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nodes for the scored item efficiently, QS
processes the nodes of all the trees fea-
ture by feature. Specifically, for each
feature x[i], QS builds the list of all the
nodes of the ensemble where x[i] is
tested, and sorts this list in ascending
order of the associated threshold γk.
During the scoring process for feature
x[i], as soon as the first test in the list
evaluating to true is encountered, i.e.,
x[i] ≤ γk, the subsequent tests also eval-
uate to true, and their evaluation can be
safely skipped and the next feature
x[i+1] considered. 

This organisation allows QS to actually
visit a consistently lower number of
nodes than in traditional methods,
which recursively visit the small and
unbalanced trees of the ensemble from
the root to the exit leaf.  In addition, QS
exploits only linear arrays to store the
tree ensemble and mostly performs
cache-friendly access patterns to these
data structures. 

Considering that in most application
scenarios the same tree-based model is
applied to a multitude of items, we
recently introduced further optimisa-
tions in QS. In particular, we introduced
vQS [3], a parallelised version of QS
that exploits the SIMD capabilities of
mainstream CPUs to score multiple
items in parallel. Streaming SIMD
Extensions (SSE) and Advanced Vector
Extensions (AVX) are sets of instruc-
tions exploiting wide registers of 128
and 256 bits that allow parallel opera-
tions to be performed on simple data
types. Using SSE and AVX, vQS can
process up to eight items in parallel,
resulting in a further performance
improvement up to a factor of 2.4x over
QS. In the same line of research we are
finalising the porting of QS to GPUs,
which, preliminary tests indicate, allows
impressive speedups to be achieved.

More information on QS and vQS can
be found in [2] and [3]. 
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Assume you want to build a software
for automatic sentiment analysis:
given a text such as a Twitter message,
the tool should decide whether the text
is positive, negative, or neutral. Until
recently, typical solutions used a fea-
ture-based approach with classical
machine learning algorithms (e.g.,
SVMs). Typical features were number
of positive/negative words, n-grams,
text length, negation words, part-of-
speech tags etc.  Over the last two
decades a huge amount of research has
been invested in designing and opti-
mising these features, and new fea-
tures had to be developed for each new
task. 

With the advent of deep learning, the
situation has changed: now the com-
puter is able to learn relevant features
from the texts by itself, given enough

training data. Solving a task like senti-
ment analysis now requires three major
steps: define the architecture of the
deep neural network; aggregate
enough training data (labelled and
unlabelled); and train and optimise the
parameters of the network. 

For instance, Figure 1 shows the archi-
tecture of a system that won Task 4 of
SemEval 2016, an international com-
petition for sentiment analysis on
Twitter [1]. This system uses a combi-
nation of established techniques in
deep learning: word embedding and
convolutional neural networks. Its suc-
cess is primarily based on three fac-
tors: a proper architecture, a huge
amount of training data (literally bil-
lions of tweets), and a huge amount of
computational power to optimise its
parameters. Live demos  of various

deep learning technologies are avail-
able at [2].

Goal of DeepText

In DeepText, we will automate the
three steps above as far as possible.
The ultimate goal is a software
pipeline that works as follows (see
Figure 2): 
1. The user uploads his or her training

data in a standard format. The data
can consist of unlabelled texts (for
pre-training) and labelled texts, and
the labels implicitly define the task
to solve. 

2. The system defines several DNNs to
solve the task. Here, different funda-
mental architectures will be used,
such as convolutional or recurrent
neural networks. 

3. The system then trains these DNNs
and optimises their parameters. 
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4. Performance of each DNN is meas-
ured, e.g. in terms of F1-score, and
the best DNN is selected. 

5. Finally, the system wraps the “win-
ning” DNN into a software library
with a simple interface. This library is
ready-to-use in production. 

In principle, only the first step – col-
lecting and labelling the training data –
needs to be done by humans, since this
step defines which task should be
solved, and how. For instance, for senti-
ment analysis on Twitter, each text is
labelled with positive, negative, or neu-
tral; on the other hand, if we want to
detect companies or persons in text
(“entity recognition”), then the proper
position of each occurrence of an entity
within the text needs to be labelled.

The last three steps in the process above
are straightforward, and basically
require substantial computational
resources and appropriate skills in soft-
ware engineering. 

Challenge: Find a good DNN

architecture

The most challenging part is Step 2: to
come up with “appropriate” DNNs for

the task at hand. There exist several
established DNN architectures for text
analytics, such as convolutional neural
networks (CNNs) or recurrent neural
networks (RNNs). For each architec-
ture, there exist various parameters: in
the case of CNNs, this is the number of
convolutional layers, size and number
of filters, number and type of pooling
layers, ordering of the layers etc. In
theory, each configuration of a DNN
could be used, but this would lead to an
explosion of DNNs to evaluate. 

For this reason, we will develop several
template DNNs for different types of
text analytics tasks: classification, topic
detection, information extraction etc.
Based on these templates, the system
will run a pre-training where each tem-
plate is applied to the task at hand and
evaluated. Only the most promising
DNNs will then be used for parameter
tuning and optimisation. 

Our goal is that, given the training data,
the system will generate a suitable soft-
ware library within three days. 

About the Project

Deep Text is an applied research project
of Zurich University of Applied
Sciences (ZHAW) and SpinningBytes
AG, a Swiss startup for data analytics. It
started in 2016 and is funded by the
Commission for Technology and
Innovation (CTI) in Switzerland (No.
18832.1 PFES-ES).  

Link: 
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Figure�2:�Generating�a�software�library�for�arbitrary�text�understanding�tasks.

Figure�1:�Deep�nNeural�nNetwork�for�sSentiment�aAnalysis�[1].


