
Pascal Julmy & Dominic Egger

1

Projektarbeit Informatik

Development of a framework for text classi-
fication and participation at SemEval.

Autoren

 Dominic Egger

Pascal Julmy

Hauptbetreuung

 Mark Cieliebak

Nebenbetreuung

 Fatih Uzdilli

Industriepartner

Externe Betreuung

Datum

 09.01.2015

javascript:popUp_hoch('http://www.zhaw.ch/fileadmin/php_includes/popup/person-detail.php?kurzz=ciel');
javascript:popUp_hoch('http://www.zhaw.ch/fileadmin/php_includes/popup/person-detail.php?kurzz=uzdi');

Pascal Julmy & Dominic Egger

2

Summary

In jüngster Zeit wurde - dank zunehmender Rechenleistung - Sentimentanalyse besser anwendbar für
Alltagsprobleme und somit auch interessanter für Geschäftsanwendungen.
Diese Arbeit beschäftigt sich mit der Entwicklung und Evaluierung eines Frameworks für Sentimentanalyse
mit einem Schwerpunkt auf der Analyse von Tweets und der Teilnahme am Wettbewerb SemEval 2015.
Es werden die Gründe für Designentscheide und Probleme im Entwicklungsprozess durchleuchtet, und
ausserdem Beispiele, Ausblicke und Anregungen für weitere Entwicklung des Frameworks gegeben.
Zur Implementierung und zum Testen jeden Teiles des Frameworks wurden Arbeiten, Daten und Ergebnisse
von früheren SemEval-Teilnehmern verwendet. Die Ergebnisse der Gewinner von SemEval 2014 (NRC
Canada) stellten ein Zwischenziel dar und wurden Mitte November erreicht. Anschliessend wurde auf
denselben Daten eine grosse Zahl Experimente mit wechselnden Konfigurationen ausgeführt, um die
Resultate weiter zu verbessern. Die Konfiguration mit dem besten Ergebnis wurde einen Monat später für
die Teilnahme an SemEval 2015 ausgewählt.
Der erreichte achte Rang aus 40 Teilnehmern (mit einer Präzision von 62,61%) deutet auf Potenzial des
gewählten Ansatzes hin und sollte weiterverfolgt werden.

Pascal Julmy & Dominic Egger

3

Abstract

With increase in computing power sentiment analysis has become more and more applicable to solve con-
crete problems in everyday life in recent years – thus getting more interesting for business application.
The aim of this thesis is the development and evaluation of a framework for sentiment analysis with a focus
on analyzing tweets, and its participation at the SemEval 2015 challenge.
The thesis expounds the reasons for design decisions and troubles during development and provides usage
examples, outlooks and useful information for further development.
Papers, data and scores from previous SemEval participants were used to implement and test each part of
the framework during development. The scores from the winning team of SemEval 2014 (NRC Canada) were
taken as the intermediate goal and have been reached in mid-November. After that a multitude of experi-
ments were conducted with varying framework configurations on the same data in order to further increase
the score. The best scoring configuration was then used to participate in SemEval 2015 one month later.

The 8th rank was reached (out of 40 participating teams) with a precision of 62.61%. On the basis of these
final results, it can be concluded that the chosen design bears significant potential and should be further
developed.

Pascal Julmy & Dominic Egger

4

Index
Summary ... 2

Abstract ... 3

Index ... 4

Introduction ... 7

Tasks and expectations .. 7

What is sentiment analysis? ... 7

What is the SemEval challenge? .. 7

Intended audience .. 7

Literature research .. 7

Important note ... 7

Theoretical basics ... 8

Machine learning .. 8

F1-score .. 9

Framework description.. 10

Why a framework? .. 10

Framework design decisions .. 10

Planned software features .. 10

Processing of large String quantities to extracted feature vectors ... 10

Feature extraction from an abstract enriched document model ... 10

Type independent feature implementation [partially implemented] .. 11

Easy adding of new features ... 11

Tracking of values over all handled feature vectors [partially implemented] 11

Strong use of closures for fast prototyping ... 11

Dependency specification [not yet implemented] ... 11

Configuration files & External tooling [not implemented] .. 11

Serialization and reuse of data [not implemented] .. 11

Statistics & metrics [not implemented] .. 11

Intelligent feature selection [not implemented] ... 11

Document model ... 12

On serialization and reuse of data .. 12

On type independence .. 12

On advanced querying .. 12

Preprocessor .. 14

Document Splitter .. 14

Mutations ... 14

Metadata Extractors .. 14

Interaction with the Pipeline .. 14

Feature extraction ... 16

On Value tracking .. 16

The pipeline .. 18

Machine learning engine... 22

Liblinear[5] .. 22

Pascal Julmy & Dominic Egger

5

The C-parameter ... 22

Optimizing ... 22

Approaches for not yet implemented software features ... 23

Implementation of dependency specification .. 23

Configuration files & external tooling .. 23

Serialization and reuse of data ... 23

Statistics & metrics .. 23

Intelligent feature selection ... 23

Current framework prototype status ... 24

Open known issues .. 24

Impact of the order of tokenizers, extractors and features on the F1-Score 24

Limitations of Java 8 functional programming .. 24

Possible future framework development .. 24

Rigorous testing .. 24

Technical documentation .. 24

Implementing SemEval in the framework ... 25

The NRC-Canada baseline .. 25

Used Mutations ... 25

Used Metadata ... 25

POS-Tags ... 25

Lemmas .. 25

Spellchecking .. 25

Negation scope ... 25

Planned features ... 26

Used features ... 28

n-grams ... 28

Dictionary features .. 28

Number of POS-tags ... 28

Brown cluster feature .. 29

GloVe feature .. 29

Continuous punctuation .. 29

Number of all capital tokens .. 29

Number of elongated words .. 29

Number of hash tags ... 29

Number of negated contexts ... 29

Team Swiss-Chocolate’s String featurizer[11] .. 29

Scaling .. 30

TF-IDF Scaling .. 30

Sigmoid Function on dictionary features ... 31

Measurements and Results .. 32

Test Data ... 32

Ablation testing ... 33

Description .. 33

Pascal Julmy & Dominic Egger

6

Initial feature set and configuration ... 33

Used Testing Data .. 34

Results .. 34

Used Testing Data .. 35

Results .. 35

Conclusions drawn from ablation testings .. 36

Results of the participation in SemEval .. 37

Conclusion of this paper ... 40

Glossary .. 41

Indices ... 43

Literature index ... 43

Table index .. 45

Image index ... 45

Addendum ... 46

SemEval2015 Task 10 Subtask B .. 46

Original task description (German) ... 46

Pascal Julmy & Dominic Egger

7

Introduction
Tasks and expectations
By definition the assigned task consisted of a framework development for sentiment analysis of text. Addi-
tionally the framework was to be used in the participation at the SemEval 2015 competition, specifically in
the task surrounding sentiment analysis of tweets. The original document concerning the assignment[1] as
well as a shortened task description[2] describing the SemEval 2015 task can be found in the addendum.

The data used to train the machine learning engine and to test its capabilities were provided by SemEval
from previous years.

What is sentiment analysis?
Sentiment analysis (also known as sentiment detection or opinion mining) tries to get a read on the attitude
a given text expresses towards a topic. This field of research proves vital especially for marketing and other
topics interested in emotional response towards a certain topic.

What is the SemEval challenge?
The SemEval committee describes it as follows on Wikipedia:

“SemEval (Semantic Evaluation) is an ongoing series of evaluations of computational semantic analy-
sis systems […]. The evaluations are intended to explore the nature of meaning in language. While
meaning is intuitive to humans, transferring those intuitions to computational analysis has proved elu-
sive.“[3]

Designed as a competition between teams, the SemEval challenge boosts creativity and allows for new
concepts to be tried out. After finishing a challenge the results are published and the winning teams are
obliged to hand in a paper explaining their design, in order for teams participating in feature challenges to be
able to profit from previous findings.

Intended audience
This paper targets software engineers with an interest in machine learning and sentiment analysis. In the
beginning any knowledge needed to understand machine learning and sentiment analysis discussed in this
paper will be covered. The paper also addresses people generally interested in machine learning, however
the software engineering part (section “Framework description”) is not intended for this audience.

Literature research
Most of the research focused on papers of other contestants of SemEval from previous years. They are listed
in the literature index.

Important note
In the following document there is an important difference between “framework feature” and “Learning feature”
(or simply referred to as “feature”). The latter refers to an aspect of information extracted from a text whereas
the first one is a functionality the framework provides.

Further information to each cursively written expression can be found in the glossary.

Pascal Julmy & Dominic Egger

8

Theoretical basics

This chapter covers any required additional knowledge to understand this paper’s content. It is necessary in
order to understand decisions made in further chapters. Without a target audience in mind only machine
learning specific topics will be addressed in this chapter.

Machine learning
In this part a very simplified view on machine learning will be provided. This is not to be considered an in-
depth explanation but merely a helpful overview.

The data used for machine learning consists of two parts: firstly the measurements, called features, and
secondly a value representing a prediction based on its features. Original price, size, type and age can be
taken as examples for features of a car when trying to predict its sales value. These data entries are called
training data and in their entirety form a training set. To predict the missing value of a new entry, two things
are of importance: for one, a predictive function which yields a value for a given set of measurements, and a
cost function which describes how much difference this predictive function accumulates on every entry of the
training set.
By minimizing the difference provided by the cost function, the predictive function can be optimized;
Therefore making predictions more accurate.

Figure 1 Basic machine learning process

In the case of SemEval there are a few differences.

- Features are measurements of text, specifically on tweets.
- The missing values are discrete rather than real since there are only 3 possible values (neutral,

negative or positive). This means that the problem at hand is in fact a classification problem.

Training set

Features

Size 4m
Type SUV
Age 6 years
Original price 80’000$

Size 4.5m
Type Sedan
Age 4 years
Original price 32’000$

Size 3.9m
Type Convertible
Age 9 years
Original price 26’000$

Prediction

Current price: 33‘000$

Current price: 12‘000$

Current price: 4‘000$

Size 4.1m
Type Convertible
Age 4 years
Original price 38’000$

Current price: ?

Predictive
function

Cost function

Final predictive
function

Current price: 14’000$

Pascal Julmy & Dominic Egger

9

F1-score
The F1-score is a statistical measure for the fitness of a specific machine learning configuration against a
known dataset. It is calculated for each class of tweets (positive, negative and neutral) independently and
the mean value of positive and negative scores is used for the final score.

It is calculated as follows:

𝐹𝛽(𝜔) = (1 + 𝛽2) ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝜔 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝜔

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝜔) + 𝑟𝑒𝑐𝑎𝑙𝑙𝜔

𝜔 ∈ Ω | Ω ∶= {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙}

The “1” in F1 refers to the parameter Beta which is responsible for the weighing between recall and precision.
For any Beta greater than 1 the score becomes recall oriented and for any beta smaller than 1 it becomes

precision oriented. For example 𝐹0(𝜔) =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝜔 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝜔

𝑟𝑒𝑐𝑎𝑙𝑙𝜔
= 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝜔

As mentioned before there are three possible outcomes (neutral, negative and positive) for the SemEval task.
For each of these classes a table as shown below can be constructed. It is essential to point out that the
positive/negative in this table does not relate to the classification of a tweet but to the fact of whether a given
tweet was positively or negatively classified in relation to a specific class.

In this example a tweet is analyzed in respect to the positive text class.

Table 1 F1-Score explanation

 Tweet is positive Tweet is not positive

Classifier predicts positive

True Positive (tp)
This is a success

False Positive (fp)
This is an error

Classifier predicts not positive

False Negative (fn)
This is an error

True Negative (tn)
This is a success

Precision and recall are defined as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝜔 =
𝑡𝑝𝜔

𝑡𝑝𝜔 + 𝑓𝑝𝜔

The precision describes the ratio of actually positive tweets in all tweets that were classified as positive.

𝑟𝑒𝑐𝑎𝑙𝑙𝜔 =
𝑡𝑝𝜔

𝑡𝑝𝜔 + 𝑓𝑛𝜔

The recall describes the ratio of tweets which have been classified as positive to all positive tweets.

Pascal Julmy & Dominic Egger

10

Framework description

In this chapter the architecture and software engineering of the developed framework prototype are dis-
cussed. It does not deal with text classification directly and is aimed at potential users of the framework and
those interested in software engineering.

More information on our sentiment analysis part and our results in SemEval can be found in the chapters
“Implementing SemEval in the framework” and “Measurements and Results”.

Why a framework?
The decision to develop a framework instead of a specific solution for the SemEval task was made because
of the possibility of reusing it entirely for other SemEval tasks and other text classification tasks. One of the
core ideas was to ensure smooth concurrent integration between multiple developers especially in respect
to feature development.

Framework design decisions
The authors decided upon splitting the framework into several parts loosely interconnected by a pipeline for
ease of usage. The work was conducted under severe design constraints to ensure both the framework’s
performance and extensibility in terms of modularity.

In areas where future developers might want to intercept the framework’s default behavior only interfaces
were used instead of classes, abstract or otherwise. This ensures that a programmer has full inheritance
potential at his or her disposal.

The features are independent from any typing so that another machine learning engine could be fitted in with
minimal effort. This is achieved through the use of generics and their attentive integration throughout the
whole framework.

To make sure that a large number of programmers can work concurrently on a task the feature interface is
very rudimentary. This allows programmers without any deep knowledge of the framework to contribute fea-
ture implementations to a project.

Planned software features
These are the feature highlights of our framework. Some of them have not been implemented due to time
and/or resource constraints and are marked accordingly. For the features not implemented there will be
descriptions in the relevant sections, detailing the implementation approach.
Some of these features interact with parts of the framework not yet explained, the sections providing this
information can be found on the following pages.

Processing of large String quantities to extracted feature vectors
The Framework is designed to use a series of iterator transformations, starting with accepting an iterator of
strings into the preprocessor. This yields an iterator of preprocessed Document-objects which in turn can be
fed into the feature extraction. The memory usage is thereby kept at a reasonably low level and it allows for
large test and training sets to be used.

Feature extraction from an abstract enriched document model
Instead of having the features extract their values directly from a string, they get a preprocessed document
model that is enriched with all the required metadata. This keeps the implementation of features leaner.
Considering that the feature implementation is the point where the most developers will be working concur-
rently, this will raise the overall robustness of the system. The document model itself provides direct access
to some of the most frequently used queries on the underlying texts.

Pascal Julmy & Dominic Egger

11

Type independent feature implementation [partially implemented]
Different machine learning engines require different formats of vectors. Because of this the authors strived
to keep the framework - especially the features - type-independent of their actual implementation. And even
existing features could be easily wrapped to result in other vector types.

Easy adding of new features
To keep the usage of the framework efficient we aimed to keep the work required to implement a new feature
to a minimum. This is done by providing an interface with only two methods, one of which has a default
implementation. When adding a new feature there should only be two concerns: How to extract the feature
values from the document model and what configurations this feature provides.

Tracking of values over all handled feature vectors [partially implemented]
Especially for scaling, values like mean, standard deviation, min and max of a specific feature are important
and the framework provides a way to track these values. Multiple functions can be provided to be executed
on a per-feature-, per-vector- or a per-vector-collection-basis.

Strong use of closures for fast prototyping
Features can be implemented directly as closures without having to create new classes. However this is only
recommended for prototyping as the code gets bloated quickly this way. Many other features such as scaling
and key globalization use closures as well.

Dependency specification [not yet implemented]
Often a certain feature will rely on certain metadata extractors or tokenizers being used. The Framework
should be able to detect whether a configuration satisfies all constraints given by the features. Currently this
is not the case and a feature falls back on a default configuration in case of error.

Configuration files & External tooling [not implemented]
Testing for the best possible configuration for a given problem and testing new features in most cases re-
quires a large number of runs. Configuring the exact settings of all modules with external files and tools would
make this more easily reproducible and may help to reduce code clutter in the project. At the current stage
of the project individual main classes are required to run a set of configurations.

Serialization and reuse of data [not implemented]
The document model should be serializable and storable. Often only the feature configuration changes while
the preprocessor settings stay the same. Being able to reuse already computed data would cut down on
runtime. With certain metadata in place (e.g. spelling correction), computing the document model can take a
great deal of time.

Statistics & metrics [not implemented]
For coherent testing the precise configuration of the framework, the resulting performance measure and
various environmental data like run time, CPU load and Memory usage have to be recorded. This not only
makes tweaking the configuration easier but also ensures reproducibility of experimental results. In this paper
said results are retrieved manually, with this software feature the process would be automated.

Intelligent feature selection [not implemented]
The basic idea behind this is that the Framework is able to change its own configuration to attain better
results. However during framework development it was quickly determined that such a feature was beyond
the scope of this paper. Instead plans were formulated to specify interfaces enabling the framework to do
multiple runs, changing its own configuration according to a user specified algorithm.

In itself the whole Framework is split into several overarching modules:

Pascal Julmy & Dominic Egger

12

Document model

As depicted the document model consists of a document, which represents an instance of text that has to be
classified. Each document consists of multiple paragraphs which in turn can contain any number of sentences
which themselves consist of tokens.
The document model was designed in such a way as for features to be able to respect sentence and/or
paragraph boundaries if necessary.

A token can be tagged with a multitude of metadata information that later can be retrieved to form entries on
a feature vector. Examples of metadata information can be found under “Used Metadata”.

Several convenience methods have been added that allow easy, simple querying of tokens, sentences, par-
agraphs, and their respective metadata. Most of the time a feature requires all tokens, but in certain cases
only the tokens generated by a specific tokenizer are of interest. Because of this the document can provide
both the results of a specific tokenizer and all other results except a certain set of tokenizers.

On serialization and reuse of data
One software feature not yet implemented would provide the possibility to persist the document model for a
given set of document strings and a specified configuration. This would save time when repeatedly testing
different feature selections on the same set of documents that were preprocessed in the same way.
Due to time constraints the implementation is missing, but the necessary architecture has already been put
into place.

When implementing this feature it is important to keep track of possible changes in all members of the Pre-
ProcessorConfig, meaning checking the timestamp of the class-file against the timestamp attribute on the
document object. If there are any timestamps newer than the recorded time it would indicate a change in the
code of the used mutations, metadata extractors or the document splitters and would need to be computed
again.

On type independence
This framework is intended for text classification, however in its current state a discrete classification of texts
is enforced. With further generalization employing generics, it would be possible to remove that restriction
and handle arbitrary prediction values. Other parts of the framework are already implemented in such a way.
For instance the feature vectors are fully type-independent.

On advanced querying
Especially when handling larger documents, the ability to employ advanced queries for paragraph, sentence
or token selection would make the framework easier to use and the feature implementations leaner. This
could be done by employing the filter technique provided by Java 8 Streams, meaning that both, the Base-
Model-class and the Document-class would have to implement the Stream<T>-interface.

Pascal Julmy & Dominic Egger

13

Figure 2 Document Model

Pascal Julmy & Dominic Egger

14

Preprocessor

The Preprocessor consists of three separate stages: Splitting a string, mutating it and extracting metadata
from it. These three steps are described in detail in the following sections. In simplified terms this means that
the Preprocessor converts a raw string into the required document model. It is important to notice that while
there can be any number of mutations and metadata extractors the use of only one document splitter is
possible.

Document Splitter
The responsibility of the document splitter is to accept a raw spring and convert it into the internal model of
a text: the document model. All features will later use this model to construct the vector supplied to the
machine learning engine. On a primitive level a document splitter might split the String by punctuation and
then each of the resulting substrings by whitespace to fill the model with the required data of tokens (words),
sentences and paragraphs. Several different tokenizers can be used at the same time. That is due to the fact
that certain metadata extractors and other components need the text tokenized in a very specific manner to
be able to work properly.
The framework currently uses the TweetNLP[4] framework, as well as a light-weight tokenizer written by
ourselves to process the document strings.

Mutations
Mutations are simple changes are the first step taken after the document has been split into its parts. They
are not meant to represent any significant data in terms of machine learning but merely to reduce the scarcity
of the resulting feature vectors. An example in the framework would be a mutation which replaces all URLs
in a text with a generic wildcard as the URLs destinations were not of interest.

Metadata Extractors
These components are meant to enrich the document with metadata. Very common examples are the tagging
of tokens with POS-Tags or their negation-status. There is an implicit dependency between features and
extractors, as features have to be aware of the format a metadata extractor uses to put its data on the token.
Metadata the framework currently extracts are POS-Tags, lemmas and negation scope. A more concise
description of each kind of metadata can be found in the section “Used Metadata”.

Interaction with the Pipeline
The Pipeline contains the Preprocessor and provides several delegates for the preprocessor and its config-
uration (PreProcessorConfig). However nothing the pipeline does has any functional impact at the prepro-
cessing stage.

Pascal Julmy & Dominic Egger

15

Figure 3 PreProcessor

Pascal Julmy & Dominic Egger

16

Feature extraction
The second part of the framework deals with extracting feature vectors out of the preprocessed document
model. During the creation of the pipeline the programmer has to define what format the feature-vectors
(Key/Value) will have. In our case this was <String, Double>. The core function of the feature extraction is to
evaluate a set of preprocessed documents and extract a feature vector with the specified format for each
document. Later these feature-vectors will be passed to a machine learning engine.

For this purpose an interface was defined for the feature itself. The following method signatures are required
for a feature:

The return value of the extract method represents the partial vector generated by each feature. The keys in
these vectors are unique for each feature-implementation-class. They are made globally unique by the fea-
ture extractor by means of a passed function.

The configs-list represents a set of different modes the feature can run with.
A feature will run independently once for every mode passed in this list. For instance the n-gram feature can
create n-grams of varying length so the configurations might be a list of integers telling the feature the length
of the n-grams it has to generate.

The resulting vectors are sparse. In case the utilized machine learning engine cannot handle sparse vectors
a converter has to be written. This will often be the case as most of these engines bring their own format for
vectors that might not use the Map-interface or even Java at all.

On Value tracking
Besides the pure vector generation, the feature extractor has several other responsibilities. When setting up
the pipeline the developer can specify numerous closures that will be evaluated on either each vector or on
each feature. By using these closures it is, for instance, possible to track the maximum value of a feature or
the number of generated vectors. It is often used to calculate values required for scaling later in the process.

This particular framework feature is also the reason that the pipeline requires a prepare-method. The feature
extractor is instantiated with several internally generated closures upon invocation of the prepare-method.
Due to this any changes to the configuration of the pipeline after calling prepare() could break its function.

Even though this makes the use of the feature extractor and the pipeline more rigid, it also provides a meas-
urable boost in runtime thanks to the reduction in if-clauses.

Features can also be annotated to omit certain tracking calculations or even disable them altogether to further
increase the runtime. Disabling the scaling could be useful on boolean yes/no features for instance.

default public List<C> getAllowedConfigObjects(){

 return Arrays.asList();

 }

public Map<K, V> extract(Document doc, List<C> configs)

Pascal Julmy & Dominic Egger

17

Figure 4 Feature extraction

Pascal Julmy & Dominic Egger

18

The pipeline
The pipeline is a loose interconnection meant to reduce the amount of code that has to be written to get from
a file containing the raw data to the finished feature vectors.

Several parameters have to be set upon creation of the pipeline:

- The class of keys used in the feature-vectors.
- The class of values in the feature-vectors.
- An entity that handles the mapping of integer text-classification labels to usable text-classes.
- A closure that maps the local keys generated by a single feature to a global key within the vector to

avoid collisions resulting from vectors using the same local keys.
- An object responsible for feature-scaling (this is optional)

Figure 5 Graphical representation of pipeline processing data

After that, to use the pipeline all the tokenizers, metadata-extractors, mutations, and features have to be
specified. The actual feature vectors can then be extracted and passed to a consumer which in turn prepares
them to be passed to the actual machine learning engine. Before the classifier is started the pipeline can be
used to scale vectors with the value tracking feature as well as the traverse method on the pipeline itself.

Here is some example code explaining the usage of the pipeline.

Pipeline

Utilizing value tracking
and vector assembly
can be of assistance

here

Assemble all vec-
tors

(optional, neces-
sary for scaling)

Document model
creation

Vector creation

Raw text

Tokenizing

Mutations

Metadata
extraction

Raw text

Raw text

Raw text

Raw text

Document
model

Ite
ra

to
r

Feature extraction

SVM
Support vector machine

Vector

Vector
Scaling

Pascal Julmy & Dominic Egger

19

1. Instantiating the pipeline

The BiFunction describes how a locally generated key within a feature has to be globalized in order to avoid
naming collisions from occurring between features.

The boolean-flag in the pipeline constructor tells the pipeline whether to keep track of vector references or
not. Setting this to true will lead to much larger memory consumption but will allow iteration over all generated
vectors in the end, allowing for instance scaling.

2. Adding a Tokenizer, Mutation & Extractor

These methods look the same as far as their signature is concerned; they need an instance of an IMutation,
IDocumentTokenizer or an IMetaDataExtractor and their respective set of configurations.

3. Adding a feature to the pipeline

The first example shows how a feature can be added with a custom list of run settings. The type of the
configuration object is defined by the feature itself. This particular setup will lead to this feature being run
eight times: once for every configuration.

The second example adds a feature that will retrieve the configurations automatically by calling the feature’s
getAllowedConfigObjects()-method.

In the third example a feature is added without any configuration object. Some features do not require one
as there is nothing to be configured.

BiFunction<String, IFeature<String, Double, ?>, String> keyGlobalizer =

(key, feature) -> {

 return feature.getClass().getSimpleName() + "_" + key;

 };

pipeline = new Pipeline<>(keyGlobalizer, true);

pipeline.addTokenizer(new TweetNLPTokenizer());
pipeline.addMutation(new SimpleURLNormalizer());
pipeline.addExtractor(new TweetNLPPOSTagger(),TweetNLPPOSTagger.DEFAULT_MODEL);

pipeline.addFeatureToRun(

new NGramFeature(),

 new NGramConfigWrapper(1, Arrays.asList()),

 new NGramConfigWrapper(2, Arrays.asList()),

 new NGramConfigWrapper(3, Arrays.asList()),

 new NGramConfigWrapper(4, Arrays.asList()),

 new NGramConfigWrapper(1, Arrays.asList(),

 NGramFeature.LEMMA_EXTRACTION_CLOSURE),

 new NGramConfigWrapper(2, Arrays.asList(),

 NGramFeature.LEMMA_EXTRACTION_CLOSURE),

 new NGramConfigWrapper(3, Arrays.asList(),

 NGramFeature.LEMMA_EXTRACTION_CLOSURE),

 new NGramConfigWrapper(4, Arrays.asList(),

 NGramFeature.LEMMA_EXTRACTION_CLOSURE)

);

pipeline.addFullFeatureToRun(new NonContiguousNGram());

pipeline.addFeatureToRun(new NrOfAllCapsToken());

Pascal Julmy & Dominic Egger

20

4. Adding value trackers

The top example will keep track of the minimum value of each feature. This value can later be used for scaling
or statistics purposes.

The second block in the example simply counts the number of vectors. It is however a good example of a
global value tracker. As we do not generate lists of vectors, this information cannot be accessed just by
calling size() on it.

In these closures all the passed values are of type Object and the developer must be aware or even keep
track of the used types.

pipeline.addSingleFeatureValueTracker("min",

 (oldVal, newVal) -> {

 return Double.min((Double)oldVal, (Double)newVal);

 }, 0d

);

 pipeline.addGlobalValueTracker("nrOfVectors",

 (oldVal, vector)->{

 return ((Integer)oldVal)+1;

}, 0

);

Pascal Julmy & Dominic Egger

21

5. Extracting the feature vectors

This is the first step that has to be done before the actual extraction can start. This simple statement will
instantiate the extractor within the pipeline and finalize its settings.

After preparing the pipeline an importer processes a file with training data. The training set is a data collection
outside the responsibility of the framework and will later be passed to Liblinear.

Internally the pipeline provides a string from the file provided by the importer to the preprocessor which will
then pass a document model to the feature extractor. This yields a finished feature vector and a sentiment
label extracted from the training document.

In the case it was data that needed to be classified after training rather than already labeled training data,
the only difference would be that there was no label to be passed.

6. Using tracked values and traversing vectors

In step 1 the pipeline was instantiated with a true-flag. This allows for traversing the vectors without having
to pass them explicitly.

The code above shows an attempt at tf-idf (see chapter “TF-IDF Scaling”) scaling we tried. When traversing
the vectors, the closure receives a vector as well as a tracker containing all the tracked values set up in step
4.

This method has its limitations as it needs several traversals to calculate certain values, such as variance.

pipeline.prepare();

fillDataSet(DataSet<String> trainSet, Importer importer, String resourceName)

{

pipeline.extractAnnotatedFeatures(importer, resourceName, (features, label) ->

{

 trainSet.addEntry(new TrainingInstance<>(features, label.getLabel()));

});

}

pipeline.traverse((tracker, vector)-> {

vector.forEach((key, value)-> {

Integer nrOfUses = (Integer)tracker.getSingleValueForFeature(key, "nrOfFeatureUses");

Integer nrOfVectors = (Integer)tracker.getGlobalValue("nrOfVectors");

if(nrOfUses != null && nrOfVectors != null &&

 tracker.getClassOfFeatureForGlobalKey(key).equals(NGramFeature.class))

{

Double frequency = nrOfUses.doubleValue()/nrOfVectors.doubleValue();

Double scalingFactor = -Math.log(frequency)+1;

maxNGramScalingFactor = Double.max(maxNGramScalingFactor, scalingFactor);

vector.put(key, scalingFactor*value);

}

});

});

Pascal Julmy & Dominic Egger

22

Machine learning engine
In theory any library that implements machine learning could be used. In most cases however some wrapping
is required. This holds true especially for transforming the framework’s feature vector representation (which
uses Java maps) to whatever representation of vectors the library requires.

The framework contains a wrapper for the Liblinear[5] machine learning library. The wrapper has several vital
tasks:

- It provides different parallelized, self-optimizing classifiers intended to reach a higher F1-score. This
can be achieved by providing another dataset between the training- and the test-dataset to cross
reference against, or by n-folds.

- It transforms the resulting sparse vectors to an array representation which Liblinear can work with.
This includes building the vector space.

- Training and evaluating datasets.

When starting a task using the framework it is recommended to choose the typing of the feature vectors
according to the requirements of the utilized machine learning library.

Liblinear[5]

The source code of Liblinear is included in the project. Due to restrictions in the design of this library some
of the source code had to be changed to return deterministic results when multiple instances are run in
parallel.
Several of the methods in Liblinear’s source code make use of a random instance which leads to non-deter-
ministic results if several classifiers are active at once. We lifted that random instance into the classifier so
instead of one shared random object each classifier has its own.

The C-parameter
The C-parameter can be seen as regularization parameter for a SVM. To search the best C for a given
configuration a minimum, a maximum and a C-step size are defined. Each possible C results in a classifier
which then is evaluated and the setting with the best result is chosen.

Optimizing

There are two ways Liblinear can be optimized:

- With N-Folds
With the N-Fold method, the training data is separated into N equally sized partitions. One of these
partitions is then set aside as validation data and a classifier is trained on each of the remaining N-
1 partitions. The resulting classifiers then classify the data within the validation set and the best
achieved F1-score is recorded. This score can then be compared to the F1-Score achieved on the
test data.

- With a static dataset
This works very similarly to the N-Folds but instead of sub partitioning the training data, a third da-
taset (besides the training and the test data) is provided to validate the classifier against.

Pascal Julmy & Dominic Egger

23

Approaches for not yet implemented software features
As noted in the prior section “Planned software features” not all features have been implemented yet. This
part of the paper will cover the implementation approaches of all software features left unexplained until now.

Implementation of dependency specification
This could be done with annotations on the feature implementations. Those annotations would need runtime
retention and could be checked in the prepare()-method of the pipeline. If those features happen to require
a component that has not been added to the pipeline it could try to load it on the fly or throw an exception.

These annotations would also allow external tooling to display component dependency of features.

Configuration files & external tooling
To make this easier both the preprocessor and the feature extractor have their own configuration objects. To
implement configuration files an importer has to be written which reads a file with a given structure and
returns the underlying configuration objects.

As for the external tooling, several options present themselves. Here is a list of ideas that came up during
development:

- Configuration manager
A configuration manager would make it easier to set up configurations for the framework, save
them and rerun them.

- Score optimization tool
This tool would provide the possibility to compare several different configurations that ran on the
same dataset in order to compare the results of experiments.

- Feature repository
A growing number of features may become impractical to handle as they have all to be imported
into the project. To solve this problem a repository could be build. This could be done with existing
solutions like maven or by class-loading by name.

Serialization and reuse of data
Especially when running experiments repeatedly a lot of calculation time is currently lost with the evaluation
of redundant data. Often in experiments only the selection of features is changed while all preprocessor
settings remain the same. Several things would have to be implemented to mitigate this problem. For one
the document model would have to be serializable and therefore a loader would need to be written.

The next step would be to serialize the feature vector in a way that a developer can select subsets of features
of each vector. This would make repeat feature extraction obsolete. However this has to be done carefully,
for if the vectors would be stored after scaling and only subsets of features would be used, problems could
ensue due to the previous scaling now being incorrect.

Statistics & metrics
Currently all the statistics are done by hand and hence there are not many included in this paper. Memory
usage, runtime, used settings and achieved results should be stored in a clear and concise history. This
would make any step taken in solving a machine learning problem reproducible.

To implement this, the wrappers of the machine learning engine must be subject to an interface, and a spe-
cific observer object has to be developed that keeps track of all the metrics. Preferably the framework would
be aware of the major version control systems, in order for it to keep track of the code revision a specific run
has been carried out in.

Intelligent feature selection
The problem of which features to select for an optimal run is not yet solved in the framework. Although we
are aware of the need to calculate the individual impact of a given feature on the final score, we do not have
any concrete approach for this problem yet.

Pascal Julmy & Dominic Egger

24

Current framework prototype status

As previously mentioned this framework is a prototype and the participation in SemEval also serves as a
test to evaluate its viability. This chapter details the current status of the prototype and its possible future
development.

Open known issues

Impact of the order of tokenizers, extractors and features on the F1-Score
Recent test runs have shown that the order in which components are added to the pipeline have an impact
on the achieved F1-Score. Current hypothesis suggest that this is an issue of Liblinear’s reliance on random
instances and a strict order of the features. However this has not yet been confirmed and needs further
investigation.

Limitations of Java 8 functional programming
For the first time Java 8 supports the use of lambda expressions and closures. However they are merely
syntactic sugar that resolves in the usage of anonymous inner classes. They do allow the usage of variables
in the surrounding context of the closure, but they have to be final. This has led to certain problems and some
inelegant code within the project. Though it has no influence on the functionality of the framework further
development could be hindered by workarounds in the code that make the whole framework more rigid. A
possible solution to this problem would be the use of another language. Due to the reliance on several Java
libraries, Scala would be a premier candidate.

Possible future framework development

Rigorous testing
Before publishing this framework’s 1.0 version, strict unit testing should be implemented to assure correct
functionality to its users. In the current phase some unit tests have been implemented, especially for the used
features, but they are not part of the framework. Due to the framework’s reliance on third party libraries,
testing will need some conceptual work to rule out bugs caused by these inclusions.

Technical documentation
As with the testing, a technical documentation for the users is required before publishing this framework.
Additionally several code examples could help further the understanding of the framework for users.

Pascal Julmy & Dominic Egger

25

Implementing SemEval in the framework

In this chapter the usage of the framework to participate in the SemEval contest is discussed. Focus lies on
the selection of suitable tokenizers, mutations, extractors and features as well as descriptions of all the used
components. In the next chapter “Measurements and Results” the scores we achieved with the below de-
scribed components can be found.

The NRC-Canada baseline
NRC Canada has participated in several SemEval tasks with great success. It is self-evident that we heavily
relied on their feature selection and set their score on the 2013 data set as our primary goal to achieve.

Used Mutations
We normalized all URLs to “XsomeURL” and all usernames to “XsomeUsername”.

Used Metadata
Metadata is any extracted information that serves to enrich the information of the document. These are then
used to compute various features described below. The metadata we utilize are the following:

POS-Tags
Part of Speech tags denote the kind of a specific word given its surrounding context. This abstraction can be
very powerful in situations where the semantic meaning of a word is not of paramount concern. In our case
we utilized the TweetNLP[4] framework to compute the POS-Tags of a document.

Lemmas
Lemmas are generated by mapping the inflected forms of a word to its dictionary form. The StanfordNLP
framework has an implementation to compute these values.

Spellchecking
Although spellchecking has turned out to yield results with an improvement of up to ~0.4% in certain tests, it
is only implemented very rudimentarily yet. Each token is compared with a wordlist consisting of around
30‘000 English words and the Levenshtein distance is calculated. The word with the shortest distance is then
chosen (or no word if the distance was 0) and annotated in the token. The relatively large increase in the F1-
Score is mainly due to a reduced amount of n-grams (given that there are significantly more overlaps). As of
now the spellchecking comes at a very high price in terms of performance. The unnecessarily high amount
of distance calculations could be reduced with manageable effort.

Negation scope
Negation plays a role in the field of semantic analysis and we used Christopher Potts’ online tutorial [6] to
model negation. It uses a regular expression to detect a list of predefined negation keywords and extends
the scope of the negation to the end of a sentence.

Pascal Julmy & Dominic Egger

26

Planned features
We created a table of features we planned to implement to achieve a better F1-score. At the time of the
writing of this paper not all features have been implemented. The ones that are implemented are documented
in “Used features”

Table 2: planend features

Feature
Imple-
mented

Refer-
ence

Avg./Min./Max. values over all pre-trained GloVe vectors for all occurring words
in a tweet

Yes

NEW

Contiguous and non-contiguous n-grams.
POS tag substitution for non-contiguous n-grams instead of the generic wildcard.

Yes [7]

Contiguous character n-grams 3 to 5 Yes [7]

Number of words that are all capital letters. Yes [7]

The number of occurrences of each part of speech tag Yes [7]

The number of hashtags Yes [7]

Lexicon feature: The total amount of tokens with an emotion
greater than 0

Yes [7]

Lexicon feature: total score of all tokens in a tweet Yes [7]

Lexicon feature: maximal score of a token in a tweet Yes [7]

Lexicon feature: the score of the last token in a tweet Yes [7]

The number of contiguous punctuation mark
(exclamation or question marks)

Yes [7]

Whether the last token contains an exclamation or a
question mark

Yes [7]

Presence or absence of positive/negative emoticons No [7]

Whether the last token (or word) is a positive/negative emoticon Yes [7]

The number of elongated words
(a character repeated more than 2 times)

Yes [7]

Presence or absence of tokens from Brown-Clusters generated
by the CMU POS-Tagging tool

Yes [7]

The number of negated contexts Yes [7]

The presence of URL or hashtag, one feature each No [8]

The presence of a question mark token in the tweet No [8]

Feature weighing: If the original token is all upper case, increase the weight of
the feature

No [8]

Feature weighing: If the original token has elongation, increase the weight of the
feature

No [8]

Feature weighing: the token is adjacent to an emoticon.
Increase/decrease depends on emoticon

No [8]

Feature weighing: the score of each token is divided in half
if it is in question context

No [8]

Weighing of a term by ∆BM25 heuristic
(Paltoglou and Thelwall, 2010)

No [9]

Concise Semantic Analysis (Li et al 2011) (Monroy et al 2013) No [9]

Emoticons: Sum of all scores No [10]

Pascal Julmy & Dominic Egger

27

total length of the tweet No [10]

average length per word No [10]

number of words No [10]

topic modelling (id of the corresponding topic, semantic similarity) No [10]

Most common punctuation No [10]

Last punctuation in tweet No [10]

number of words surrounded by dashes or asterisks No [10]

POS n-grams Yes [11]

Dependency parsing using StanfordNLP[12] Toolkit No [13]

Punctuation of the last token (whether the last token contains
punctuation or not)

No [14]

Ratio of tokens that were able to be matched to a Brown cluster. No NEW

Lemma n-gram / Lemma bag of words No NEW

Pascal Julmy & Dominic Egger

28

Used features
It has to be noted that the features itself are not part of the developed framework and vary from task to task.
The features listed below are those we implemented for the SemEval 15 task. As a basis for the feature
selection we decided to use the paper “NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of
Tweets” by S. M. Mohammad, S. Kiritchenko, and X. Zhu [7].

The team of NRC-Canada proved with the F1-Score they reached that their approach was suitable basis.
Apart from this paper we also consulted their follow-up paper from 2014 titled “NRC-Canada-2014: Recent
Improvements in the Sentiment Analysis of Tweets” by the same authors [15].

As part of our research we also read many of the other contestants’ papers on the most commonly used
features, so we would be able to prioritize our work. We implemented the following features:

n-grams
N-grams are an ordered list of n contiguous tokens in a sentence. We modeled several n-gram features
which all evaluate the presence or absence of n-grams in a document. As for an example with the sentence
“The weather is nice today.” the following 3-Grams would occur: “The weather is”, “weather is nice” and “is
nice today”.

Besides the normal n-grams we also modeled non-contiguous n-grams where one or more tokens in the n-
gram are replaced with wildcards or the respective POS-tags. Additionally, character n-grams have been
implemented which represent the presence or absence of substrings of words.

Using this sort of non-contiguous wildcards seems to have a positive impact on the overall F1-score against
our test data as can be seen in “Measurements and Results”.

Dictionary features
Several dictionaries, both manually created and computer generated, have been used to determine the sen-
timent behind a given word. Besides our own implementation we used Team Swiss-Chocolate’s[11] to com-
plement our own since their combined use yielded the best results. The dictionary files used by the framework
are the same that have been used by NRC Canada in 2014.

In order to provide programmer-friendly use of dictionary functions within the framework it was necessary to
identify similar attributes and behaviours of all dictionaries with the hope of finding a scheme which then
could be added to the framework.
Certain distinctive features emerged and led to a division into two groups:

Group 1: Dictionaries consisting solely of a list of words with similar meaning (e.g. a list of negative
words). We call these simply “Dictionaries”. Dictionaries implement the IDictionary interface which
provides very limited functionality. They only return a true/false value indicating if a dictionary con-
tains a word or not.

Group 2: Dictionaries containing words with weighted attributes (e.g. good = +1, bad = -1). We call
these “Tone Dictionaries”. They can be seen as extensions to Group 1 as they provide the same
functionality as well as some more: Tone dictionaries implement the IToneDictionary interface and
therefore provide access to additional methods such as emotion counts on tokens, sentences, par-
agraphs and entire documents (this sums up all the values in a given scope).

Number of POS-tags
The number of occurrences of each encountered POS-tag. As described in the section “Used Metadata”
tokens are annotated with Part-of-Speech-tags computed by the TweetNLP[4] framework. For each type of
POS-tag one entry in the feature vector indicates the number of tokens associated with that tag.

Pascal Julmy & Dominic Egger

29

Brown cluster feature
The TweetNLP[4] provides two files containing word clusters of the English language, computed with the
Brown clustering algorithm. This means that many different words will be mapped to a single semantically
close word; this reduces the overall amount of different words within the tweets allowing for a less sparse
representation of the content.
In our feature we check whether a token can be matched to a cluster and, if so, to which one. This results in
a vector entry similar to a uni-gram (n-gram of length 1).

GloVe feature
GloVe is being developed by the Stanford University and is a way to get a vector representation of words.
We then calculate the maximum, minimum and average values of these representations. More information
about this feature can be found on the Stanford NLP website[16].

Continuous punctuation
The number of substrings consisting of two or more continuous punctuation marks of the same kind.

Number of all capital tokens
The number of tokens which are written entirely in capital letters. This is often considered to represent a
raised voice by the online community.

Number of elongated words
The number of elongated words is counted by checking each token for substrings of length three or more,
solely consisting of the same character.

Number of hash tags
This feature counts the number of hash tags used by a given tweet. It considers each token starting with a
“#”.

Number of negated contexts
The number of sentence fragments in a tweet, which are bracketed within a negation word and a punctuation
mark. For a more detailed description of negation please refer to the section “Used Metadata”.

Team Swiss-Chocolate’s String featurizer[11]
Team Swiss-Chocolate implemented an application to participate in SemEval 2014. We used it as a refer-
ence for a few features and wrote a wrapper to use their code directly in our project. The features we use are
character n-grams as well as certain dictionary features.

Pascal Julmy & Dominic Egger

30

Scaling
Through scaling values of features are transformed into values between a certain minimum and maximum.
This makes sure that for example statistical outliers are not weighed too much and features that count oc-
currences do not outweigh Boolean-decision features.

We tried different mechanisms to scale features, depending on various attributes of these, such as whether
they are sparse or not, their value range and so on. For our n-gram features we implemented a logarithmic
TF-IDF scaling, for our dictionary features we implemented a sigmoid function to scale the feature values.

TF-IDF Scaling
TF-IDF stands for term frequency – inverse document frequency. With our value tracking mechanisms we
track the number of generated feature vectors (1 per document) and the number of uses of each n-gram.
The basic idea is that the lower the ratio between uses of a specific n-gram and the number of vectors, the
more information that n-gram holds and the higher its weight should be. Our calculations are as follows:

Ν ∶= {𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑐𝑐𝑢𝑟𝑖𝑛𝑔 𝑁 − 𝐺𝑟𝑎𝑚𝑠}
𝜈 ∈ Ν

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝜈 ∶=
𝑁𝑟𝑂𝑓𝑈𝑠𝑒𝑠𝜈

𝑁𝑟𝑂𝑓𝑉𝑒𝑐𝑡𝑜𝑟𝑠

This will have a maximum value of 1 because the number of uses of an n-gram cannot be larger than the
number of vectors. This means that

0 < 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝜈 ≤ 1

holds true. To get the actual scaling factor needed to calculate the new vector values a logarithmic function
is used.

𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟𝜈 ∶= − log(frequencyν) + 1

This leads to the following conclusion:

0 < 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝜈 ≤ 1 → lim
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝜈→1

𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟𝜈 = 1

This means that the higher the frequency of a given n-gram is, the lower is the scaling factor.

In a given vector the n-gram 𝜈 is then multiplied by its respective scaling factor 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟𝜈. Because this
can lead to very large values we need to scale this back to a value between 0 and 1. This is achieved by
getting a max value

𝑚𝑎𝑥𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 ∶= max(𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟𝜈) 𝑓𝑜𝑟 𝜈 ∈ Ν

and then dividing every previously scaled value by this new factor.

It has to be noted that this way of scaling has proven detrimental to our overall F1 Score. These tests were
executed with the baseline configuration of the ablation tests described in “Measurements and Results” on
the test sets of 2013 and 2014.

Table 3 TF-IDF Scaling Results

Test set Using TF-IDF scaling? Result

2013 No 69.4602

2013 Yes 67.2556

2014 No 68.1685

2014 Yes 69.4909

Pascal Julmy & Dominic Egger

31

Sigmoid Function on dictionary features
For our dictionary features we implemented a sigmoid function to keep the values between 0 and 1.
The sigmoid function is defined as follows.

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒𝑥

All dictionary features as well as the dictionary features within Swiss-Chocolate’s[11] code utilize the sig-
moid function. In the below table the increase in F1-Score is shown.

The following measurements were executed with the baseline configuration of the ablation tests on the test
sets 2013 and 2014. Refer to “Measurements and Results” for further information on the testing configura-
tion.

Table 4 Sigmoid Function Results

Test set Using Sigmoid function? Result

2013 No 33.6697

2013 Yes 69.4602

2014 No 42.3896

2014 Yes 68.1685

The current hypothesis for this significant score drop is that without the sigmoid function certain features
can have very large values while all other features are close to between -1 and 1.

Pascal Julmy & Dominic Egger

32

Measurements and Results

In this chapter the achieved scores on the various test data are shown. Each measurement documents the
configuration of the framework, used test data and parameters for the Liblinear machine learning library.

The final F1-Score is calculated as the mean of the positive and negative F1-Scores. Results are rounded to
4 digits after the decimal point.

Due to the way the data is constructed by SemEval the upper bound of achievable score is 75%.

Because of the usage of randomized values in the Liblinear-library the results have a certain degree of un-
certainty. The extent of this uncertainty is currently unknown by the authors.

Test Data

The Test Data consist of two bundles provided by SemEval. The first is the training and evaluation data of
2013. We use this data to compare our framework’s performance to the 2013 results of NRC Canada. The
other bundle consists of the current 2014 data used in last year’s competition.

Table 5: Test Data overview

Test Data Name Year
2013/task-B-train.tsv 2013
2013/task-B-dev.tsv 2013
task-B-test2013-twitter.tsv 2013
2014/task-B-train.tsv 2014
2014/task-B-dev.tsv 2014
task-B-test2014-twitter.tsv

2014

Pascal Julmy & Dominic Egger

33

Ablation testing

Description
Once we established a set of features that worked reasonably well, we would start removing single features
and in thematic groups to find out which have the most impact on our score.

Initial feature set and configuration
For more in-depth descriptions of the features, refer to the chapter “Used features”.

Feature name Configuration information

n-gram 1 to 4 grams with the word values and
1 to 4 grams with the lemma values

Non-contiguous n-grams 3 to 4 grams with the the middle part replaced by
the * wildcard and
3 to 4 grams with the middle part replaced by the
POS-tags where available

Number of all capital tokens Non variable configuration

Number of hashtags Non variable configuration

Number of POS-tags Non variable configuration

GloVe feature vectors Non variable configuration

Number of negated contexts Non variable configuration

Number of elongated words Non variable configuration

Last token contains punctuation Checks for full stops, exclamation marks and
question marks

Continuous punctuation Checks for exclamation marks and question
marks

Brown cluster feature Non variable configuration

Whether the last token is negative On all available lexica

Whether the last token is positive On all available lexica

The score of the last token On all available lexica

The maximum score found On all available lexica

The total score On all available lexica

The number of tokens with positive emotion On all available lexica

The emotion of the last token On all available lexica

Team Swiss-chocolates string featurizer All lexica features with sigmoid function, as well
as the character n-grams with 3 to 5 in length.

Pascal Julmy & Dominic Egger

34

Used Testing Data
Trained on:
2013/task-B-train.tsv
2013/task-B-dev.tsv

Tested on:
task-B-test2013-twitter.tsv

Results
For these tests we used an N-Fold type optimization with a C step size of 0.1 and an N-Fold size of 10.
The best result is marked by bold writing.

Table 6 Ablation test results on test set 2013

Subtracted feature(s) Pos F1 Score Neu F1Score Neg F1 Score Fin F1Score

None 72.2539 75.3752 66.6666 69.4603

N-gram 71.5308 74.5819 64.7343 68.1325

Noncontiguous n-gram 72.3891 75.2151 65.8517 69.1204

Number of all capital tokens 71.7508 75.0417 66.0729 68.9118

Number of hashtags 72.1627 75.0694 65.7938 68.9783

Number of POS-tags 72.0372 75.3124 65.4221 68.7297

GloVe Vectors 72.3735 74.5359 65.0420 68.7078

Number of negated contexts 71.8022 75.1041 65.9091 68.8557

Number of elongated tokens 72.4027 75.2772 66.0641 69.2334

Last token contains punctuation 71.8627 74.8130 65.2459 68.5543

Continuous punctuation 72.1805 75.3671 65.8497 69.0151

Brown clustering 72.0372 75.0070 65.8576 68.9474

Team Swiss-Chocolate’s featurizer 71.5953 74.0166 62.2372 66.9163

Last token is negative 72.2202 75.2355 65.9557 69.0880

Last token is positive 71.9971 75.2980 65.8537 68.9254

Score of the last token 71.9543 75.1663 65.4635 68.7089

Maximum Score of any token 72.3373 75.1867 65.1278 68.7326

Total score 71.8022 75.1596 65.9091 68.8557

Tokens with positive emotion 71.8481 74.9931 65.4129 68.6305

Emotion of the last token 71.9543 75.1663 65.4635 68.7089

All n-gram features 71.8335 75.0069 65.4781 68.6558

All dictionary features 70.4554 74.1487 61.9835 66.2194

Pascal Julmy & Dominic Egger

35

Used Testing Data
Trained on:
2014/task-B-train.tsv
2014/task-B-dev.tsv

Tested on:
task-B-test2014-twitter.tsv

Results
For these tests we used an N-Fold type optimization with a C step size of 0.1 and an N-Fold size of 10.

Table 7 Ablation test results on test set 2014

Subtracted feature Pos F1 Score Neu F1Score Neg F1 Score Fin F1Score

None 74.4321 69.4710 61.9047 68.1684

N-gram 74.9854 68.8420 61.9048 68.4451

Noncontiguous n-gram 74.6806 69.4140 64.0371 69.3589

Number of all capital tokens 74.4619 69.3196 62.9370 68.6995

Number of hashtags 74.5349 69.1026 63.3803 68.9578

Number of POS-tags 74.6078 68.5861 61.6114 68.1096

GloVe Vectors 74.6251 68.0493 61.5385 68.0818

Number of negated contexts 74.4619 69.2161 61.7225 68.0922

Number of elongated tokens 75.1600 69.4980 62.8175 68.9888

Last token contains punctuation 74.4916 69.9552 64.1509 69.3213

Continuous punctuation 74.2857 69.2258 63.0841 68.6849

Brown clustering 74.4321 69.3538 63.3803 68.9062

Team Swiss-Chocolate’s featurizer 72.6310 68.7970 57.9075 65.2693

Last token is negative 74.3590 69.2652 63.9999… 69.1795

Last token is positive 74.2256 69.4323 63.5514 68.8885

Score of the last token 74.8109 69.5597 62.8571 68.8340

Maximum Score of any token 74.6512 69.3982 64.1509 69.4011

Total score 74.4916 69.5597 63.1579 68.8247

Tokens with positive emotion 74.2857 69.2602 62.4113 68.3485

Emotion of the last token 74.8109 69.5597 62.8571 68.8340

All n-gram features 74.4916 69.7106 65.1163 69.8039

All dictionary features 72.5431 69.1739 57.7777… 65.1605

Pascal Julmy & Dominic Egger

36

Conclusions drawn from ablation testings
The ablation testing shows that removing even a single feature has an unpredictable impact. The simple
removal of feature groups, especially dictionary features, entails significant consequences. The unexpected
performance of the ablation test (on test set 2014) without any n-gram features may be attributed to the
random seed that the used classifier utilizes. In order to precisely identify the inherent randomness further
analysis of the Liblinear classifier would be required.

The most important conclusion drawn from this testing is, that high quality dictionaries and the use of a wide
variety of dictionary features brings a significant boost in F1-score.

Pascal Julmy & Dominic Egger

37

Results of the participation in SemEval
The name of the team the authors participated with is SwissChocolate. The results are drawn from
http://alt.qcri.org/semeval2015/task10/index.php?id=results as off the 04.01.2014. The document that is
linked there will serve as a source and can be found in the literature index [17]. The relevant parts can be
found here.

“The submissions marked in yellow were submitted after the deadline.”[17]

Table 8 SemEval Task 10 Subtask B Results

 Team
Twitter
2015

1 Webis 64.84

2 unitn 64.59

3 lsislif 64.27

4 INESC 64.17

5 Splusplus 63.73

6 wxiaoac 63.00

7 IOA 62.62

8 Swiss-Chocolate 62.61

9 CLaC-SentiPipe 62.00

10 TwitterHawk 61.99

11 SWATCS65 61.89

12 UNIBA 61.55

13 KLUEless 61.20

14 NLSLB2015 60.93

15 ZWJYYC 60.77

16 Gradiant-Analytics 60.62

17 UIR-PKU 60.03

18 mockingjay 59.83

19 ECNU 59.72

20 CIS-positiv 59.57

 Team
Twitter
2015

21 SWASH 59.26

22 GTI 58.95

23 iitpsemeval 58.80

24 elirf 58.58

25 SWATAC 58.43

26 SWATCMW 57.60

27 WarwickDCS 57.32

28 SenticNTU 57.06

29 DIEGOLab 56.72

30 Sentibase 56.67

31 Whu_Nlp 56.39

32 UPF-taln 55.59

33 RGUSentimentMiners123 53.73

34 IHS-RD 52.65

35 RoseMerry 51.18

36 Wizdee 49.19

37 UMDuluth-CS8761 47.77

38 UDLAP2014 42.10

39 SHELLFBK 32.45

40 whu-iss 24.80

http://alt.qcri.org/semeval2015/task10/index.php?id=results

Pascal Julmy & Dominic Egger

38

Table 9 SemEval Task 10 Subtask B Progress Test

Team

LiveJournal
2014

SMS
2013

Twitter
2013

Twitter
2014

Twitter 2014
Sarcasm

1 Splusplus 75.34 67.16 72.80 74.42 42.86

2 unitn 72.48 68.37 72.79 73.60 55.44

3 INESC 69.78 63.78 71.97 72.52 56.23

4 IOA 74.52 68.14 71.32 71.86 51.48

5 lsislif 73.01 63.42 71.34 71.54 46.57

6 KLUEless 73.50 67.66 70.64 70.89 45.36

7 Webis 71.64 63.92 68.49 70.86 49.33

8 ZWJYYC 71.60 64.72 69.56 70.77 46.34

9 TwitterHawk 70.17 62.12 68.44 70.64 56.02

10 CLaC-SentiPipe 73.59 63.05 70.42 70.16 51.43

11 wxiaoac 73.36 64.04 66.43 68.96 54.38

12 Swiss-Chocolate 73.95 65.56 68.80 68.74 48.22

13 UIR-PKU 70.65 65.32 93.62 68.12 54.22

14 NLSLB2015 66.12 61.05 66.96 67.45 39.87

15 SWATCS65 73.37 65.49 68.21 67.23 37.23

16 mockingjay 69.91 62.25 65.68 67.04 57.50

17 Gradiant-Analytics 72.63 61.97 65.29 66.87 59.11

18 SenticNTU 68.70 60.53 63.50 66.85 45.18

19 SWATAC 68.67 61.30 65.86 66.64 39.45

20 ECNU 74.40 68.49 65.25 66.37 45.87

21 CIS-positiv 71.47 65.14 64.82 66.05 49.23

22 GTI 70.50 63.50 64.03 65.65 55.38

23 SWATCMW 69.52 65.43 65.67 65.62 37.48

24 WarwickDCS 68.98 61.92 66.57 65.47 45.03

25 UNIBA 70.05 65.50 61.66 65.11 37.30

26 iitpsemeval 73.70 60.56 60.78 65.09 47.32

27 UPF-taln 64.50 57.84 66.15 65.05 50.93

Pascal Julmy & Dominic Egger

39

28 DIEGOLab 63.74 58.60 62.49 63.99 47.62

29 Whu_Nlp 71.83 61.31 65.97 63.93 46.93

30 Sentibase 67.55 59.26 61.56 63.29 47.07

31 SWASH 69.43 56.49 63.07 62.93 48.42

32 whu-iss 61.98 54.28 56.51 61.31 47.78

33 RoseMerry 62.54 53.00 52.33 61.27 49.25

34 elirf 68.33 60.20 57.05 61.17 45.98

35 RGUSentimentMiners123 64.39 57.14 56.41 59.44 44.72

36 UMDuluth-CS8761 60.23 50.64 54.17 55.82 43.74

37 Wizdee 57.94 46.59 49.37 53.92 42.07

38 UDLAP2014 50.11 39.35 41.93 45.93 41.04

39 SHELLFBK 34.06 26.14 32.14 32.20 35.58

40 IHS-RD ??? ??? ??? ??? ???

Pascal Julmy & Dominic Egger

40

Conclusion of this paper

In this paper we showed how we developed an abstract and extensible framework for text classification with
machine learning. The participation in SemEval was a goal as well as a proof of concept for the design we
implemented.
We have shown that implementing abstraction layers and a module driven design allows for rapid develop-
ment of features and flexible ways to integrate the framework with existing software.

The achievement of rank 8 on the new 2015 data test and rank 12 on the progress test has shown that a
flexible framework serves as a capable foundation for text classification. Considering the timeframe in which
this paper had to be written, and the fact of having had to develop both the framework and the specific
implementation for the participation in SemEval, the results are satisfactory.

Pascal Julmy & Dominic Egger

41

Glossary

A

B

C

D

E

F

Feature Framework component which analyses a document and returns

a vector.

G

H

I

J

K

L

Levenshtein distance The Levenshtein distance between two words is the mini-
mum number of single-character edits (i.e. insertions, dele-
tions or substitutions) required to change one word into the
other.

M

Mutation Manipulation on input text (tweet) before tokenizing (e.g. re-

moving double whitespaces).

N

O

P

Q

R

S

SVM See Support Vector Machine

Support Vector Machine Algorithm used by the framework to classify inputs. Details can

be found under “Machine learning”.

Sparsity (from sparse) Thinly scattered or distributed

T

Pascal Julmy & Dominic Egger

42

U

V

W

X

Y

Z

Pascal Julmy & Dominic Egger

43

Indices
Literature index

[1] M. Cieliebak, “PADA - Archiv.” [Online]. Available:
https://tat.zhaw.ch/pada_archiv/arbeit_archiv.jsp?command=show&vers=115&lang=de&arbeitID=13
276. [Accessed: 02-Dec-2014].

[2] SemEval2015, “SemEval-2015 Task 10: Sentiment Analysis in Twitter < SemEval-2015 Task 10.”
[Online]. Available: http://alt.qcri.org/semeval2015/task10/. [Accessed: 02-Dec-2014].

[3] “SemEval - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/SemEval. [Accessed: 04-Jan-2015].

[4] “Twitter Natural Language Processing -- Noah’s ARK.” [Online]. Available:
http://www.ark.cs.cmu.edu/TweetNLP/. [Accessed: 18-Dec-2014].

[5] C.-J. Lin, X.-R. Wang, C.-J. Hsieh, K.-W. Chang, and R.-E. Fan, “LIBLINEAR -- A Library for Large
Linear Classification.” .

[6] C. Potts, “Sentiment Symposium Tutorial: Linguistic structure.” [Online]. Available:
http://sentiment.christopherpotts.net/lingstruc.html. [Accessed: 08-Nov-2014].

[7] S. M. Mohammad, S. Kiritchenko, and X. Zhu, “NRC-Canada: Building the State-of-the-Art in
Sentiment Analysis of Tweets,” Proc. seventh Int. Work. Semant. Eval. Exerc., vol. 2, no. SemEval,
pp. 321–327, Aug. 2013.

[8] G. Tobias, J. Vancoppenolle, and R. Johansson, “RTRGO : Enhancing the GU-MLT-LT System for
Sentiment Analysis of Short Messages,” no. SemEval, pp. 497–502, 2014.

[9] S. Amir, M. Almeida, B. Martins, and J. Silva, “TUGAS : Exploiting Unlabelled Data for Twitter
Sentiment Analysis,” no. SemEval, pp. 673–677, 2014.

[10] S. Pinto, A. Bento, H. Gonc, and P. Gomes, “CISUC-KIS : Tackling Message Polarity Classification
with a Large and Diverse set of Features,” no. SemEval, pp. 166–170, 2014.

[11] M. Jaggi, E. T. H. Zurich, and M. Cieliebak, “Swiss-Chocolate : Sentiment Detection using Sparse
SVMs and Part-Of-Speech n -Grams,” no. SemEval, pp. 601–604, 2014.

[12] C. D. Manning, J. Bauer, J. Finkel, and S. J. Bethard, “The Stanford CoreNLP Natural Language
Processing Toolkit.”

[13] A. Denis, S. Cruz-lara, N. Bellalem, and L. Bellalem, “Synalp-Empathic : A Valence Shifting Hybrid
System for Sentiment Analysis,” no. SemEval, pp. 605–609, 2014.

[14] C. Van Hee, M. Van De Kauter, D. Clercq, and E. Lefever, “LT3 : Sentiment Classification in User-
Generated Content Using a Rich Feature Set,” no. SemEval, pp. 406–410, 2014.

[15] X. Zhu, S. Kiritchenko, and S. M. Mohammad, “NRC-Canada-2014 : Recent Improvements in the
Sentiment Analysis of Tweets,” no. SemEval, pp. 443–447, 2014.

[16] C. D. M. Jeffrey Pennington, Richard Socher, “GloVe: Global Vectors for Word Representation.”
[Online]. Available: http://nlp.stanford.edu/projects/glove/. [Accessed: 02-Dec-2014].

[17] “SemEval-2015 Task 10 Results (Official) - Google Docs.” [Online]. Available:
https://docs.google.com/document/d/1WV-

Pascal Julmy & Dominic Egger

44

XTvQDpuH_IfKrjzeZ361s1ykcskDNNuOV3oI39_c/edit?usp=sharing&pli=1. [Accessed: 04-Jan-
2015].

Pascal Julmy & Dominic Egger

45

Table index
Table 1 F1-Score explanation ... 9
Table 2: planend features .. 26
Table 3 TF-IDF Scaling Results .. 30
Table 4 Sigmoid Function Results ... 31
Table 5: Test Data overview .. 32
Table 6 Ablation test results on test set 2013 ... 34
Table 7 Ablation test results on test set 2014 ... 35
Table 8 SemEval Task 10 Subtask B Results ... 37
Table 9 SemEval Task 10 Subtask B Progress Test .. 38

Image index

Figure 1 Basic machine learning process ... 8
Figure 2 Document Model ... 13
Figure 3 PreProcessor ... 15
Figure 4 Feature extraction ... 17
Figure 5 Graphical representation of pipeline processing data ... 18

file:///F:/Desktop/PA%202.5_Gregor.docx%23_Toc408593563
file:///F:/Desktop/PA%202.5_Gregor.docx%23_Toc408593564

Pascal Julmy & Dominic Egger

46

Addendum

SemEval2015 Task 10 Subtask B

“Subtask B: Message Polarity Classification: Given a message, classify whether the message is of pos-
itive, negative, or neutral sentiment. For messages conveying both a positive and negative sentiment, which-
ever is the stronger sentiment should be chosen.”[2]

Original task description (German)

„In der Sentiment-Analyse soll für einen Text entschieden werden, ob dieser positiv, negativ oder neutral ist.
Ein weitverbreiteter Ansatz hierfür ist die Verwendung eines Classifiers, der mit einer annotierten
Dokumentmenge trainiert wird. Der Classifier verwendet dazu verschiedene Features wie n-grams,
Satzzeichen oder Wort-Cluster.

Es gibt eine sehr grosse Menge von potentiellen Features, und viele wurden bereits in verschiedenen
Systemen implementiert. Dabei hat sich gezeigt, dass verschiedene Kombinationen von Features
unterschiedlich gute Performance erzeugen.

In dieser Arbeit soll ein System entwickelt werden, das auf Basis einer grossen Menge von Feature-
Implementierungen eine Kombination auswählt, die eine möglichst gute Performance liefert.
Bei Interesse kann das Thema Sentiment-Analyse in einer Bachelor-Arbeit im nächsten Semester
weiterbearbeitet werden.“ [1]

