
Efficient Algorithms for Finding Submasses in

Weighted Strings

Nikhil Bansal1, Mark Cieliebak2, and Zsuzsanna Lipták3

1 IBM Research, T.J. Watson Research Center?

2 ETH Zurich, Institute of Theoretical Computer Science?? and
Center for Web Research, Department of Computer Science, University of Chile

3 Universität Bielefeld, AG Genominformatik, Technische Fakultät? ? ?

Abstract. We study the Submass Finding Problem: Given a string s
over a weighted alphabet, i.e., an alphabet Σ with a weight function
µ : Σ → N, decide for an input mass M whether s has a substring whose
weights sum up to M . If M is indeed a submass, then we want to find
one or all occurrences of such substrings. We present efficient algorithms
for both the decision and the search problem. Furthermore, our approach
allows us to compute efficiently the number of different submasses of s.
The main idea of our algorithms is to define appropriate polynomials
such that we can determine the solution for the Submass Finding Prob-
lem from the coefficients of the product of these polynomials. We obtain
very efficient running times by using Fast Fourier Transform to compute
this product. Our main algorithm for the decision problem runs in time
O(µs log µs), where µs is the total mass of string s. Employing stan-
dard methods for compressing sparse polynomials, this runtime can be
viewed as O(σ(s) log2 σ(s)), where σ(s) denotes the number of different
submasses of s. In this case, the runtime is independent of the size of the
individual masses of characters.

1 Introduction

Over the past few years, interest in the area of weighted strings has re-
ceived increasing attention. A weighted string is defined over an alphabet
Σ = {a1, . . . , a|Σ|} with a weight function µ : Σ → N, which assigns a
specific weight (or mass) to each character of the alphabet. The weight
of a string s is just the sum of the weights of all characters in s.
Several applications from bioinformatics can be formalized as problems
on strings over a weighted alphabet; most notably, mass spectrometry
experiments, which constitute an experimentally very efficient and there-
fore promising alternative method of protein identification and de-novo
peptide sequencing, and are also increasingly being used for DNA.
For our purposes, proteins are strings over the 20-letter amino acid al-
phabet. The molecular masses of the amino acids are known up to high

? P.O. Box 218, Yorktown Heights, NY 10598, nikhil@us.ibm.com
?? Clausiusstr. 49, CH-8092 Zurich, cieliebak@inf.ethz.ch

? ? ? Postfach 10 01 31, D-33592 Bielefeld, zsuzsa@cebitec.uni-bielefeld.de

II

precision. In order to enforce that the masses be positive integers, we
assume that non-integer masses have been scaled. One of the main appli-
cations of protein mass spectrometry is database lookup. Here, a protein
is cut into substrings (digestion), the molecular mass of the substrings is
determined, and the list of masses is compared to a protein database [1–
3].
In the following, we skip some of the proofs due to space limitations.

1.1 Definitions and Problem Statements

Before we define the problems we are going to solve in this paper, we first
need to fix some notation for weighted strings. Given a finite alphabet
Σ and a mass function µ : Σ → N, where N denotes the set of positive
integers (excluding 0). We denote by µmax = max µ(Σ), the largest mass
of a single character. For a string s = s1 . . . sn over Σ, define µ(s) :=
Pn

i=1 µ(si). We denote the length n of s by |s|. We call M > 0 a submass
of s if there exists a substring t of s with mass M , or, equivalently, if
there is a pair of indices (i, j) such that µ(si . . . sj) = M . We call such a
pair (i, j) a witness of M in s, and we denote the number of witnesses of
M in s by κ(M) = κ(M, s). Note that κ(M) ≤ n. We want to solve the
following problems:

Submass Query Problem Fix a string s over Σ. Let |s| = n.
Input: k masses M1, . . . , Mk ∈ N.
Output: A subset I ⊆ {1, . . . , k} such that i ∈ I if and only if Mi is a
submass of s.

Submass Witness Problem Fix a string s over Σ. Let |s| = n.
Input: k masses M1, . . . , Mk ∈ N.
Output: A subset I ⊆ {1, . . . , k} such that i ∈ I if and only if Mi is a
submass of s, and a set {(bi, ei) : i ∈ I, (bi, ei) is witness of Mi}.

Submass All Witnesses Problem Fix a string s over Σ. Let |s| = n.
Input: k masses M1, . . . , Mk ∈ N.
Output: A subset I ⊆ {1, . . . , k} such that i ∈ I if and only if Mi is a
submass of s, and for each i ∈ I, the set of all witnesses Wi := {(b, e) :
(b, e) is witness of Mi in s}.

The three problems above can be solved by a simple algorithm, which
we refer to as Linsearch. It moves two pointers along the string, one
pointing to the potential beginning and the other to the potential end of
a substring with mass M . The right pointer is moved if the mass of the
current substring is smaller than M , the left pointer, if the current mass
is larger than M . The algorithm solves each problem in Θ(kn) time and
O(1) space in addition to the storage space required for the input string
and the output.

Another algorithm, Binsearch, computes all submasses of s in a pre-
processing step and stores the submasses in a sorted array, which can
then be queried in time O(log n) for an input mass M for the Submass

Query Problem and the Submass Witness Problem. The storage
space required is proportional to σ(s), the number of different submasses
of string s. For the Submass All Witnesses Problem, we need to store

III

in addition all witnesses, requiring space Θ(n2); in this case, the query
time becomes O(k log n + K), where K =

Pk
i=1 κ(Mi) is the number

of witnesses for the query masses. Note that any algorithm solving the
Submass All Witnesses Problem will have runtime Ω(K).
In this paper, we present a novel approach to the problems above which
often outperforms the näıve algorithms. The main idea is similar to us-
ing generating functions for counting objects, which have been applied,
for instance, in attacking the Coin Change Problem [4]. We apply sim-
ilar ideas using finite polynomials rather than infinite ones as follows.
We define appropriate polynomials such that we can determine the solu-
tion for the three problems above from the coefficients of the product of
these polynomials. We will obtain very efficient running times by using
Fast Fourier Transform to compute this product. More precisely, Algo-

rithm 1 solves the Submass Query Problem with preprocessing time
O(µs log µs), query time O(k log n) and storage space Θ(σ(s)), where µs

denotes the total mass of the string s. For the Submass Witness Prob-

lem, we present a Las Vegas algorithm, Algorithm 2, with preprocess-
ing time O(µs log µs), expected query time O(µs log3 µs + k log n), and
storage space Θ(σ(s)). Finally, we present Algorithm 3, a deterministic
algorithm for the Submass All Witnesses Problem with preprocess-

ing time O((Knµs log µs)
1

2) and running time O((Knµs log µs)
1

2), where
K is the output size, i.e., the total number of witnesses.
Many algorithms for weighted strings, such as Binsearch, have a space
complexity which is proportional to σ(s), the number of submasses of s.
For this reason, we define the following problem:

Number of Submasses Problem Given string s of length n, how
many different submasses does s have?

This problem is of interest because we can use σ(s) to choose between
algorithms whose complexity depends on this number. It is open how
the number of submasses of a given string can be computed efficiently. It
can, of course, be done in Θ(n2 log σ(s)) time by computing the masses
of all substrings si . . . sj , for all pairs of indices 1 ≤ i ≤ j ≤ n, and
counting the number of different masses. We show how Algorithm 1

can be adapted to solve the Number of Submasses Problem in time
O(µs log µs), outperforming the näıve algorithm for small values of µs.
Throughout the paper, we present our runtimes as a function of µs, the
total mass of the string s. However, we can use the technique of Cole and
Hariharan [5] in a straightforward way to give a Las Vegas algorithm with
expected running time in terms of the number of distinct submasses. This
transformation loses a factor of at most O(log n) in the running time.

1.2 Related Work

In [3], several algorithms for the Submass Query Problem were pre-
sented, including Linsearch, Binsearch, and an algorithm with O(n)
storage space and query time O(kn

log n
), using O(n) time and space for

preprocessing. However, this is an asymptotic result only, since the con-
stants are so large that for a 20-letter alphabet and realistic string sizes,
the algorithm is not applicable. Another algorithm was presented in [3]

IV

which solves the Submass Query Problem for binary alphabets with
query time O(log n) and O(n) space but does not produce witnesses.
Edwards and Lippert [1] considered the Submass All Witnesses Prob-

lem and presented an algorithm that preprocesses the database by com-
pressing witnesses using suffix trees. However, they work under the as-
sumption that the queries are limited in range.
The study of weighted strings and their submasses4 has further applica-
tions in those problems on strings over an un-weighted alphabet where
the focus of interest are not substrings, but rather equivalence classes of
substrings defined by multiplicity of characters. One examines objects of
the form (n1, . . . , n|Σ|) which represent all strings s1 . . . sn such that the
cardinality of character ai in each string is exactly ni, for all 1 ≤ i ≤ |Σ|.
These objects have been referred to in recent publications variously as
compositions [6], compomers [7, 8], Parikh-vectors [9], multiplicity vec-
tors [3], and π-patterns [10]. A similar approach has been referred to as
Parikh-fingerprints [11, 12]. Here, Boolean vectors are considered of the
form (b1, . . . , b|Σ|), where bi = 1 if and only if ai occurs in the string.
Applications range from identifying gene clusters [12] to pattern recog-
nition [11], alignment [6] or SNP discovery [8].

2 Searching for Submasses Using Polynomials

In this section, we introduce the main idea of our algorithms, the encod-
ing of submasses via polynomials. We first prove some crucial properties,
and then discuss algorithmic questions.
Let s = s1 . . . sn. In the rest of the paper, we denote by µs the total
mass of the string s, and the empty string by ε. Define, for 0 ≤ i ≤ n,
pi :=

Pi
j=1 µ(sj) = µ(s1 . . . si), the i’th prefix mass of s. In particular,

p0 = µ(ε) = 0. We define two polynomials

Ps(x) :=
Pn

i=1 xpi = xµ(s1) + xµ(s1s2) + . . . + xµs , (1)

Qs(x) :=
Pn−1

i=0 xµs−pi = xµs + xµs−µ(s1) + . . . + xµs−µ(s1...sn−1)(2)

Now consider the product of Ps(x) and Qs(x),

Cs(x) := Ps(x) · Qs(x) =

2µsX

m=0

cmxm. (3)

Since any submass of s with witness (i, j) can be written as a difference
of two prefix masses, namely as pj − pi−1, we obtain the following

Lemma 1. Let Ps(x),Qs(x) and Cs(x) from Equations (1) through (3).
Then for any m ≤ µs, κ(m) = cm+µs , i.e., the coefficient cm+µs of Cs(x)
equals the number of witnesses of m in s.

Lemma 1 immediately implies the following facts. For a proposition P,
we denote by [P] the Boolean function which equals 1 if P is true, and 0
otherwise. Then

P2µs

m=µs+1[cm 6= 0] = σ(s), the number of submasses of

s. Furthermore,
P2µs

m=µs+1 cm = n(n+1)
2

. Thus, polynomial Cs also allows
us to compute the number of submasses of s.

4 Note that we use the expressions “weight” and “mass” synomymously, hence
“weighted string” but “submass.”

V

2.1 Algorithm and Analysis

The algorithm simply consists of computing Cs(x).

Algorithm 1

1. Preprocessing step:
Compute µs, compute Cs(x), and store in a sorted array all numbers
m − µs for exponents m > µs where cm 6= 0.

2. Query step:
(a) For the Submass Query Problem: Search for each query mass

Mi for 1 ≤ i ≤ k, and return yes if found, no otherwise.
(b) For the Number of Submasses Problem: Return size of array.

The polynomial Cs(x) can be computed with Fast Fourier Transform
(FFT)[13], which runs in time O(µs log µs), since deg Cs = 2µs. As men-
tioned in the Introduction, we can employ methods from [5] for sparse
polynomials and reduce deg Cs to O(σ(s)), the number of non-zero coef-
ficients. However, for the rest of this paper, we will refer to the running
time as proportional to µs log µs.

Theorem 1. Algorithm 1 solves the Submass Query Problem in
time O(µs log µs + k log n), or in time O(µs log µs + k), depending on
the storage method. Algorithm 1 solves the Number of Submasses

Problem in time O(µs log µs).

Proof. The preprocessing step takes time O(µs log µs). The query time
for the Submass Query Problem is O(k·log σ(s)) = O(k log n). Instead
of using a sorted array, we can instead store the submasses in an array of
size µs (which can be hashed to O(σ(s)) size) and allow for direct access
in constant time, thus reducing query time to O(k). ut

Along the same lines, for the Number of Submasses Problem, our
algorithm allows computation of σ(s) in O(µs log µs) = O(n ·µmax log(n ·
µmax)) time. The näıve solution of generating all submasses requires
Θ(n2 log n) time and Θ(σ(s)) space (with sorting), or Θ(n2) time and
Θ(µs) space (with an array of size µs). Our algorithm thus outperforms
this näıve approach as long as µmax = o(n

log n
).

3 A Las Vegas Algorithm for Finding Witnesses

We now describe how to find a witness for each submass of the string s
in time O(µs polylog(µs)).
Our high level idea is the following: We first note that given a mass
M , if we know the ending position j of a witness of M , then, using
the prefix masses p1, . . . , pn, we can easily find the beginning position
of this witness. To do this, we simply do a binary search amongst the
prefix masses p1, . . . , pj−1 for pj − M . Below we will define two suitable
polynomials of degree at most µs such that the coefficient of xM+µs in
their product equals the sum of the ending positions of substrings that
have mass M .

VI

Now, if we knew that there was a unique witness of mass M , then the
coefficient would equal the ending position of this witness. However, this
need not always be the case. In particular, if there are many witnesses
with mass M , then we would need to check all partitions of the coefficient
of xM+µs , which is computationally far too costly. To get around this
problem, we look for the witnesses of M in the string s, where we do not
consider all pairs of positions but instead random subsets of these.
By using the definition of Q(x) from (2), set

Rs(x) :=
nX

i=1

i · xpi and (4)

Fs(x) := Rs(x) · Qs(x) =

2µsX

m=0

fmxm. (5)

In the following lemma, we use the definition of cm from (3).

Lemma 2. Let m > µs. If cm = 1, then fm equals the ending position
of the (sole) witness of m − µs.

Proof. By definition, fm =
P

(i,j) witness of m j for any m > µs. If cm = 1,

by Lemma 1, m−µs has exactly one witness (i0, j0). Thus, fm = j0. ut

3.1 The Algorithm

We first run a procedure which uses random subsets to try and find wit-
nesses for the query masses. It outputs a set of pairs (m, jm), where m
is a submass of s, and jm is the ending position of one witness of m. For
all query masses which are in this set, we find the beginning positions
with binary search within the prefix masses, as described above, to find
the witness in time O(log n). For any remaining query masses, we run
Linsearch. In the following, let [xi]A(x) denote5 the coefficient ai of xi

of the polynomial A(x) =
P

j ajx
j .

Algorithm 2

1. Compute Cs(x) from Equation (3), and check which of the queries
are submasses of s.

2. Procedure try-for-witness

(i) For a from 1 to 2 log n, do:
(ii) Let b = 2−a/2. Repeat 24 log n times:

(iii) – Generate a random subset I1 of {1, 2, . . . , n}, and a
random subset I2 of {0, 1, 2, . . . , n − 1}, where each
element is chosen independently with probability b.

– Compute PI1 (x) =
P

i∈I1
xpi , QI2 (x) =

P

i∈I2
xµs−pi

and RI1 (x) =
P

i∈I1
i · xpi .

– Compute CI1,I2(x) = PI1 (x) · QI2(x) and FI1,I2(x) =
RI1 (x) · QI2 (x).

5 Incidentally, our two different uses of ”[]” are both standard, for generating functions
and logical expressions, respectively. Since there is no danger of confusion, we have
chosen to use both rather than introduce new ones.

VII

– Let ci = [xi]CI1,I2 (x) and fi = [xi]RI1,I2(x).
– For i > µs, if ci = 1 and if i has not yet been successful,

then store the pair (i − µs, fi). Mark i as successful.
3. For all submasses amongst the queries M`, 1 ≤ ` ≤ k, if an ending

position was found in this way, find the beginning position with
binary search amongst the prefix masses.

4. If there is a submass M` for which no witness was found, find one
using Linsearch.

3.2 Analysis

We first give an upper bound on the failure probability of procedure
try-for-witness for a particular query mass M .

Lemma 3. (1) For a query mass M with κ(M) = κ, and a = blog2 κc.
Consider the step 2.iii of Algorithm 2. The probability that the coeffi-
cient cM+µs of CI1,I2 (x) for a (as defined above) is not 1 is at most 7

8
.

(2) Procedure try-for-witness does not find a witness for a given sub-
mass M with probability at most 1/n3. Moreover, the probability that the
procedure fails for some submass is at most 1/n.

Theorem 2. Algorithm 2 solves the Submass Witness Problem in
expected time O(µs log3 µs + k log n).

Proof. Denote the number of distinct submasses amongst the query
masses by k′. By Lemma 3, the probability that the algorithm finds
a witness for each of the k′ = O(n2) submasses is at least 1 − 1/n. In
this case, the expected running time is the time for running the proce-
dure for finding witness ending positions, plus the time for finding the
k′ witnesses:

O(µs log µs
| {z }

Step 1.

+2 log n
| {z }

Step 2.i

· 24 log n
| {z }

Step 2.ii

· µs log µs
| {z }

Steps 2.iii

) + k · O(log n)

In the case when the algorithm does not output all witnesses, we simply
run Linsearch search for all the submasses in time O(kn). However,
since the probability of this event is at most 1/n, the excepted time in
this case is at most O(k). This implies the required bound on the running
time. ut

4 A Deterministic Algorithm for Finding All

Witnesses

Recall that, given the string s of length n and k query masses M1, . . . , Mk,
we are able to solve the Submass All Witnesses Problem in Θ(k · n)
time and O(1) space with Linsearch, or in Θ(n2 log n + k log n) time
and Θ(n2) space with Binsearch. Thus, the two näıve algorithms yield
a runtime of Θ(min(kn, (n2 + k) log n)).
Our goal here is to give an algorithm which outperforms the bound above,
provided certain conditions hold. Clearly, in general it is impossible to

VIII

beat the bound min(kn, n2) because that might be the size of the output,
K, the total number of witnesses to be returned. Our goal will be to
produce something good if K << kn.
Now consider two strings s and t. We are interested in submasses of s · t
with a witness which spans or touches the border between s and t. More
precisely, we refer to a witness (i, j) of m as a border-spanning witness
if and only if i ≤ |s| ≤ j. We can encode such witnesses again in a
polynomial, using the definition of P (x) from (1). The idea is that the
mass of a border-spanning witness can be written as the sum of a prefix
mass of sr, the reverse string of s, and a prefix mass of t. Note that here,
we also allow 0 as a submass.

Lemma 4. For two strings s, t, and the polynomial

Ds,t(x) := (x0 + Psr (x)) · (x0 + Pt(x)) =

µ(s)+µ(t)
X

m=0

dmxm, (6)

the coefficient dm equals the number of border-spanning witnesses of m
in s · t.

4.1 The Algorithm

The algorithm combines the polynomial method with Linsearch in the
following way: We divide the string s into g substrings of approximately
equal length. We then use polynomials to identify, for each query mass
M and each witness (b, e) of M , which substrings the beginning and
end index lie in. Then we use Linsearch on these substings to actually
find the witnesses. The crucial observation is given in Lemma 5. We now
describe the details.
We divide the string s into g substrings of approximately equal length:
s = t1 · t2 · · · tg (where we will choose g later), and denote by Mi,j =
Pj−1

m=i+1 µ(tm). In particular, if j ≤ i + 1, then Mi,j = 0.
In order to have a good choice for g, we need to know the total size
of the output, K =

Pk
`=1 κ(M`). This we can do by computing Cs(x)

and then adding up the coefficients cM`
for 1 ≤ ` ≤ k. We now set

g = d(Kn
µs log µs

)
1

2 e. Observe that if Kn ≤ µs log µs, then g = 1, in which
case we are better off running Linsearch. So let Kn > µs log µs.
In step 2.(b) of the following algorithm, we modify Linsearch to only
return border-spanning submasses. This can be easily done by setting
the second pointer at the start of the algorithm to the last position of
the first string, and by breaking when the first pointer moves past the
first position of the second string.

Algorithm 3

1. Preprocesssing step:
(a) Compute µs and Cs(x) as defined in (3), and compute K =

Pk
`=1 cM`

. Set g = d(Kn
µs log µs

)
1

2 e.
(b) For each 1 ≤ i ≤ g, compute Cti

(x).
(c) For each 1 ≤ i < j ≤ g, compute Dti,tj

(x) as defined in (6).

IX

2. Query step: For each 1 ≤ ` ≤ k,
(a) For each i such that [xM`+µ(ti)]Cti

(x) 6= 0, run Linsearch on
ti for M` and return all witnesses.

(b) For each pair (i, j) such that [xM`−Mi,j]Dti,tj
(x) 6= 0, run Lin-

search on ti · tj for submass M` − Mi,j and return all border-
spanning witnesses.

(c) If M` was not a submass of any of the above strings, return no.

4.2 Analysis

The following lemma shows the correctness of Algorithm 3.

Lemma 5. For 1 ≤ M ≤ µs,

κ(M) =

gX

i=1

[xM + µ(ti)]Cti
+

X

1≤i<j≤g

[xM−Mi,j]Dti,tj
(x).

Proof. Observe that for any witness (b, e) of M , there is exactly one pair
(i, j) such that b lies in string ti and e in tj . If i = j, then M is a sub-
mass of ti and by Lemma 1 contributes exactly one to the coefficient
[xM+µ(ti)]Cti

(x). Otherwise, i < j, and M − Mi,j is a submass of the
concatenated string ti · tj with the witness (b′, e′), where (b′, e′) is shifted
appropriately (i.e., b′ = b −

P

i′<i |ti′ | and e′ = |ti| +
P

i′<j |ti′ |). More-

over, (b′, e′) is a border-spanning submass of ti · tj . Thus, by Lemma 4,
(b′, e′) contributes exactly one to [xM−Mi,j]Dti,tj

(x). ut

Using FFT for computing the polynomials, the preprocessing step of Al-

gorithm 3 has runtime O(gµs log µs). The query time is O(gµs log µs +

K n
g
). With g = d(Kn

µs log µs
)

1

2 e, we obtain the following

Theorem 3. Algorithm 3 solves the Submass All Witnesses Prob-

lem in time O((Knµs log µs)
1

2), where µs is the mass of the string, and
K is the total number of witnesses, i.e., the output size.

To better understand this result, let κ̄ denote the average size of the
output, so κ̄ = K/k. Then the runtime is (kκ̄nµs log µs)

1/2. Note that the
running time of the combination of the näıve algorithms for the submass
all witnesses problem is O(min(kn, n2 log n)). Thus, our algorithm beats
the running time of the näıve algorithms above if κ̄µs log µs = o(kn) and
(κ̄kµs log µs) = o(n3 log2 n).

5 Discussion

In this paper we gave algorithms for several variants of finding substrings
with particular submasses in a given weighted string. Our algorithms are
most interesting when the masses of the individual characters are small
compared to the length of the string, or more generally, when the number
of different possible submasses is small compared to n2.
Most of our algorithms have running time complexity dependent (up
to polylog factors) on the number of different submasses in the given

X

weighted string. While this may not be the best possible running time,
it seems that improving this significantly will be hard. For example,
consider the problem of finding the number of different submasses σ(s).
Our algorithm for this problem has runtime O(σ(s) log σ(s)). It is not
hard to see that the easier problem of deciding whether σ(s) is exactly
equal to n(n+1)/2 or not is at least as hard as the 4-Sum problem. The
4-Sum problem is conjectured to have a run time complexity of Ω(n2)
[14, 15] and is one of the major problems in computational geometry.
So, it is unlikely that even the number of different submasses can be
determined in time o(n2) in the general case.

References

1. Edwards, N., Lippert, R.: Generating peptide candidates from
amino-acid sequence databases for protein identification via mass
spectrometry. In: Proc. of 2nd WABI. LNCS (2002) 68–81

2. Lu, B., Chen, T.: A suffix tree approach to the interpretation of
tandem mass spectra: Applications to peptides of non-specific diges-
tion and post-translational modifications. Bioinformatics Suppl. 2
(ECCB) (2003) II113–II121

3. Cieliebak, M., Erlebach, T., Lipták, Z., Stoye, J., Welzl, E.: Algorith-
mic complexity of protein identification: Combinatorics of weighted
strings. DAM (2004) 27–46

4. Wilf, H.: generatingfunctionology. Academic Press (1990)
5. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and

wildcard matching. In: Proc. of 34th STOC. (2002)
6. Benson, G.: Composition alignment. In: Proc. of 3rd WABI. LNCS

(2003) 447–461
7. Böcker, S.: Sequencing from compomers: Using mass spectrometry

for DNA de-novo sequencing of 200+ nt. In: Proc. of 3rd WABI.
LNCS (2003) 476–497

8. Böcker, S.: SNP and mutation discovery using base-specific cleav-
age and MALDI-TOF mass spectrometry. Bioinformatics, Suppl. 1
(ISMB) (2003) i44–i53

9. Salomaa, A.: Counting (scattered) subwords. EATCS 81 (2003)
165–179

10. Eres, R., Landau, G.M., Parida, L.: A combinatorial approach to au-
tomatic discovery of cluster-patterns. In: Proc. of 3rd WABI. LNCS
(2003) 139–150

11. Apostolico, A., Landau, G., Satta, G.: Efficient text fingerprinting
via Parikh mapping. J. of Discrete Algorithms (to appear)

12. Didier, G.: Common intervals of two sequences. In: Proc. of 3rd

WABI. LNCS (2003) 17–24
13. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation

of complex Fourier series. Mathematics of Computation 19(90)
(1965) 297–301

14. Demaine, E.D., Mitchell, J.S.B., O’Rourke, J.: The open problems
project. http://cs.smith.edu/ orourke/TOPP/ (2004)

15. Erickson, J.: Lower bounds for linear satisfiability problems. In:
Proc. of 6th SODA. (1995) 388–395

