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Abstract. We introduce a novel variant of the well known d-dimensional
bin (or vector) packing problem. Given a sequence of non-negative d-
dimensional vectors, the goal is to pack these into as few bins as possible
of smallest possible size. In the classical problem the bin size vector
is given and the sequence can be partitioned arbitrarily. We study a
variation where the vectors have to be packed in the order in which they
arrive and the bin size vector can be chosen once in the beginning. This
setting gives rise to two combinatorial problems: One in which we want
to minimize the number of used bins for a given total bin size and one in
which we want to minimize the total bin size for a given number of bins.
We prove that both problems are NP-hard and propose an LP based
bicriteria ( 1

ε
, 1

1−ε
)-approximation algorithm. We give a 2-approximation

algorithm for the version with bounded number of bins. Furthermore, we
investigate properties of natural greedy algorithms, and present an easy
to implement heuristic, which is fast and performs well in practice.

Suppose you want to spray a long text on a wall using stencils for the letters
and spray color. You start from the left and assemble as much of the beginning
of the text as you have matching stencils at your disposal. Then you mask the
area around the stencils and start spraying. Afterwards, you remove the stencils
again, so that you can reuse them in the next steps. You iterate this procedure
starting after the last letter that was sprayed until the whole text is finished.
The sequential unit vector packing problem can be formulated as the following
question: If you have bought enough material to produce at most B stencils
before you start, how many stencils bi of each letter i ∈ {A . . .Z} do you produce
in order to minimize the number of steps that you need to spray the whole text?

The problem can be seen as an inverse vector packing problem: The sequence
in which the items (characters, interpreted here as unit vectors) occur is fixed
and cannot be altered. On the other hand, the bin size vector (here (bA, . . . , bZ))
can be changed as long as its component-wise sum does not exceed a given
value B. An equivalent problem was posed to us by an industry partner from
the manufacturing industry, where exactly this question arises in a production
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process. As a small letdown we are not allowed to give the details of this process.
In this paper we study both this problem and the slightly generalized version
where the vectors in the sequence are not restricted to unit vectors. Formally,
the sequential vector packing problem is defined as follows:

Definition 1 (Sequential vector packing, SVP)
Given: a sequence S = s1 · · · sn of demand vectors si = (si1, . . . , sid) ∈ Qd

+,
d ∈ N.
Evaluation: for a bin vector (or short: bin) b = (b1, . . . , bd) ∈ Qd

+ of total bin
size B = |b|1 =

∑d
j=1 bj, the sequence s1 · · · sn can be packed in this order into k

bins, if breakpoints 0 = π0 < π1 < · · · < πk = n exist, such that

πl+1∑

i=πl+1

si ≤ b for l ∈ {0, . . . , k − 1} ,

where the inequalities over vectors are component-wise.
We denote the minimum number of bins for given S and b by κ(b,S) = k.
This number can be computed in linear time. We denote the jth component,
j ∈ {1, . . . , d}, of the demand vectors and the bin vector as resource j, i.e., sij

is the demand for resource j of the ith demand vector. We also refer to si as
position i.
Goals: minimize the total bin size and the number of bins. We formulate this
bicriteria objective in the following two versions:

Bounded Size SVP for a given bin size B find a bin vector b with B = |b|1,
such that κ(b,S) is minimum.

Bounded Number SVP for a given number of bins k find a bin vector b with
κ(b,S) = k, such that the total bin size B = |b|1 is minimum.

The sequential unit vector packing (SUVP) problem considers the restricted vari-
ant where si, i ∈ {1, . . . , n}, contains exactly one entry equal to 1, all others are
zero. Note that any solution for this version can be transformed in such a way
that the bin vector is integral, i.e., b ∈ Nd, by potentially rounding down re-
source amounts to the closest integer (therefore one may also restrict the total
bin size to B ∈ N). The same holds if all vectors in the sequence are integral,
i.e., si ∈ Nd, i ∈ {1, . . . , n}.

Given the bicriteria objective function it is natural to consider bicriteria ap-
proximation algorithms: We call an algorithm a bicriteria (α, β)-approximation
algorithm for the sequential vector packing problem if it finds for each sequence
S and bin size β · B a solution which needs no more than α times the number of
bins of an optimal solution for S and bin size B.

Related Work. There is an enormous wealth of publications both on the classical
bin packing problem and on variants of it. The two surveys by Coffman, Garey
and Johnson [2, 8] give many pointers to the relevant literature until 1997. In [3]
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Coppersmith and Raghavan introduce the multidimensional (on-line) bin pack-
ing problem. There are also some variants that take into consideration precedence
relations on the items [13, 12] that remotely resemble our setting. Galambos and
Woeginger [6] give a comprehensive overview over the on-line bin-packing and
vector-packing literature. We like to stress though that our problem is not an
on-line problem, since we are given the complete (albeit immutable) sequence in
the beginning. We are unaware of any publication that deals with the sequential
vector packing problem. In the context of scheduling algorithms, allowing a cer-
tain relaxation in bicriteria approximations (here increasing the bin size) is also
called resource augmentation, cf. [9, 10].

New Contributions and Outline. In Section 1 we present approximation algo-
rithms for the sequential vector packing problem. These are motivated by the
strong NP-hardness results that we give in Section 2. The approximation algo-
rithms are based on an LP relaxation and two different rounding schemes, yielding
a bicriteria (1

ε , 1
1−ε )-approximation and—as our main result—a 2-approximation

for the bounded number version of the problem. Recall that the former
algorithm, e.g., for ε = 1

3 , yields solutions with at most 3 times the optimal number
of bins while using at most 1.5 times the given total bin size B, the latter may use
at most the optimal number of bins and at most twice the given total bin size B.
In Section 3 we present two simple greedy strategies and argue why they perform
badly in the worst case. Furthermore, we give an easy to implement randomized
heuristic and present two optimizations concerning subroutines. In particular, we
show how to compute κ(b,S) in time O(κ(b,S) · d) after a preprocessing phase
which takes O(n) time.Due to space limitations, we omit some of the proofs in this
extended abstract. These proofs can be found in the technical report [1], in which
we also experimentally evaluate the presented algorithms with promising results
on real world data, in particular for the randomized heuristic.

1 Approximation Algorithms

We present an ILP formulation which we subsequently relax to an LP. We con-
tinue by describing a simple rounding scheme which yields a bicriteria (1

ε , 1
1−ε )-

approximation for bounded size and bounded number SVP and then show how
to obtain a 2-approximation for bounded number SVP.

1.1 ILP Formulation

For a given sequence S, let wu,v :=
∑v

i=u+1 si, for u, v ∈ {0, . . . , n} and u < v,
denote the total demand (or total demand vector) of the subsequence Su,v :=
su+1 · · · sv. If wu,v ≤ b holds, we can pack the subsequence Su,v into bin b.
The following integer linear programming (ILP) formulation solves both versions
of the sequential vector packing problem. Let X := {xi|i ∈ {0, . . . , n}} and
Y := {yu,v|u, v ∈ {0, . . . , n}, u < v} be two sets of 0-1 variables.
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0 1 2 3 4 5 6 7 8 9 10position i
1 1 0 0

y0,3 = 1 y3,7 = 1 y7,8 = 1
y8,10 = 1

sequence

var xi

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

y-vars
y1,2 = 0 etc.

1 1 10 0 0 0

Fig. 1. An exemplary instance, its potential ILP solution, and its flow representation.
The solution needs 4 bins.

min k (or B)
s.t. x0 =1 (1)

i−1∑

u=0

yu,i =xi for i ∈ {1, . . . , n} (2)

n∑

v=i+1

yi,v =xi for i ∈ {0, . . . , n − 1} (3)

∑
u,v:

u<i≤v

wu,v · yu,v ≤b for i ∈ {1, . . . , n} (4)

d∑

j=1

bj = B,

n∑

i=1

xi = k (5)

B ∈ Q+, (k ∈ N),b ∈ Qd
+, xi, yu,v ∈ {0, 1} for xi ∈ X, yu,v ∈ Y

The 0-1 variable xi indicates whether there is a breakpoint at position i ≥ 1.
The 0-1 variable yu,v can be seen as a flow which is routed on an edge from
position u ∈ {0, . . . , n − 1} to position v ∈ {1, . . . , n}, with u < v, see Figure 1.

The Constraints (2),(3) ensure that flow conservation holds for the flow rep-
resented by the yu,v variables and that xi is equal to the inflow (outflow) which
enters (leaves) position i. Constraint (1) enforces that only one unit of flow is
sent via the Y variables. The path which is taken by this unit of flow directly
corresponds to a series of breakpoints.

In Constraints (4) the bin vector b comes into play: for any two consecutive
breakpoints (e.g., xu = xv = 1) the constraint ensures that the bin vector is large
enough for the total demand between the breakpoints (e.g., the total demand
wu,v of the subsequence Su,v). Note that Constraints (4) sum over all edges that
span over a position i (in a sense the cut defined by position i), enforcing that
the total resource usage is bounded by b. For the two consecutive breakpoints xu

and xv this amounts to wu,v ·yu,v ≤ b. Finally, Constraints (5) ensure the correct
total size of the bin vector and the correct number of bins.

1.2 An Easy (1
ε
, 1

1−ε
)-Approximation

As a first step, we relax the ILP formulation to an LP: here this means to have
xi, yu,v ∈ [0, 1] for xi ∈ X, yu,v ∈ Y . The following Algorithm Eps Rounding

computes a (1
ε , 1

1−ε)-approximation:

1. Solve the LP optimally with one of the two objective functions.
Let (X�, Y �,b�) be the obtained fractional solution.
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is i′ i′′ ie

x̂is = 1 x̂i′′
x̂i′ x̂ie

< ε≥ ε

is i′ i′′ ie

x̂is = 1 x̂i′′ = 0
x̂i′ = 0 x̂ie = 1

Fig. 2. An example of the rerouting of flow in Lines 4 (a)-(c) of the algorithm

2. Set (X̂, Ŷ , b̂) = (X�, Y �, 1
1−ε · b�) and is = 0. Stepwise round (X̂, Ŷ )̂:

3. Let ie > is be the first position for which
∑ie

i=is+1 x̂i ≥ ε.
4. Set x̂i = 0 for i ∈ {is+1, . . . , ie−1}, set x̂ie = 1. Reroute the flow accordingly

(see also Figure 2): (a) Set ŷis,ie = 1. (b) Increase ŷie,i by
∑ie−1

i′=is
ŷi′,i, for

i > ie. (c) Set ŷis,i′ = 0 and ŷi′,i = 0, for i′ ∈ {is + 1, . . . , ie − 1}, i > i′.
5. Set the new is to ie and continue in Line 3, until is = n.

Theorem 1. The algorithm Eps Rounding is a (1
ε , 1

1−ε )-approximation algo-
rithm for the sequential vector packing problem.

Note that one would not actually implement the algorithm Eps Rounding.
Instead it suffices to compute the bin vector b� with the LP and then multiply
it by 1

1−ε and evaluate the obtained bin vector, see Section 3.

1.3 A 2-Approximation for Bounded Number Sequential Vector
Packing

We prove some properties of the LP relaxation and then describe how they can
be applied to obtain the rounding scheme yielding the desired bicriteria ratio.

Properties of the Relaxation. Let (X, Y,b) be a fractional LP solution w.r.t.
one of the objective functions; recall that the Y variables represent a flow. Let
e1 = (u, v) and e2 = (u′, v′) denote two flow carrying edges, i.e., yu,v > 0 and
yu′,v′ > 0. We say that e1 is contained in e2 if u′ < u and v′ > v, we also call
(e1, e2) an embracing pair. We say an embracing pair (e1, e2) is smaller than an
embracing pair (ê1, ê2), if the length of e1 (for e1 = (u, v), its length is v − u)
is less than the length of ê1 and in case of equal lengths, if u < û (order by
left endpoint of e1, ê1). That is, for two embracing pairs with distinct e1 and ê1
we always have that one is smaller than the other. We show that the following
structural property holds:

Lemma 1 (no embracing pairs). Any optimal fractional LP solution (X�,
Y �,b�) can be modified in such a way that it contains no embracing pairs, without
increasing the number of bins and without modifying the bin vector.

Proof. We set Y = Y � and show how to stepwise treat embracing pairs contained
in Y , proving after each step that (X�, Y,b�) is still a feasible LP solution. We
furthermore show that this procedure terminates and in the end no embracing
pairs are left in Y .
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u v

u′ v′

u

vu′

v′

a b c d edd

e1

e2

e′1

e′2
pmin

is

e

· · · · · ·S
ie

Fig. 3. Left: Replacement of λ units of flow on e1 and e2 by λ units of flow on e′
1

and e′
2 in Lemma 1. Right: Extracting the integral solution. Edge e together with other

potential edges in Y � in Theorem 2.

Let us begin by describing one iteration step, assuming (X�, Y,b�) to be
a feasible LP solution which still contains embracing pairs. Let (e1, e2), with
e1 = (u, v) and e2 = (u′, v′), be an embracing pair. We now modify the flow Y
to obtain a new flow Y ′ by rerouting λ = min{yu,v, yu′,v′} units of flow from e1,
e2 onto the edges e′1 = (u, v′) and e′2 = (u′, v): y′

u,v = yu,v − λ, y′
u′,v′ = yu′,v′ −λ

and y′
u′,v = yu′,v +λ, y′

u,v′ = yu,v′ +λ; see also Figure 3 (left). The remaining flow
values in Y ′ are taken directly from Y . It is easy to see that the flow conservation
constraints (2),(3) still hold for the values X�, Y ′ (consider a circular flow of λ
units sent in the residual network of Y on the cycle u′, v, u, v′, u′). Since X� is
unchanged this also implies that the number of bins did not change, as desired.
It remains to prove that the Constraints (4) still hold for the values Y ′,b� and
to detail how to consecutively choose embracing pairs (e1, e2) in such a way that
the iteration terminates.

Feasibility of the Modified Solution. Constraints (4) are parameterized over i ∈
{1, . . . , n}. We argue that they are not violated separately for i ∈ {u′+1, . . . , u},
i ∈ {u+1, . . . , v}, and i ∈ {v +1, . . . , v′}, i.e., the regions b, c, and d in Figure 3
(left). For the remaining regions a and e it is easy to check that the values of
the affected variables do not change when replacing Y by Y ′. So let us consider
the three regions:

Region b (d). The only variables in (4) which change when replacing Y by Y ′

for this region are: y′
u′,v′ = yu′,v′ − λ and y′

u′,v = yu′,v +λ. This means that flow
is moved to a shorter edge, which can only increase the slack of the constraints:
With wu′,v < wu′,v′ it is easy to see that (4) still holds in region b. Region d is
analogous to b.

Region c. Here the only variables which change in (4) are: y′
u,v = yu,v − λ,

y′
u′,v′ = yu′,v′ −λ, y′

u′,v = yu′,v +λ, and y′
u,v′ = yu,v′ +λ. In other words, λ units

of flow were moved from e1 to e′1 and from e2 to e′2. Let us consider the fraction
of demand which is contributed to (4) by these units of flow before and after the
modification. Before (on e1 and e2) this was λ · (wu,v + wu′,v′) and afterwards
(on e′1 and e′2) it is λ · (wu′,v + wu,v′). Since both quantities are equal, the left
hand side of (4) remains unchanged in region c.

Choice of (e1, e2) and Termination of the Iteration. In each step of the iteration
we always choose the smallest embracing pair (e1, e2), as defined above. If there
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are several smallest embracing pairs (which by definition all contain the same
edge e1), we choose one of these arbitrarily.

First we show that the modification does not introduce an embracing pair
which is smaller than (e1, e2). We assume the contrary and say w.l.o.g. that the
flow added to edge e′1 creates a new embracing pair (e, e′1) which is smaller
than the (removed) embracing pair (e1, e2). Clearly, e is also contained in e2.
Therefore, before the modification (e, e2) would have been an embracing pair
as well. Since (e, e2) is smaller than (e1, e2) it would have been chosen instead,
which gives the contradiction.

It follows that we can divide the iterations into a bounded number of phases:
in each phase all considered embracing pairs are with respect to the same e1-type
edge. As soon as a phase is finished (i.e., no embracing pairs with the phase’s
e1-type edge remain) this e1-type edge will never be considered again, since this
could only happen by introducing a smaller embracing pair later in the iteration.
Consider a single phase during which an edge e1 is contained in possibly several
other edges e2. By the construction of the modification for an embracing pair
(e1, e2) it is clear that e2 could not be chosen twice in the same phase. Therefore,
the number of modification steps per phase can also be bounded by O(n2). ��

Choose a Flow Carrying Path. We will use the structural insights from above
to prove that bin vector 2·b� yields a 2-approximation for bounded number SVP.

Due to Lemma 1 an optimal fractional LP solution (X�, Y �,b�) without em-
bracing pairs exists. Let pmin denote the shortest flow carrying path in (X�, Y �,
b�), where shortest is meant with respect to the number of breakpoints. Clearly,
the length of pmin is at most the number of bins

∑n
i=1 x�

i , since the latter can be
seen as a convex combination of the path lengths of an arbitrary path decompo-
sition. Below we show that the integral solution corresponding to pmin is feasible
for the bin vector 2 ·b�, and thus pmin and 2 ·b� give a 2-approximation. Observe
that the approximation algorithm does not actually need to transform an opti-
mal LP solution, given, e.g., by an LP solver, into a solution without embracing
pairs. The existence of path pmin in such a transformed solution is merely taken
as a proof that the bin vector 2 · b� yields less than

∑n
i=1 x�

i breakpoints. To
obtain such a path, we simply evaluate 2 · b� with the algorithm presented in
Section 3 (b� given by the LP solver).

Theorem 2. Given an optimal fractional LP solution (X�, Y �,b�) without em-
bracing pairs, let pmin denote the shortest flow carrying path. The integral solu-
tion corresponding to pmin is feasible for 2 · b�.

Proof. We only have to argue for the feasibility of the solution w.r.t. the doubled
bin vector. Again we will consider Constraints (4). Figure 3 (right) depicts an
edge e on path pmin and other flow carrying edges. We look at the start and end
position is and ie in the subsequence defined by e. Denote by Eis = {(u, v)|0 ≤
u < is ≤ v ≤ n} (and Eie , respectively) the set of all flow carrying edges
that cross is (ie) and by imin, (imax) the earliest tail (latest head) of an arc in
Eis , (Eie). Furthermore, let E′ = Eis ∪Eie . Summing up the two Constraints (4)
for is and ie gives 2b� ≥

∑
(u,v)∈Eis

y�
u,v · wu,v +

∑
(u,v)∈Eie

y�
u,v · wu,v =: A and
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thus 2b� ≥ A ≥
∑

imin<i≤imax

∑
(u,v)∈E′ :

u<i≤v

y�
u,v ·si ≥

∑
is<i≤ie

∑
(u,v)∈E′ :

u<i≤v

y�
u,v ·si =

∑
is<i≤ie

si = wis,ie . The second inequality is in general an inequality because
the sets Eis and Eie need not be disjoint. For the third inequality we rely on the
fact that there are no embracing pairs. For this reason, each position between
is and ie is covered by an edge that covers either is or ie. We have shown that
the demand between any two breakpoints on pmin can be satisfied by the bin
vector 2 · b�. ��

Observe that for integral resources the above proof implies that even �2b�	
has no more breakpoints than the optimal solution. Note also that it is easy
to adapt both approximation algorithms so that they can handle pre-specified
breakpoints. The corresponding xi values can simply be set to one in the ILP
and LP formulations.

2 NP-Completeness

For all considered problem variants it is easy to determine the objective value
once a bin vector is chosen. Hence, for all variants of the sequential vector packing
problem considered in this article, the corresponding decision problem is in NP .
Moreover, the decision problem of both the bounded size and bounded number
versions are identical. Therefore, we will not distinguish between the two versions
here. We now come to the NP-hardness result. To simplify the exposition, we
first consider a variant of the sequential unit vector packing problem where the
sequence of vectors has prespecified breakpoints, always after w positions. Then
the sequence effectively decomposes into a set of windows of length w, and for
each position in such a window i it is sufficient to specify the resource that is
used at position j ∈ {1, . . . , w}, denoted as si

j ∈ {1, . . . , d}. This situation can
be understood as a set of sequential unit vector packing problems that have
to be solved with the same bin vector. The objective is to minimize the total
number of (additional) breakpoints, i.e., the sum of the objective functions of the
individual problems. Then, we also show strong NP-hardness for the original
problem.

Lemma 2. Finding the optimal solution for sequential unit vector packing with
windows of length 4 (dimension d and bin size B as part of the input) is NP-
hard.

Proof. By reduction from the NP-complete problem Clique [7] or more gener-
ally from k-densest subgraph [5]. Let G = (V, E) be an instance of k-densest
subgraph, i.e., an undirected graph without isolated vertices in which we search
for a subset of vertices of cardinality k that induces a subgraph with the maximal
number of edges.

We construct a sequential unit vector packing instance (S, B) with windows
of length 4 and with d = |V | resources, i.e., V = {1, .., d}. There is precisely
one window per edge e = (u, v) ∈ E, the sequence of this window is se = uvuv.
The total bin size is set to B = d + k. This transformation can be carried out
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in polynomial time and achieves, as shown in the following, that (S, B) can
be solved with at most |E| − � (additional) breakpoints if and only if G has
a subgraph with k vertices containing at least � edges. Because every window
contains at most two vectors of the same resource, having more than two units
of one resource does not influence the number of breakpoints. Every resource
has to be assigned at least one unit because there are no isolated vertices in G.
Hence, a solution to (S, B) is characterized by the subset R of resources to which
two units are assigned (instead of one). By the choice of the total bin size we
have |R| = k. A window does not induce a breakpoint if and only if both its
resources are in R, otherwise it induces one breakpoint.

If G has a node induced subgraph G′ of size k containing � edges, we chose R
to contain the vertices of G′. Then, every window corresponding to an edge of G′

has no breakpoint, whereas all other windows have one. Hence, the number of
(additional) breakpoints is |E| − �.

If (S, B) can be scheduled with at most |E| − � breakpoints, define R as the
resources for which there is more than one unit in the bin vector. Now |R| ≤ k,
and we can assume |R| = k since the number of breakpoints only decreases if
we change some resource from one to two, or decrease the number of resources
to two. The set R defines a subgraph G′ with k vertices of G. The number of
edges is at least � because only windows with both resources in R do not have a
breakpoint. ��

It remains to consider the original problem without pre-specified breakpoints.

Lemma 3. Let (S, B) be an instance of sequential (unit) vector packing of
length n with k pre-specified breakpoints and d resources (d ≤ B) where ev-
ery resource is used at least once. Then one can construct in polynomial time an
instance (S′, B′) of the (unit) vector packing problem with bin size B′ = 3B + 2
and d′ = d + 2B + 2 resources that can be solved with at most � + k breakpoints
if and only if (S, B) can be solved with at most � breakpoints.

Proof. The general idea is to use for every prespecified breakpoint some “stop-
ping” sequence Fi with the additional resources in such a way that the bound B′

guarantees that there is precisely one breakpoint in Fi. This sequence Fi needs to
enforce exactly one breakpoint, no matter whether or not there was a breakpoint
within the previous window (i.e., between Fi−1 and Fi).

We introduce two different stopping sequences F and G which we use alternat-
ingly. This ensures that between two occurrences of F there is at least one break-
point. The resources 1, . . . , d of (S′, B′) are one-to-one the resources of (S, B).
The 2B + 2 additional resources are divided into two groups f1, . . . , fB+1 for F
and g1, . . . , gB+1 for G. Every odd pre-specified breakpoint in S is replaced by
the sequence F := f1f2· · ·fB+1f1f2 · · · fB+1 and all even breakpoints by the
sequence G := g1g2· · ·gB+1g1g2· · ·gB+1.

To see the backward direction of the statement in the lemma, a bin b for (S, B)
resulting in � breakpoints can be augmented to a bin vector b′ for (S′, B′) by
adding one unit for each of the new resources. This does not exceed the bound B′.
Now, in (S′, B′) there will be the original breakpoints and a breakpoint in the
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middle of each inserted sequence. This shows that b′ results in �+k breakpoints
for (S′, B′), as claimed.

To consider the forward direction, let b′ be a solution to (S′, B′). Because
every resource must be available at least once, and B′−d′ = 3B+2−(d+2B+2) =
B − d, at most B − d < B entries of b′ can be more than one. Therefore, at
least one of the resources fi is available only once, and at least one of the
resources gj is available only once. Hence, there must be at least one breakpoint
within each of the k inserted stopping sequences. Let k + � be the number of
breakpoints induced by b′ and b the projection of b′ to the original resources.
Since all resources must have at least one unit and by choice of B′ and d′ we
know that b sums to less than B. Now, if a subsequence of S not containing
any f or g resources can be packed with the resources b′, this subsequence can
also be packed with b. Hence, b does not induce more than � breakpoints in the
instance (S, B) with pre-specified breakpoints. ��

Theorem 3. The sequential unit vector packing problem is strongly NP-hard.

Proof. By Lemma 2 and Lemma 3, with the additional observation that all used
numbers are polynomial in the size of the original graph. ��

For a discussion of polynomially solvable cases and issues related to fixed pa-
rameter tractibility, see [1].

3 Practical Algorithms

Both the problem presented in the introduction and the original industry prob-
lem are bounded size SUVP problems. For this reason, we focus on this variant
when considering practical algorithms.

Greedy Algorithms. We describe two natural greedy heuristics for sequential
unit vector packing. Recall that we denote by κ(b,S) the minimal number of
breakpoints needed for a fixed bin vector b and given (S, B). Observe that it
is relatively easy to calculate κ(b,S) in linear time (see end of this section).
The two greedy algorithms we discuss here are: Greedy-Grow and Greedy-

Shrink. Greedy-Grow grows the bin vector starting with the all one vector.
In each step it increases some resource by an amount of 1 until the total bin size
B is reached, greedily choosing the resource whose increment improves κ(b,S)
the most. Greedy-Shrink shrinks the bin vector starting with a bin vector
b =

∑n
i=1 si, which yields κ(b,S) = 0 but initially ignores the bin size B. In

each step it then decreases some resource by an amount of 1 until the total
bin size B is reached, greedily choosing the resource whose decrement worsens
κ(b,S) the least.

In the light of the following observations (for proofs see [1]) it is important to
specify the tie-breaking rule for the case that there is no improvement at all after
the addition of a resource. Greedy-Grow can be forced to produce a solution
only by this tie-breaking rule, which is an indicator for its bad performance.
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Observation 1. Given any instance (S, B) to bounded size SVP, this instance
can be modified to an instance (S′, B′), with n′ = n, d′ = 2d, B′ = 2B such that
all of Greedy-Grow’s choices of which resource to add depend entirely on the
tie-breaking rule.

It follows that Greedy-Grow with an unspecified tie-breaking rule can be led
to produce arbitrarily bad solutions. Also Greedy-Shrink can produce bad
solutions depending on the tie-breaking scheme.

Observation 2. There are instances with d resources on which the solution pro-
duced by Greedy-Shrink is a factor of �d/2	 worse than the optimal solution,
if the tie-breaking rule can be chosen by the adversary.

For the experiments in [1] we use for both heuristics a round-robin tie-breaking
rule that cycles through the resources. Every time a tie occurs it chooses the
cyclic successor of the resource that was increased (decreased) in the last tie.

Enumeration Heuristic. We present an enumeration heuristic for integral
vectors si ∈ Nd, i ∈ {1, . . . , n}, that is inspired by a variant of Schöning’s 3-
SAT algorithm [11] that searches the complete hamming balls of radius �n/4	
around randomly chosen assignments, see [4]. The following algorithm uses a
similar combination of randomized guessing and complete enumeration of parts
of the solution space that are exponentially smaller than the whole solution
space. The idea is to guess uniformly at random (u.a.r.) subsequences Si1,i2 of
the sequence that do not incur a breakpoint in a fixed optimal solution bopt.
For such a subsequence we know that bopt ≥ wi1,i2 . In particular, if we know
a whole set W of such total demand vectors that all come from subsequences
without breakpoints for bopt, we know that bopt ≥ maxw∈W w must hold for
a component-wise maximum. This idea leads to the Randomized Heuristic

Enumeration (RHE):

Phase 1: Start with a “lower bound vector” t = 0. For a given subsequence
length ssl and a number p of repetitions, in each of p rounds choose σi =u.a.r
{0, . . . , n − ssl}, set σi = σi + ssl, and then set t = max{t,wσi,σi}.

Phase 2: Find a bin vector b of total size B with b ≥ t that minimizes κ(b,S).
Do this by enumerating all b ≥ t of total size B.

It is straight-forward to analyze the success probability of this algorithm if
we relate the subsequence length to an estimate k′ of the minimum number of
breakpoints k. We give experimental evidence that the algorithm performs well
and present an efficient algorithm for the enumeration in Phase 2, see [1].

Evaluation. For demand vectors si ∈ Qd
+, i ∈ {1, . . . , n}, the evaluation of a

given bin vector b, i.e., computing κ(b,S), can be done in the obvious way in
O(n · d) time. With a preprocessing phase and some algorithmic engineering we
can show the following theorem (see [1] for a complete discussion).

Theorem 4. Given a sequence S and a bin vector b we can construct a data
structure with O(n · d · B) space and preprocessing time such that the evaluation
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of κ(b,S) for sequential vector packing takes O(κ(b,S) · d) time. For sequential
unit vector packing only O(n) space and preprocessing time is needed.

4 Conclusion

In this paper, we have introduced the sequential vector packing problem, pre-
sented NP-hardness proofs for different variants, approximation algorithms, and
several heuristics. The most interesting open challenges are probably to find an
approximation algorithm for bounded size SVP and inapproximability results.
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