

Projektarbeit Informatik
Automatic Detection of Company Names in
Texts Using Deep Learning

Autoren

 Fabian Camenzind
Daniel Zürrer

Hauptbetreuung

 Mark Cieliebak

Nebenbetreuung

 Maurice Gonzenbach

Datum

 15.01.2017

DECLARATION OF ORIGINALITY

Project Work at the School of Engineering

By submitting this project work, the undersigned student confirm that this work is his/her own
work and was written without the help of a third party. (Group works: the performance of the
other group members are not considered as third party).

The student declares that all sources in the text (including Internet pages) and appendices
have been correctly disclosed. This means that there has been no plagiarism, i.e. no
sections of the project work have been partially or wholly taken from other texts and
represented as the student’s own work or included without being correctly referenced.

Any misconduct will be dealt with according to paragraphs 39 and 40 of the General
Academic Regulations for Bachelor’s and Master’s Degree courses at the Zurich University of
Applied Sciences (Rahmenprüfungsordnung ZHAW (RPO)) and subject to the provisions for
disciplinary action stipulated in the University regulations.

City, Date: Signature:

 …………………………………………………………………….. …………………………..…………………………………………………...

 …………………………..…………………………………………………...

 …………………………..…………………………………………………...

The original signed and dated document (no copies) must be included after the title sheet
in the ZHAW version of all project works submitted.

Zurich University
of Applied Sciences

Zürich, 15.01.2017

Zusammenfassung

In diesem Projekt soll ein künstliches neuronales Netzwerk trainiert werden, um Firmenna-
men in natürlicher Sprache zu erkennen. Das Erkennen von benannten Entitäten (Named
Entity Recognition, kurz NER) wird oft durch linguistische Modelle erreicht. Solche Modelle
sind komplex zum Erstellen und nur spezifisch für die jeweilige Domäne geeignet. Mit unserer
NER basierend auf einem neuronalen Netzwerk möchten wir eine flexible Lösung erstellen,
welche leicht für verschiedene Entitätstypen oder Sprachen angepasst werden kann.

Durch das Erstellen von unseren eigenen Trainingsdaten für das neuronale Netzwerk von
frei erhältlichen Nachrichtentexten und Firmenlisten stellten wir sicher, dass die Daten für
unseren Einsatzzweck geeignet sind. Dafür sammelten wir zuerst genügend Rohdaten, um
Firmennamen in Texten mit natürlicher Sprache zu finden. Anschliessend erstellten wir eine
Liste von markierten Sätzen als unsere Menge von Trainingsdaten. Dies erreichten wir durch
einfaches suchen von Firmen aus unserer Firmenliste in den Nachrichtentexten. Wir nutz-
ten eine textuelle Ausgabe dieser Daten, um die Qualität der Trainingsdaten abzuschätzen.
Um das neuronale Netzwerk zu trainieren, wechselten wir zu einem auf Zahlen basierten
Format. Sowohl die Texte wie auch die Markierungen werden darin als Glanzzahlen reprä-
sentiert. Damit konnten wir beginnen, unser neuronales Netzwerk zu trainieren. Um die
beste Konfiguration des Netzwerks zu finden, variierten wir sowohl die Trainingsdaten wie
auch die Parameter des Netzwerks. Die Hauptparameter, mit denen wir experimentierten,
waren die Grösse der Trainingsdaten und die Grösse und Anzahl der versteckten Ebenen
im neuronalen Netzwerk.

Als Resultat haben wir einige fertig trainierte neuronale Netzwerke, mit denen über die
Kommandozeile interagiert werden kann. Unser neuronales Netzwerk kann einige Firmen-
namen in natürlicher Sprache erkennen, ist aber nicht zuverlässig genug, um dies bei allen
Eingabedaten zu erreichen. Die Qualität der Ausgaben des Netzwerks sind noch nicht gut
genug, um sie in einem Produktionssystem einzusetzen. Die Ausgaben bieten aber eine gute
Grundlage für weitere Experimente.

i

Abstract

This project aims to train a neural network to recognize company names in natural language.
Named entity recognition (NER) is often achieved by using linguistic models which are
complex to create and specific to a problem domain. With our NER based on a neural
network we set out to create a flexible solution which can be adapted easily for di�erent
types of entities or languages.

By creating our own training data for the neural network from freely available news
texts and lists of companies we ensured that the training data is tailored specifically to our
purpose.

To this end we first gathered enough raw data to find companies in natural language texts
and then created a list of labeled sentences as our set of training data. This was achieved by
simply matching words from the natural language sample to our list of known companies.
The text form of this data was used to manually observe the quality of the training data.
To actually train the neural network we switched to an integer based format for the input
data. In this format, the input text and labels are represented as integers. Next we started
training our neural network with this input data. To find the best configuration we trained
the neural network with di�erent sets of input data as well as varying configurations. The
main parameters with which we experimented were the size of the training data and the
size and number of the hidden layers in the neural network.

The results are a few trained networks that can be interacted with using the command
line. It can recognize some company names in natural language but the neural network fails
to produce reliable output for all inputs. The quality of the network’s output is not yet high
enough to use in production but the results are a solid base for further experimentation.

ii

Preface

Both team members have developed an interest in machine learning over the recent years.
This interest lead to projects in the second year of studying at ZHAW which were first steps
into machine learning or artificial intelligence as a whole. Because machine learning is such
an expansive topic starting in the field is not trivial. In this project we were able to gain
valuable insight into machine learning, and specifically deep learning, that will accompany
us through the next years of our careers.

We would like to thank Mark Cieliebak and Maurice Gonzenbach for their support as
well as the School of Engineering and their sta� for the opportunity and hardware support
to conduct this project.

iii

Contents

Zusammenfassung i

Abstract ii

Preface iii

1 Introduction 1
1.1 Goals . 1
1.2 Overview of this Paper . 1
1.3 Prerequisites of the Reader . 1

2 Method 2
2.1 Realization . 2

2.1.1 Tools . 2
2.1.2 Responsibilities . 2

2.2 Creation of Training Data . 2
2.2.1 Gathering Raw Data . 2
2.2.2 Generating the Company List . 3
2.2.3 Creating a Company Finding Algorithm 3
2.2.4 Statistics . 4
2.2.5 TensorFlow Input Data . 7

2.3 TensorFlow Experiments . 7
2.3.1 Getting an Understanding . 7
2.3.2 Terminology . 8
2.3.3 Experiments . 9
2.3.4 Impediemts . 11

3 Results 12
3.1 Final Experiments . 12
3.2 Scores . 13
3.3 Examples . 13
3.4 Analysis . 14

4 Discussion 17
4.1 Reflection . 17

4.1.1 Generating Annotated Corpus . 17
4.2 Prospects . 17

4.2.1 Company Finding Tool . 18
4.2.2 Pipeline . 18

iv

4.2.3 Resulting Neural Network . 18

5 Documentation 19
5.1 Gathering Raw Data . 19

5.1.1 Input Text . 19
5.1.2 List of Entities . 19

5.2 Creation of Input Data for the Neural Network 19
5.3 Training the Neural Network . 20

5.3.1 Manually Interacting with the Neural Network 21

6 References 23
6.1 References . 23
6.2 Glossary . 23
6.3 List of Figures . 25
6.4 List of Tables . 25

7 Appenidx 26
7.1 O�cial Task Description . 26
7.2 DVD Directory . 26

v

1 Introduction

1.1 Goals

The goal of this project is to train a neural network to recognize company names in natural
language. This neural network should then be able to accurately label words in a sentence
as a name of an arbitrary company. There is no predefined goal regarding the performance
of the resulting network. Rather we are trying to learn what accuracy we can get from this
automatic natural language analysis.

For the o�cial task description see section 7.1.

1.2 Overview of this Paper

This paper holds information and the experiments of the above project, concluded by Daniel
Zürrer and Fabian Camenzind. With the enclosed CD one is able to reproduce a trained
model and understand the workings of the named persons.

1.3 Prerequisites of the Reader

The reader of this document should be well-versed in programming (beneficially with knowl-
edge of Python). Basic knowledge of the mechanics of neural networks is also required
although specific terminology used in the document is explained.

1

2 Method

2.1 Realization

The project was divided in two phases. First we had to implement the tools to create our
training data (see section 2.2) with which we then experimented in the second phase (see
section 2.3). While there was some overlap between those two stages, they can be looked
at as very much distinct.

2.1.1 Tools

All tools used in this project were written in Python. While most code used in our company
finding tool is original code we did use part of the Natural Language Toolkit (NLTK).
Namely the Punkt sentence tokenization models were used for splitting sentences into tokens
(words)[1].

For our neural network we used an implementation based on TensorFlow[2] by Maurice
Gonzenbach named hippo.

2.1.2 Responsibilities

Fabian Camenzind and Daniel Zürrer implemented the tool to create the training data for
the neural network. They were also responsible for gathering the raw data and conducting
the experiments in the second phase.

Maurice Gonzenbach provided the implementation of the neural network as well as the
file writer for the input data. The setup of our specific server environments was also mainly
provided by him.

2.2 Creation of Training Data

2.2.1 Gathering Raw Data

We created our own training data in a format inspired by the CoNLL-2003 shared task,
but we only use the I-ORG named entity label [3]. The goal was to have a simple format

2

that marks all companies in a sentence to be used as a precursor for the input of the neural
network.

We O
recognise O
companies O
such O
as O
Time I-ORG
Warner I-ORG
Inc. I-ORG
or O
Samsung I-ORG
. O

Figure 2.1: Label file with named entity labels I-ORG for companies

To create this input data we needed natural language input text, a list of company
names and a program to search the input text and create the label file. A selection of
natural language samples in the form of news texts are available at http://www.statmt.
org/wmt14/training-monolingual-news-crawl/ where we got our input text. We chose
the latest file from 2013 containing 21’688’362 English sentences.

The list of companies used to create the label file was compiled by our team after querying
the DBpedia Ontology. The resulting list contained about 20’000 entries which we could
match with the input text. This list is of varying quality as many company names are
also popular first or last names and thus results in many false positives when searching for
matches in news texts.

2.2.2 Generating the Company List

Queries to the DBpedia Ontology are written in SPARQL. DBPedia o�ers an online query
editor and executor at http://dbpedia.org/snorql/ which we used to query the DBpedia
Ontology. To gather the list of company names we used to create the input data for our
neural network we used the query seen in figure 2.2.

Line 1 shows the selection of the DBpedia Ontology while the rest of the query specifies a
selection of unique company names. The online query executor we used created a JSON file
with all company names. We then simply had to extract the names from the surrounding
data structure to create a list of company names separated by newline characters.

2.2.3 Creating a Company Finding Algorithm

Because of the large amount of data we had to work with we needed a fast algorithm to
compare the words of the input text with our company list. To this end we used a Python

3

http://www.statmt.org/wmt14/training-monolingual-news-crawl/
http://www.statmt.org/wmt14/training-monolingual-news-crawl/
http://dbpedia.org/snorql/

1 PREFIX dbpedia0:<http://dbpedia.org/ontology/>
2

3 SELECT distinct ?name WHERE
4 {
5 ?body a dbpedia0:Company.
6 ?body rdfs:label ?name.
7 }

Figure 2.2: Query used to retrieve a list of company names from DBpedia

set of the company list to look up company names. In a Python set the lookup of a
member has an average time complexity of O(1)[4]. To tokenize our input sentences into
words we used the word tokenizer of the NLTK.

The main complexity of our company finding tool comes from the fact that many company
names have multiple words and therefore a simple word to word comparison would miss
many results. Our list of companies already had multi-word company names listed. As a
result our tool needed to not only compare single words but also dynamically build multi-
word phrases and compare them as well. As seen in figure 2.1 the output was generated
with labels designating each token of the input text as part of a company name or not part
of a company name. Our final tool to find company names as well as writing the label file
can be seen in figure 2.3.

Later versions of the tool feature the generation of statistics or were written to create
integer representations of the label file to be used as the input of our neural network. This
first version was able to check about 1000 sentences per second.

Multi-Word Company Names

Matching multi-word company names to their corresponding company list entries is partic-
ularly performance intensive as we have to check two-word phrases, three-word phrases and
so on starting at every token in our sentences. We achieve this by simply adding words to
the currently looked at token in the sentence until a match is found or until the end of the
sentence. Figure 2.4 shows an example of the phrases the tool generates and looks up in
the company list.

This process could be sped up by limiting the number of words a phrase can contain but
for our application the performance was su�cient.

2.2.4 Statistics

To better understand the nature of news texts and how company names are distributed
within them, our company finding tool also creates a statistics file about the text. Note
that any statistics described in this chapter are not based on the raw input data but on a
set of sentences of which we know that 60% contain a company name. We biased our input

4

1 def searchCompany(sentenceWordList, sentenceWordCount, currentWordIndex,
additionalWords):Òæ

2 if (currentWordIndex < (sentenceWordCount - additionalWords)) and (’ ’.join(
sentenceWordList[currentWordIndex:currentWordIndex+1+additionalWords]) in
companySet):

Òæ

Òæ

3 return additionalWords + 1
4 else:
5 return 0
6

7 def compareAndWrite(sentence):
8

9 # tokenize sentence
10 sentenceWordList = nltk.word_tokenize(sentence)
11 sentenceWordCount = len(sentenceWordList)
12

13 numberOfWordsInCompanyName = 0;
14 # iterate over all tokens
15 for currentWordIndex in range(0,sentenceWordCount):
16

17 # write token in result file
18 result.write(sentenceWordList[currentWordIndex] + ’ ’)
19

20 # search for match in company list including multi-word phrases
21 # until end of sentence
22 for additionalWords in range(0,sentenceWordCount-currentWordIndex):
23 # do not search for new company while in multi-word company name
24 if numberOfWordsInCompanyName == 0:
25 numberOfWordsInCompanyName = searchCompany(sentenceWordList,

sentenceWordCount, currentWordIndex, additionalWords)Òæ

26

27 # write labels in result file
28 if numberOfWordsInCompanyName >= 1:
29 result.write(’I-ORG\n’)
30 numberOfWordsInCompanyName -= 1
31 continue
32 else :
33 result.write(’O\n’)
34

35 result.write(’\n’)

Figure 2.3: Algorithm to find company names in sentences and write the label file (file
creation and reading of sources omitted)

5

...
as
as Time
as Time Warner
as Time Warner Inc.
as Time Warner Inc. or
as Time Warner Inc. or Samsung
as Time Warner Inc. or Samsung .
Time
Time Warner
Time Warner Inc.
or
or Samsung
...

Figure 2.4: Example of phrases that are being looked up in the company list using the
sentence We recognise companies such as Time Warner Inc. or Samsung.

sets for the neural network to feature more sentences with company names to have more
positive samples for the network to learn. Maurice Gonzenbach suggested the percentage of
60% and having seen promising results in our first experiments, we kept that percentage.

We were mainly interested in two statistics. One statistic of interest was how many
company names would be listed per sentence. The other statistic was the number of unique
companies found in our input set. The following sections describe these statistics for a
random sample of 200’000 sentences.

Company Names per Sentence

As can be seen in figure 2.5 most sentences only have one company name. With each
additional company name the number of sentences decreases by a factor of ten. There were
no sentences with more than six company names. Our own anecdotal experience of natural
language matches the approximate scale of the distribution. This leads us to believe the
training data is representative of natural language and suitable for the task. The result is
calculated from the same data that was used to train our neural network so we expect the
fully trained network to give a similar distribution when labeling new data.

Unique companies

It is also important that the training data contains a multitude of unique company names.
Training the network with a small selection of company names could lead to a network
that is very well calibrated to finding those names but not others. We want as many
company names in our training data as possible so the neural network can learn the general

6

Figure 2.5: Number of companies per sentence.

characteristics of a company name. The set of 200’000 sentences yielded a total number of
company names of 135’394 (distribution see figure 2.5). This included 1’982 unique names
(about 1 in 68). We believe that this number is large enough to be representative of the
general characteristics of a company name.

2.2.5 TensorFlow Input Data

We used TensorFlow as the framework for our neural network. For the first set of training,
validation and testing data we split up the input text into single characters and labeled each
character as part of a company name or not part of a company name. Since we only needed
to designate two classes of characters we decided to use a binary label system consisting
of 0 (not part of company name) and 1 (part of company name) as labels. The characters
were also given a unique integer ID.

2.3 TensorFlow Experiments

2.3.1 Getting an Understanding

As described in the following section 2.3.3 the first few runs of our experiments were to
see how everything behaves. After a couple of runs we were able to recognize first patterns
accross our results. These patterns or tendencies of the neural network where given by the
values that Maurice Gonzenbach printed into tenserflow.
We soon realized that we needed to add more information to our output and adjusted the
TensorFlow code to also log the correct samples. Within the following experiments our

7

understanding grew in the matter of TensorFlow steadily.

2.3.2 Terminology

Epoch

An epoch is an iteration of training the neural network. One epoch corresponds the adjust-
ments of weights within the neural network with the full training set. A typical training
session in our project consists of 150 epochs. We found that number to be small enough to
allow for e�cient training and large enough to gain valuable insights from the results.

Overfitting

Overfitting is the term used when a neural network is trained too specifically on the training
set. If the network learns the characteristics of the training set and does not perform well
on other input data, the neural network is overfitted. During our experiments overfitting
was a main concern and issues arising from overfitting are outlined in section 3.3.

Input Sets

To train our neural network we used three sets for each run. The input data consists of
a training set, a validation set and a testing set. The training set is used to adjust the
weights in the neural network. To counteract overfitting, the results of the training set are
checked against the validation set. After every epoch the neural network is checked against
the testing set. This set has no influence on the weights but is used to measure how well
the neural network performs its task.

Hidden Layers

The hidden layers in a neural network are the layers that are neither input or output. All
data is passed through those hidden layers and is ultimately passed to the output layer.
With too few hidden layers, the neural network may not be adjustable enough to fulfill the
given task. Too many hidden layers and it may overfit itself to the training set and not
work on general data. For our experiments we usually chose two hidden layers of size 200.

Dropout

Dropout is used to counteract overfitting. When using dropout, a certain percentage of
nodes is ignored for computing the output data at each step during training. This ran-
domizes the neural network during training and only parts of it are trained at each step.

8

Dropout thus prevents an overfitting of the whole network. We typically used a dropout
rate between 10% and 20% in our experiments.

Correct Samples

One important metric is the number of correct samples in the testing set. In our project
this is expressed as a percentage of correctly labeled sentences in the set.

Loss

The loss of a neural network is a metric to discern how well it is performing its task. During
training, the neural network is trying to minimize the loss. We expect a decrease in loss
during the training session.

Perplexity

Perplexity is another metric to judge the neural network performance. It is optimally also
minimized. Overfitting will cause an increase in perplexity. We use graphs of the perplexity
to illustrate our experiments in this document because the performance can be easily judged
from it.

2.3.3 Experiments

Our first experiments with TensorFlow provided us a platform to get familiar with the
system and see if the neural network can be trained at all with our input data. The first set
of training data had a size of 20’000 samples and was trained with the following parameters:

python hippo.py lstmseq train v1/dc.json –eval-train -ne 100 –lstm-mode
bidir –hidden 100 100 -tb

The first results already looked promising. What we are looking for is a small perplexity
on our validation set which indicates the accuracy of our trained neural network. After 100
epochs of training we arrived at a minimal perplexity of about 0.033. This was a good first
result and showed us that we are on the right track. The change of the perplexity value
through the 100 epochs can be seen in figure 2.6

This curve is roughly what we have been expecting. Ideally the perplexity would sink to
0 after we find optimal parameters for our problem. The next two experiments were run
on a training set with 40’000 samples and hidden layers of the sizes (200 200) and (50 50).
We also increased the number of epochs to 150 to get a better understanding of the e�ects
of longer term training. With larger hidden layers we expect to see a faster initial drop in
perplexity but with eventual overfitting. By training the neural network with larger hidden
layers the risk of learning the specific characteristics of the training data increases. This

9

Figure 2.6: Smoothed perplexity over time for the test-set of our first experiment. Graph
generated by TensorBoard.

makes the results for general application, as simulated by the validation set, less accurate.
The overfitting can be clearly seen in figure 2.7.

Figure 2.7: Smoothed perplexity over time for the test-set of our first three experiments.
Graph generated by TensorBoard.

Our longest run at this point took just over 19 hours to complete. Because we also
intended to increase the size of the training set to 80’000 and eventually 160’000, these
times would only increase. This meant we had to carefully think about our experiments.
For our next experiments we increased the training set size to the aforementioned 80’000
sentences. This time we were interested in how a dropout would a�ect the overfitting that
clearly occured. We kept the hidden layers at (200 200) for these experiments.

While testing our trained models, which reached scores of up to 84%, we saw that the
neural network only recognized a couple of characters sporadically throughout the input
string. It looked like the model did not know the simplest rule of a what a word is. At
this moment we realized that our company finder (see 2.2.3) removed all spaces from the
input line. This error prevented the neural network from learning the definition of a word
thus only recognizing companies within sentences without spaces. After we fixed the bug
by adding a space at the end of each word (excluding punctuation) we came closer to the
expected results in our tests. As of now the neural network recognizes some companies

10

(mostly from our DBpedia list) if there is a space at the end, probably but not proven, due
to an error in the company finding tool. For more information see the results in chapter 3.

2.3.4 Impediemts

The following subsection tries to explain some problems as well as impediments we came
across following the data-gathering.

Shared Server

After the first few weeks of creating training data sets some runs needed to be done. The
ZHAW provided a server which was shared among four teams. The server was strong but
very restricted. After a couple of short (five to six hour runs) it seemed to be realistic to
start a bigger training run with more data. In the following days it became clear that the
server was not fit for multiple accounts/projects running and it failed, thus leading to the
first loss of a nearly trained model. The attempt of organizing the projects and their GPU
time on the server failed which caused our team to abandon the shared server in the end.

Amazon EC2

The following solution was to use Amazon Web Services EC2 server instances. The first
images were created by Maurice Gonzenbach and dispached on multiple instances. Since
GPU based On-Demand EC2 instances can cost up to 3.08 $ per hour, ZHAW opted for EC2
Spot Instance. The problem with those instances became apparent a few days later when
we lost all our data again. The Amazon Web Services knowledge on the project wasn’t
the highest in the beginning which led to the mistake of backing up all data on EC2 Spot
Instance to a S3 bucket. A couple of days later the prices for spot instances skyrocketed
and we decided to switch to an on demand instance. Subsequently this wasn’t as easy as
hoped and the project account first needed to wait for approval for new instances. The
approval took nearly a week in which no computations could be made.

11

3 Results

3.1 Final Experiments

After getting to know the neural network we started our last batch of experiments with
set sizes of 60Õ000, 2Õ000 and 1Õ000 for the training, validation and testing sets respectively.
We found those set sizes to give us diverse input data while maintaining reasonable and
manageable run times.

In these final experiments we varied the number and size of the hidden layers as well
as the dropout rate to try and counteract the negative e�ects we have seen in previous
experiments. In this chapter we will discuss the outcome of the following four experiments:

Reference Command
Experiment 1 python hippo.py lstmseq train v3/dc.json –eval-train

-ne 150 –save –best 20 –lstm-mode bidir –hidden 150 150
–dropout 0.1 -tb

Experiment 2 python hippo.py lstmseq train v3/dc.json –eval-train -ne
150 –save –best 20 –lstm-mode bidir –hidden 150 –dropout
0.1 -tb

Experiment 3 python hippo.py lstmseq train v3/dc.json –eval-train -ne
150 –save –best 20 –lstm-mode bidir –hidden 150 –dropout
0.2 -tb

Experiment 4 python hippo.py lstmseq train v3/dc.json –eval-train -ne
150 –save –best 20 –lstm-mode bidir –hidden 200 –dropout
0.15 -tb

Table 3.1: The commands used to start our final four experiments.

Experiment 1 yielded acceptable results but after testing a few sentences against those
results we realized that the neural network was too specifically trained on our input data.
By reducing the number of hidden layers in Experiment 2 we tried to restrict the network’s
capacity to save specific characteristics. However Experiment 2 resulted in a very similar
behaviour to Experiment 1. This is what led us to increase the dropout rate to 20%
for Experiment 3. While this increased dropout rate severely decreased overfitting, the
performance of our neural network in recognizing company names only slightly increased.
As a last e�ort for Experiment 4 we increased the size of the hidden layer to 200 and set
a dropout rate of 15%. We believe that dropout rate to be a good compromise between
overfitting and performance for our task. The larger hidden layer should enable the network
to learn more characteristics of company names.

12

All four experiments resulted in a network that is able to recognize some company names,
mostly limited to the ones in our training set. The changes we made during the last four
experiments had a disappointingly small impact on the performance. The actual perfor-
mances will be discussed in section 3.2 and examples of the results can be found in section
3.3.

3.2 Scores

For our final four experiments we plotted the number of correct samples per batch as well
as the perplexity of all runs. The neural network used a batch size of 150 to train. A correct
sample is any sentence for which each character is correctly identified as part of a company
name or not part of a company name. As displayed in figure 3.1 all experiments had very
similar performance in regards to the correct samples. Each time the network was able to
correctly label about 87% of samples.

Figure 3.1: Smoothed number of correct samples over time for the test-set of our final ex-
periments. Graph generated by TensorBoard.

These resulting numbers are however deceptively large. When manually testing (see
section 3.3) we quickly found that only few samples containing company names not in the
training data are labeled correctly. Figure 3.3 shows the perplexity values for the final
experiments. Comparing the graphs with table 3.1 shows that only the large dropout rate
of 20% in Experiment 3 had a strong impact on the overfitting.

Compared to the numbers in figure 2.7 the perplexity values and progression look more
moderate which leads us to the conclusion that we are close to optimal values with these
experiments.

3.3 Examples

To compare the performance of the resulting networks from our final experiments we used
the interactive mode of the our neural network with a few sample sentences:

• We recognise companies such as Time Warner Inc. or Samsung.

13

Figure 3.2: Smoothed perplexity over time for the test-set of our final experiments. Graph
generated by TensorBoard.

• Apple is reportedly dropping Samsung as its chip manufacturer.

• If Ford Wants to Beat Tesla, It Needs to Go All In

These samples include two standard sentences as well as a headline. The headline is an
interesting challenge for the network because one of the main features of a company name
is the capitalization. In the headline most words are capitalized and the network needs to
recognise di�erent features of a company name. The output of our network labels characters
with 1 if they are part of a company name and 0 if they are not. Figure 3.3 lists the output
for each of our final experiments.

3.4 Analysis

When examining the results in figure 3.3 it becomes apparent that the quality of the output
is not high enough for a production system. At the same time the neural network correctly
identifies some company names which is promising for further experimentation with the
system. As described in section 3.1 the network is still trained too specifically to the
input data. In the samples this manifests itself by the network always being able to identify
Samsung while missing Apple in all experiments. After Experiment 3, which had the highest
dropout rate and experienced the smallest amount of overfitting, the network was able to
correctly identify Time Warner Inc. but also yielded the most false positives in the sample
headline.

One issue all our experiments su�ered from is the recognition of an extra space after
company names. This is due to the way our training data is created. Because the spaces
are lost during the tokenisation of the input text we manually add it back with the same
label as the word. This means that the space after a company name is also labelled as part
of that name in the input data. We only identified this issue after our final experiments and
were unable to correct it due to time constraints.

With some clean-up work the output of the network could be improved in a production
system. The first step of clean-up would be to remove the extra spaces described above.

14

We recognise companies such as Time Warner Inc. or Samsung.
00000000000000000000000000000000000011000000000000000000111

Apple is reportedly dropping Samsung as its chip manufacturer.
00000000000000000000000000000111111110000000000000000000000000

If Ford Wants to Beat Tesla, It Needs to Go All In
00000000000000000000000000000010000000000000000000

(a) Output of the neural network trained in Experiment 1.

We recognise companies such as Time Warner Inc. or Samsung.
001000011111111

Apple is reportedly dropping Samsung as its chip manufacturer.
00000000000000000000000000000111111110000000000000000000000000

If Ford Wants to Beat Tesla, It Needs to Go All In
00

(b) Output of the neural network trained in Experiment 2.

We recognise companies such as Time Warner Inc. or Samsung.
00000000000000000000000000000001111111111111111100000001111

Apple is reportedly dropping Samsung as its chip manufacturer.
00000000000000000000000000000111111110000000000000000000000000

If Ford Wants to Beat Tesla, It Needs to Go All In
00000000000000000000000000000011000000000000111100

(c) Output of the neural network trained in Experiment 3.

We recognise companies such as Time Warner Inc. or Samsung.
001100011111111

Apple is reportedly dropping Samsung as its chip manufacturer.
00000000000000000000000000000111111110000000000000000000000000

If Ford Wants to Beat Tesla, It Needs to Go All In
00

(d) Output of the neural network trained in Experiment 4.

Figure 3.3: Sample output from our trained neural network.

15

You could then expand partial labelling to full words or remove positive labels when most
of the word is labelled with 0.

In the end we did expect to reach a more intelligent network that would be able to
recognize di�erent companies. Even if the network was able to recognize some companies,
our companyFinder did it better. We were able to see some recognition for example if there
is corp written after a word but those occurrences where small in numbers and are not
reproducible

16

4 Discussion

4.1 Reflection

The given task for this project consists of three main parts. The following sections contain
a reflection of the achieved results in regards to each part.

4.1.1 Generating Annotated Corpus

In terms of programming and testing this was the most straightforward part. A basic version
of our company finding tool was implemented within a few weeks after the project kicko�.
Since then the tool has been refined and refactored for better performance, easier readability,
maintainability and extendability. We think that the tool is a solid piece of software which
could be used in other projects. For a more detailed discussion of the possibilities this tool
o�ers see section 4.2.1.

The second subtask of this part was much more involved than initially expected. While
we did receive a link to a set of news text which we were able to use throughout the project,
the generation of a list of company names was unexpectedly di�cult. We contacted the
Swiss Federal Commercial Registry O�ce and as well as the Federal Statistical O�ce to
receive a list of Swiss companies. Unfortunately the access to that data is very restricted
with the best o�er being a list of 328 companies. That number is nowhere near large enough
to create a representative training set for our neural network so we had to create the list
ourselves with freely available data.

The details of the list generation are explained in section 2.2.2. The resulting data was
of su�cient quality to conduct our experiments. However the data could be improved by
removing more peculiar entries such as numbers. It should also be noted that some entries
contain a su�x such as Ltd. or Inc. while others do not. This meant that our training
data may not be as precise as it could be with a more expansive set of entries. At the same
time we felt that this was not a pressing issue because we would generate few false positives
which we judged more important than false negatives.

4.2 Prospects

In this section we briefly discuss how our results can be used in future projects. We also
provide hints where the process might be improved. For a concrete description of how to

17

use our software see chapter 5.

4.2.1 Company Finding Tool

Our company finding tool is written for general search of a list of expressions (in our case
company names) within a list of sentences. It can be used without much modification to
find and label any data in input text as long as the data can be represented in list form.
This means it can be used to create training data for a wide array of tasks.

Currently the tool o�ers options to safe the training data in human readable form (see
figure 2.1) as well as in a variable width matrix (VWM). Since the writing of the results to
a file is handled by an independent class it can easily be extended to fit the specific needs
of a project.

The quality of the training data is mainly a function of the raw input data. At the core
of the tool is simple string matching so the more complete and clean the list of expressions
the better the resulting training data. Depending on the task this can be a challenge that
has no universal solution.

4.2.2 Pipeline

We did not use any automation to make the resulting training data from our company finding
tool available to the neural network. Each time we created a new set of training data it
had to be manually uploaded to the o�-site hardware. This meant manually organizing
folder structure which is error prone by nature. In a larger project we would recommend to
automate this step for more e�cient data handling.

In addition to automating the data handling the creating of training data would preferably
be handled on the same hardware that is used to train the network. This allows immediate
access to all data by the team members as well as the neural network. Splitting tasks onto
di�erent hardware entails a greater need for arrangements between team members which
could lead to a loss in e�ciency.

4.2.3 Resulting Neural Network

In our project we only tested the resulting network by direct command line interaction. For
the network to be used in an actual application there would need to be additional tools.
Such tools are not part of this project and have thus not been created by us. We o�er no
recommendation on how to integrate the trained neural network into an application.

Due to the size of a trained model we won’t be providing a trained model as well. You’ll
find instructions on how to train your own model in the Documentation Chapter (see 5).

18

5 Documentation

This chapter describes how the tools we created and used can be used to either replicate
our results or to conduct your own research. All software and input data we used can be
found on the enclosed DVD.

5.1 Gathering Raw Data

5.1.1 Input Text

As explained in section 2.2.1 our input text comes from http://www.statmt.org/wmt14/
training-monolingual-news-crawl/. This directory o�ers news texts split up into sen-
tences separated by newline characters in various languages including German, French and
English. The texts o�er a wide variety of natural language samples and were very well
suited for our task. The specific English data set we used (http://www.statmt.org/wmt14/
training-monolingual-news-crawl/news.2013.en.shuffled.gz [GZ archive, 1.1GB]) is
also available on the enclosed DVD.

5.1.2 List of Entities

Gathering the companies for our companies file we used DBpedia (for further detail on how
to download the exact JSON List see 2.2.2). To convert the JSON file from the SPARQL
result, we created the extractCompanyFromDBPedia Python tool. Before using the tool
you need to prepare the JSON by removing everything outside of the company array. The
prepared JSON file should start and end with a square bracket. It then saves the given
JSON as a simplified list. If the extractCompanyFromDBPedia tool is used for other entries,
the name of the extracted object may need to be changed in the code.

5.2 Creation of Input Data for the Neural Network

Now that we have our news.txt and companieslist.txt files the next step is to create input
data for the neural network to train. Call companyFinder.py from your console of choice
three times with varying setSize and startLine as well as the name of the set. In our
case we used the following calls for our first sets:

python companyFinder.py companylist.txt news.txt 20000 100000 Vali

19

http://www.statmt.org/wmt14/training-monolingual-news-crawl/
http://www.statmt.org/wmt14/training-monolingual-news-crawl/
http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.en.shuffled.gz
http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.en.shuffled.gz

python companyFinder.py companylist.txt news.txt 1000 1 Test

python companyFinder.py companylist.txt news.txt 100 1000000 Train

These three calls result in three folders, Vali, Test and Train which can now be moved
into the hippo directory under inputdir/vX/ with X being any number of your version
scheme choice. With the folders in place make sure that the right files are linked in the
dc.json file which should look like figure 5.1.

1 {
2 "given_params": {"char_embeddings" : "char_embeds.npy"},
3

4 "ds":{
5 "train":{
6 "char_indexes": "train/IDs.npz",
7 "labels": "train/tags.npz"
8 },
9 "valid":{

10 "char_indexes": "vali/IDs.npz",
11 "labels" : "vali/tags.npz"
12 },
13 "test": {
14 "1": {
15 "char_indexes" : "test/IDs.npz",
16 "labels" : "test/tags.npz"
17 }
18 }
19 }
20 }

Figure 5.1: Example of the dc.json file

Inside the inputdir/vX/ directory should also be the char_embeds.npy file which can be
found on the CD.

5.3 Training the Neural Network

Provided the hippo directory from the CD is on the server and the python installation works
correctly, follow the instructions below.

To start training the neural network we can now use the following call on the hippo.py
tool from Maurice Gonzenbach. (The given arguments are exemplary. Further arguments
can be found in the hippo/src/args directory)

python hippo.py lstmseq train v3/dc.json –eval-train -ne 150 –save –best
20 –lstm-mode bidir –hidden 150 150 –dropout 0.1 -tb

Following is as short explanation of the above arguments. We are not able to provide

20

more than the following information about hippo.py since we don’t know the whole extent
of the tool.

Argument Description
train Starts the TensorFlow lstmseq in training mode in which the model

learns. For the interactive mode 5.3.1 the argument must be inter-

active.
v3/dc.json The path to the dc.json file for your current training set (con-

sistent of three sub-folders).
–eval-train No explanation possible.
-ne 150 The amount of epochs (see 2.3.2) that the neural network will run.
–save Save the model for each epoch.
–best n Can only be used in conjunction with –save to only save the best

model after the nth epoch.
–lstm-mode bidir Set the mode of the neural network. We only worked with bidir

thus no further explanation possible.
–hidden 150 150 Set the amount and size of the hidden layers. The example will

result in two hidden layers with each 150 nodes.
–dropout 0.1 Set the dropout of the neural network in percent (1 being 100%).

For more information see 2.3.2.
-tb Save statistics in the output folder to view on TensorBoard.

Table 5.1: hippo.py training arguments explanation.

5.3.1 Manually Interacting with the Neural Network

One way to test your best neural network models is to use TensorFlow interactive mode. In
interactive mode you can input strings of text via the command line. The neural network
will then calculate the character labels and output them on the command line.

python hippo.py lstmseq interactive v3/dc.json ../outputdir/17-01-11_09-15-18/
–lstm-mode bidir –hidden 200

21

Argument Description
interactive Starts the TensorFlow lstmseq in interactive

mode.
v3/dc.json The dc.json used during the training of the

model to access the correct structure an embed-
dings.

../outputdir/17-01-11_09-15-18/ Path to the model
–lstm-mode bidir Set the mode of the neural network. Must be

equal to the mode during training.
–hidden 150 150 Set the amount and size of the hidden layers.

Must be equal to the –hidden argument in train-
ing.

Table 5.2: hippo.py interactive arguments explanation.

22

6 References

6.1 References
[1] NLTK Project. (2016). NLTK 3.0 documentation - nltk.tokenize package, [Online].

Available: http://www.nltk.org/api/nltk.tokenize.html (visited on 12/08/2016).
[2] (n.d.). TensorFlow, [Online]. Available: https://www.tensorflow.org (visited on

12/08/2016).
[3] CLiPS Research Center. (2003). Language-Independent Named Entity Recognition (II),

[Online]. Available: http://www.cnts.ua.ac.be/conll2003/ner/.
[4] (n.d.). TimeComplexity, [Online]. Available: https : / / wiki . python . org / moin /

TimeComplexity (visited on 11/14/2016).

6.2 Glossary

Amazon Web Services AWS provides a broad spectrum of cloudbased computation and
storage solutions alongside of other services like database, analysis, network, etc .

DBpedia DBpedia is a RDF based knowledge base with aver 4.5 million entries (mostly
from Wikipedia). Most of the entries are classified in a consistent ontology and can
be accessed via SPARQL.

DBpedia Ontology The DBpedia Ontology is a shallow, cross-domain ontology, which has
been manually created based on the most commonly used infoboxes within Wikipedia.
The ontology currently covers 685 classes which form a subsumption hierarchy and
are described by 2,795 di�erent properties.

EC2 EC2 is a Amazon Web Services cloudbased service that provides scaleable computa-
tion.

EC2 Spot Instance Spot instances are instances on a free market where one can bid for
computation time. The cost are usually below 10% of normal cost but can skyrocket
due to high demand on the market.

JSON JSON is an open-standard format that uses human-readable text to transmit data
objects consisting of attribute–value pairs.

23

http://www.nltk.org/api/nltk.tokenize.html
https://www.tensorflow.org
http://www.cnts.ua.ac.be/conll2003/ner/
https://wiki.python.org/moin/TimeComplexity
https://wiki.python.org/moin/TimeComplexity

NER Named entity recognition is a form of information extraction that seeks to locate
and classify named entities in text into pre-defined categories such as the names of
persons, organizations, locations, expressions of times, quantities, monetary values,
percentages, etc.

neural network A neural network is a computer system modeled on the human brain and
nervous system to solve a given task.

NLTK NLTK is a platform for building Python programs to work with human language
data.

Python Python is a high-level, general-purpose, interpreted, dynamic programming lan-
guage.

RDF RDF is a family of specifications originally designed as a metadata data model. It
has come to be used as a general method for conceptual description or modeling of
information that is implemented in web resources, using a variety of syntax notations
and data serialization formats.

S3 bucket Amazons Simple Storage Service (S3) is a Amazon Web Services Service and
provides flexible storage.

set A set object is an unordered collection of distinct hashable objects.

SPARQL SPARQL(pronounced "sparkle") is a query language designed to retrieve and
manipulate data stored in RDF format.

TensorBoard TensorBoard provides the visual counterpart to TensorFlow.

TensorFlow TensorFlow is an open source software library for numerical computation using
data flow graphs. It was originally developed by researchers and engineers working on
the Google Brain Team within Google’s Machine Intelligence research organization.

tokenize In lexical analysis, tokenization is the process of breaking a stream of text up into
words, phrases, symbols, or other meaningful elements called tokens.

VWM A variable width matrix is a data type that allows e�cient storage of rows of variable
width in a matrix.

24

6.3 List of Figures

2.1 Label file with named entity labels I-ORG for companies 3

2.2 Query used to retrieve a list of company names from DBpedia 4

2.3 Algorithm to find company names in sentences and write the label file (file
creation and reading of sources omitted) . 5

2.4 Example of phrases that are being looked up in the company list using the
sentence We recognise companies such as Time Warner Inc. or Samsung. . . 6

2.5 Number of companies per sentence. 7

2.6 Smoothed perplexity over time for the test-set of our first experiment. Graph
generated by TensorBoard. 10

2.7 Smoothed perplexity over time for the test-set of our first three experiments.
Graph generated by TensorBoard. 10

3.1 Smoothed number of correct samples over time for the test-set of our final
experiments. Graph generated by TensorBoard. 13

3.2 Smoothed perplexity over time for the test-set of our final experiments.
Graph generated by TensorBoard. 14

3.3 Sample output from our trained neural network. 15

5.1 Example of the dc.json file . 20

6.4 List of Tables

3.1 The commands used to start our final four experiments. 12

5.1 hippo.py training arguments explanation. 21

5.2 hippo.py interactive arguments explanation. 22

25

7 Appenidx

7.1 O�cial Task Description

NER is an important task in automatic text analytics, where entities such as company
names, persons, or locations should be found in natural language texts. This project thesis
focuses on finding company names using deep learning technologies.

This thesis consists of following tasks:

• Generation of an annotated corpus with texts and positions of company names

• Setup of a deep neural network for NER

• Optimizing the network for detecting company names

7.2 DVD Directory

The enclosed DVD has the following folder structure.

data
dbpedia

companies
companyList.csv

news.txt
dev

company_finder
companyFinder.py
findAppropriateLength.py
news1000.txt
nltkTokenizerInstall.sh
Readme.md
removeUnwantedChars.py
ResultWriter.py
StatWriter.py
variablewidthmatrix.py

dbpedia_extractor
extractCompanyFromDBPedia.py
Readme.md

26

hippo
docker
inputdir

v1
char_embeds.npy
dc.json
newsTest

annotated.txt
IDs.npz
longSentences.txt
stats.txt
tags.npz

newsTrain
annotated.txt
IDs.npz
longSentences.txt
stats.txt
tags.npz

newsVali
annotated.txt
IDs.npz
longSentences.txt
stats.txt
tags.npz

old_char_embeds.npy
v2

..
v3

..
run

tensorboard
16-11-15_12-13-27
..

tensorboard.sh
src

architectures
args

..
datahandlers

..
evaluations
hippo.py
..

word_embeds.npy
pa_arbeit

pa_camenfa1_zuerrdan_HS16.pdf

27

	Zusammenfassung
	Abstract
	Preface
	Introduction
	Goals
	Overview of this Paper
	Prerequisites of the Reader

	Method
	Realization
	Tools
	Responsibilities

	Creation of Training Data
	Gathering Raw Data
	Generating the Company List
	Creating a Company Finding Algorithm
	Statistics
	TensorFlow Input Data

	TensorFlow Experiments
	Getting an Understanding
	Terminology
	Experiments
	Impediemts

	Results
	Final Experiments
	Scores
	Examples
	Analysis

	Discussion
	Reflection
	Generating Annotated Corpus

	Prospects
	Company Finding Tool
	Pipeline
	Resulting Neural Network

	Documentation
	Gathering Raw Data
	Input Text
	List of Entities

	Creation of Input Data for the Neural Network
	Training the Neural Network
	Manually Interacting with the Neural Network

	References
	References
	Glossary
	List of Figures
	List of Tables

	Appenidx
	Official Task Description
	DVD Directory

