be found.

4.2 Base CNN
The base CNN for the ensemble consists of mul-
tiple, shallow convolutional layers. Each convolu-
tional layer consists of the following components,
in the listed order:

• Word embeddings layer that converts an
indices-vector into a sentence-matrix.

• Dropout layer (Srivastava et al., 2014) as a
regularization measure.

• Convolution operation for the feature extrac-
tion.

• Batch normalization layer (Ioffe and Szegedy,
2015) to speed up the training.

5https://github.com/dtuggener/CharSplit

131

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018

Hyperparameter Value
Number of Conv. Kernel 200
Conv. Kernel Sizes [2, 3, 4, 5, 6]
Conv. Kernel Stride 1
Conv Kernel Dilation 0
Number of Neurons in Hidden Layer 4096
Dropout Probability (after word-embeddings layer) 0.4
Dropout probability (after conv. operation) 0.3
Dropout probability (between fully-connected layers) 0.4
Max. Input Length 200

Table 1: Hyperparameters used for the base CNN
in System I. Only one kernel size was used per con-
volutional operation, but we used 5 convolutional
layers, each using one of the sizes for its kernels.

• Another dropout layer.

• Max-pooling layer to reduce the dimensional-
ity of the output.

• ReLU activation function (Nair and Hinton,
2010) to squeeze the output values into the
range [0,+∞).

In total there are five of these layers, all using the
same hyperparameters (see Table 1), except for
the kernel size in the convolution operation. The
sentence-matrix is fed to each of these parallel con-
volutional layers and the resulting output vectors
are concatenated, resulting in a vector with 1000
values. This vector is then forward propagated
through two fully connected layers, which then out-
put two logit values for the two classes (i.e. ”not
offensive” and ”offensive”). A visualization of the
base CNN model is depicted in Figure 1.

Hyperparameters: The hyperparameters used
in the base CNN of System I can be seen in table
1. The max-pooling operation was performed as
global max-pooling. This implies that each of the
convolution operations outputs 200 distinct values,
because we configured each convolution operation
to use 200 different kernels. As a result of using
5 different convolutional layers having 200 output
values each, the vector, which is forwarded to the
fully-connect layer, contains 1000 values.

Initialization and Optimization of Parame-
ters: All parameters, except for the biases, of
the base CNN were initialized using the Xavier
Normal initialization (Glorot and Bengio, 2010)
with the gain value set to 1. The biases were initial-
ized to 0. We used the Adam optimizer (Kingma
and Ba, 2014) for the optimization of the network
parameters, including the word embeddings. Adam
dynamically adapts the learning rate for every pa-
rameter in the network by using first- and second-

order information. We used a learning rate of
0.001, 0.9 and 0.999 as the beta coefficients for
computing the running averages of the gradients, a
weight decay value of 0.0005 and an epsilon value
of 10−8. As the loss function, we employed the
cross-entropy loss between the expected, one-hot
encoded label vector and the output of the CNN
after being passed through a Softmax layer.

4.3 Word Embeddings

Word embeddings are omnipresent today when
performing any natural language processing, es-
pecially with deep learning models. Due to our ap-
proach of using several of the previously described
base CNNs, we decided that we would initialize
each of these with another kind of word embed-
dings. We use different kind of word embeddings
to get an diversified view of the data, which helps
with our ensembling approach.

The following types of word embeddings were
used:

• fastText (SpinningBytes-FT) em-
beddings (Bojanowski et al., 2017; Joulin et
al., 2017) with 300 dimensions trained on a
large corpus of German tweets (”sb-tweets”)
provided by SpinningBytes6. These are cur-
rently not publicly available.

• fastText (fasttext-Wiki) embed-
dings with 200 dimensions pretrained on the
texts from the German Wikipedia corpus.
These can be downloaded via the fastText
GitHub page7.

• word2vec (SpinningBytes-W2V)
(Mikolov et al., 2013) embeddings with 200
dimensions, also trained with the ”sb-tweets”
corpus. These can also be downloaded from
the SpinningBytes website.

• fastText Byte-Pair Embeddings
(Spinningbytes-BP) embeddings with
100 dimensions for the case where subword
tokenization (Sennrich et al., 2016) was per-
formed, trained with the ”sb-tweets” corpus.
For the tokenization, we used the previously
mentioned Google sentencepiece tool.
These embeddings are not publicly available
at the moment.

6http://spinningbytes.com
7https://github.com/facebookresearch/fastText/

132

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018

Figure 1: Visualization on the structure of the base CNN model.

4.4 Training Procedure and Ensembling of
Classifiers

We decided to train our models in a similar fashion
as Mahata et al. (2018): First, we split the data pro-
vided by the organizers randomly into a training
and holdout dataset, where the training dataset con-
tains 90% of the provided data and the other 10% is
used as for the holdout dataset. We train each of the
different models by doing k-fold cross-validation
(with k = 5) over said training data and use the eval-
uation dataset for performing early stopping if the
performance on it did not improve for more than 20
epochs with respect to the macro F1-score. Each
of the models trained on each fold is then stored
for later usage in the ensemble. This results in 20
base CNNs in total, 5 for each of the 4 different
CNNs initialized with the word embeddings listed
in Section 4.3.

Class Weights: Only 33.7% of the samples
in the provided data contain offensive content,
whereas 66.3% do not. We used class weights to
counter this imbalance in the label distribution. For
this we computed class weights, which are then
used to rescale the loss function when perform-
ing the back-propagation. The following formulae
were employed:

CO =
|LN|+ |LO|

2 · |LO|
(1)

CN =
|LN|+ |LO|

2 · |LN|
(2)

where |LO| is the number of offensive samples, |LN|
the number of samples with non-offensive content

in the provided dataset. CO and CN are the result-
ing class weights for offensive and non-offensive
samples respectively.

4.5 Meta Classifiers

As described before, we trained the same base CNN
with different word embeddings on different parts
of the training data using k-fold cross-validation.
Moreover, we concatenated the outputs of these 20
models on the training dataset and used them in
conjunction with the labels to train different meta-
classifiers. We experimented with different strate-
gies for meta-classification (see Table 3 in Section
6) and used hyper-parameter optimization while
training them.

5 System II

Following Zhang and Luo (2018), our second ar-
chitecture utilizes both CNN and Gated Recurrent
Units (GRU, Cho et al. (2014)). It uses three differ-
ent embeddings and an attention layer, which are
described in detail in the following.

5.1 Preprocessing

Additionally to the preprocessing of System I, user
mentions (@username) were removed, words con-
taining dots were split and special characters / |: ;
& \ were removed. German stopwords8 were also
removed from the input string. Words not present
in the embeddings were replaced with an UNK
token.

8https://github.com/stopwords-iso/stopwords-de

133

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018

5.2 CNN + GRU

The model consists of two CNN+GRU architec-
tures, one for word-embeddings and one for sub-
word embeddings, which are later concatenated to-
gether, along with a Smiley-feature vector, before
being used by a fully connected Softmax layer to
get predictions of the model. To prevent overfitting,
dropout of 0.5 was added before every convolu-
tional as well as the final layer. ReLU was used as
activation function for all convolutional layers. An
overview of the architecture is shown in Figure 2.

Word embeddings architecture: fastText em-
beddings of 200 dimensions each for uni- and bi-
grams in a tweet are concatenated to get a 100x400
feature matrix. Tweets are limited 100 tokens. 1d
convolutions with 100 feature maps and kernel
sizes of 3, 4 and 5, and kernel sizes 2 and 3 with
dilations of 2 and 3, respectively, are then applied
to the feature matrix separately. The dilated con-
volutions are meant to simulate the skipped CNN
proposed in (Zhang and Luo, 2018). The results
are max-pooled by a factor of 4 and concatenated
along the feature axis. This is then passed to a
bi-directional GRU unit. The hidden states at each
time step of the GRU are then combined by an at-
tention layer (Xu et al., 2014), yielding a feature
vector containing 1000 values.

Subword embeddings architecture: This ar-
chitecture largely mirrors the word embeddings
architecture, but takes subword tokenized embed-
dings as input. Due to the smaller nature of sub-
word tokens, a maximum sentence length of 150
is enforced. The architecture is adjusted to yield
the same 1000 dimensional feature vector as in the
word-embeddings architecture.

Emoji embeddings: A list of 751 Unicode emo-
jis (Kralj et al., 2015) is used to count the occur-
rences of different emojis in the tweets. A linear
transformation is applied to the emoji feature vector
to reduce dimensionality to 200.

Final layer: The output of all three parts of
the architecture is concatenated to yield a 2200
dimensional feature vector. A fully connected layer
with Softmax is used to get the final output of the
architecture, with 2 and 4 dimensions for the coarse
and fine tasks, respectively.

5.3 Transfer Learning

Due to the relatively small amount of training data,
the model was pretrained on a related task. To
our knowledge, only one other hate speech corpus

in German is available (Ross et al., 2016). But
there are two large corpora for hate speech detec-
tion available in English, namely (Davidson et al.,
2017) and one provided by Lukovnikov9. To get
as close as possible to the target domain, the En-
glish hate speech corpora were automatically trans-
lated10 to German. The model was jointly trained
on the related German and English corpora until
train scores stopped improving. Then the last layer
of the network was discarded and retrained on the
actual data provided for the Shared Task.

5.4 Semi-Supervised Retraining using the
Test Dataset

To extend the training set, we used a similar semi-
supervised approach to Jauhiainen (2018). For that
purpose, our system is first trained on the training
dataset and then used to classify the test dataset.
Predictions on samples of the unlabeled test dataset
with a confidence higher than 0.75 are then used as
additional labeled data to augment the training set.
We treat the output of the Softmax layer as the con-
fidence score. The classifier is then trained again
on the augmented training dataset. The results can
be seen in Tables 2 and 3 for the systems labeled
with Semi.

6 Experiments

We performed several tests on the labeled training
data. As described above, we randomly selected
10% of the training data as test data. We then
trained on the training data and evaluated the sys-
tems on the test data. This procedure was repeated
five times in order to estimate an average and stan-
dard deviation of the performance.

We compared our results to a baseline which
consisted of an SVM using TF-IDF feature weight-
ing. The data preprocessing was performed
by tokenizing the tweets with the mentioned
TweetTokenizer and the GermanStemmer
from the stem.snowball module of NLTK. We
also compared the single classifiers of System I ver-
sus the results using different meta classifiers. We
evaluated the results with the F-1 macro average
measure. The results are depicted in Table 3.

In task I, the meta classifiers had a remarkable
impact. Logit Averaging provided an advantage
over the other approaches and improved the overall
classification performance by more than 3 points

9https://github.com/lukovnikov/hatespeech
10https://translate.google.com/

134

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018

Figure 2: Visualization on the structure of the CNN + GRU model.

with respect to the F-1 macro score in comparison
to the best performing single classifier (see Table 3).
This confirms the results of Mahata et al. (2018).
Other meta-classifiers, such as Random Forests,
Logistic Regression and Linear SVM were close,
though the single classifiers were also in this range.
The System I results showed that the embeddings
can have a decisive impact on the results of the
classification systems. These systems had a big
margin to the Multilayer Perceptron meta classifier,
which performed last in the results and also has
the largest variance in the performance. The SVM
baseline performed worse comparing to the other
single classifier approaches.

Using the semi-supervised routine can make a
decisive difference on the performance, as can be
seen from the System II results. Especially for task
II, we see that the semi-supervised approach was
4 points better. Interestingly, the baseline SVM
performed best in this task.

7 Submitted Runs

7.1 For Task I

The following runs were submitted to the Ger-
mEval organizers for Task I:

• spMMMP coarse 1: System I, best model
out of 15 runs.

System II F-1 macro
SpinningBytes-CNN+GRU 0.4100 ± 0.0363
SpinningBytes-CNN+GRU Semi 0.4549 ± 0.0324
SVM 0.4797 ± 0.0346

Table 2: Results for the CNN+GRU classifier on
task 2. All reported scores are the performance on
the holdout dataset from each specific run, mea-
sured in F1-score (macro) over the OFFENSIVE,
ABUSIVE, INSULTING and OTHER labels for the
4-class classification task.

• spMMMP coarse 2: System I, second-best
model out of 15 runs.

• spMMMP coarse 3: System II with semi-
supervised augmented training data, best
model out of 5 training runs.

7.2 For Task II

The following runs were submitted to the Ger-
mEval organizers for Task II:

• spMMMP fine 1: System II without semi-
supervised augmented training data, best
model out of 5 training runs.

• spMMMP fine 2: System II with semi-
supervised augmented training data, best
model out of 5 training runs.

135

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018

System F-1 macro
SVM 0.7266 ±0.0212
System I

Single Classifiers
SpinningBytes-FT CNN 0.7547 ± 0.0160
SpinningBytes-W2V CNN 0.7656 ± 0.0143
fastText-Wiki CNN 0.7703 ± 0.0102
SpinningBytes-BP CNN 0.7354 ± 0.0188

Meta Classifiers
Random Forest 0.7843 ± 0.0188
Majority Vote 0.6813 ± 0.0329
Logit Averaging 0.8048 ± 0.0138
One Trigger 0.6304 ± 0.0223
Logistic Regression 0.7762 ± 0.0308
Linear SVM 0.7686 ± 0.0334
Multilayer Perceptron 0.6638 ± 0.1299
System II
SpinningBytes-CNN+GRU 0.7454 ± 0.0168
SpinningBytes-CNN+GRU Semi 0.7684 ± 0.0087

Table 3: Classification results on the task I training
data. All reported scores are the performance mea-
sures in F1-score (macro) over 5 randomly different
tests on the holdout set.

• spMMMP fine 3: SVM with TF-IDF and
semi-supervised augmented training data.

8 Conclusion

In this paper, we described our two different ap-
proaches to tackling the problem of detecting of-
fensive content in micro-blog posts from Twitter in
the context of the GermEval 2018 Competition.

The first system used an ensemble of the same
CNN base model initialized with different types
word embeddings. These models are then used in
combination with an output-averaging approach to
generate the final prediction. A preliminary eval-
uation of the system showed that it achieves an
average F1-score (macro) of 80% on average on
randomly chosen holdout datasets on the binary
classification task.

The second system used a combination of a CNN
and GRU architecture with two different type of
word embeddings. The preliminary evaluation on a
randomly chosen holdout set showed that it could
achieve a performance of 45% with respect to the
macro-averaged F1-score over all four labels from
the multi-label classification task.

References
Bird Steven, Loper Edward and Klein Edward.

2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Bojanowski Piotr, Grave Edouard, Joulin Armand and
Mikolov Tomas. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics.

Cho Kyunghyun, Van Merriënboer Bart, Gulcehre
Caglar, Bahdanau Dzmitry, Bougares Fethi,
Schwenk Holger, Bengio Yoshua. 2014. Learning
Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. arXiv
preprint arXiv:1406.1078. arXiv.org.

Davidson Thomas, Warmsley Dana, Macy Michael,
Weber Ingmar. 2017. Automated Hate Speech De-
tection and the Problem of Offensive Language. Pro-
ceedings of the 11th International AAAI Conference
on Web and Social Media. ICWSM.

Deriu Jan, Gonzenbach Maurice, Uzdilli Fatih, Lucchi
Aurelien, De Luca Valeria and Jaggi Martin. 2016.
SwissCheese at SemEval-2016 Task 4: Sentiment
Classification using an Ensemble of Convolutional
neural networks with distant supervision. Proceed-
ings of the 10th International Workshop on Semantic
Evaluation, 1124–1128. Association for Computa-
tional Linguistics.

Deriu Jan, Lucchi Aurelien, De Luca Valeria, Sev-
eryn Aliaksei, Müller Simon, Cieliebak Mark, Hoff-
mann Thomas and Jaggi Martin. 2017. Leverag-
ing Large Amounts of Weakly Supervised Data for
Multi-Language Sentiment Classification. Proceed-
ings of the 26th International Conference on World
Wide Web, pages 1045–1052. International World
Wide Web Conferences Steering Committee.

Glorot Xavier and Bengio Yoshua. 2010. Understand-
ing the Difficulty of Training Deep Feedforward Neu-
ral Networks. Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statis-
tics 2010, pages 249–256. ACM.

Ioffe Sergey and Szegedy Christian. 2015. Batch
Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. Proceed-
ings of the 32nd International Conference on Inter-
national Conference on Machine Learning volume
37. JMLR.org.

Jauhiainen Tommi, Linden Krister and Jauhiainen
Heidi. 2018. HeLI-based Experiments in Swiss
Germ Dialect Identification (in Press). Proceedings
of the Fifth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial).

Johnson Rie and Zhang Tong. 2015. Semi-Supervised
Convolutional Neural Networks for Text Categoriza-
tion via Region Embedding. NIPS 2015 - Advances
in Neural Information Processing Systems. Associa-
tion for Computational Linguistics.

136

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018

Joulin Armand, Grave Edouard, Bojanowski Piotr and
Mikolov, Tomas. 2017. Bag of Tricks for Efficient
Text Classification. Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics volume 2, short papers.
Association for Computational Linguistics.

Kalchbrenner Nal, Grefenstette Edward and Blunsom
Phil. 2014. A Convolutional Neural Network for
Modelling Sentences. ACL - Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Kim Yoon. 2014. Convolutional Neural Networks for
Sentence Classification. EMNLP 2014 - Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Kingma Diederik and Ba Jimmy. 2014. Adam: A
Method for Stochastic Optimization. arXiv prepr.int
arXiv:1412.6980. arXiv.org.

Kralj Novak Petra, Smailović Jasmina, Sluban Borut,
Mozetič, Igor. 2015. Sentiment of emojis. PLoS
ONE Volume 10. PLoS ONE

Mahata Debanjan, Friedrichs Jasper, Shah Rajiv Ratn
and Hitkul. 2018. # phramacovigilance-Exploring
Deep Learning Techniques for Identifying Mentions
of Medication Intake from Twitter. arXiv preprint
arXiv:1805.06375. arXiv.

Mikolov Tomas, Sutskever Ilya, Chen Kai, Corrado
Greg and Dean Jeff. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. NIPS 2013 - Advances in Neural Information
Processing Systems. Curran Associates, Inc.

Nair Vinod and Hinton Geoffrey E. 2010. Rectified
linear units improve restricted boltzmann machines.
Proceedings of the 27th international conference on
machine learning (ICML-10). Omnipress.

Ross Björn, Rist Michael, Carbonell Guillermo, Cabr-
era Benjamin, Kurowsky Nils, Wojatzki Michael.
2016. Measuring the Reliability of Hate Speech An-
notations: The Case of the European Refugee Crisis.
Proceedings of NLP4CMC III: 3rd Workshop on Nat-
ural Language Processing for Computer-Mediated
Communication. Bochumer Linguistische Arbeits-
berichte.

Sennrich Rico, Haddow Barry and Birch Alexandra.
2016. Neural Machine Translation of Rare Words
with Subword Units. Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics volume 2, long papers. Association for
Computational Linguistics.

Severyn Aliaksei and Moschitti Alessandro. 2015.
Twitter Sentiment Analysis with Deep Convolutional
Neural Networks. Proceedings of the 38th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. ACM.

Severyn Aliaksei and Moschitti Alessandro. 2015.
UNITN: Training Deep Convolutional Neural Net-
work for Twitter Sentiment Classification. SemEval
2015 - Proceedings of the 9th International Work-
shop on Semantic Evaluation. Association for Com-
putational Linguistics.

Srivastava Nitish, Hinton Geoffrey, Krizhevsky Alex,
Sutskever Ilya and Salakhutdinov Ruslan. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search volume 15. JMLR.org.

Tuggener Don. 2016. Incremental Coreference Resolu-
tion for German. PhD Thesis. University of Zurich.

Tuggener Don. 2018. Evaluating Neural Sequence
Models for Splitting (Swiss) German Compounds (in
press). Proceedings of the 3rd Swiss Text Analytics
Conference - SwissText 2018. ceur-ws.org.

Waseem Zeerak and Hovy Dirk, 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. Proceedings of the
NAACL student research workshop 2016, pages 88–
93. NAACL.

Xu Kelvin, Ba Jimmy, Kiros Ryan, Cho Kyunghyun,
Courville Aaron, Salakhudinov Ruslan, Zemel Rich,
Bengio Yoshua. 2014. Show, attend and tell: Neu-
ral image caption generation with visual attention.
International conference on machine learning 2015,
pages 2048–2057. icml.cc.

Zhang Ziqi, Luo Lei. 2018. Hate Speech Detection:
A Solved Problem? The Challenging Case of Long
Tail on Twitter. arXiv preprint arXiv:1803.03662
arXiv.org.

137

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018

